Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 342-354.DOI: 10.13745/j.esf.sf.2021.9.53
Previous Articles Next Articles
SUN Weiyi1(), LIU Jian1,2,3,*(
), YAN Mi1,3, NING Liang1,3
Received:
2021-08-06
Revised:
2021-09-21
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Jian
CLC Number:
SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies[J]. Earth Science Frontiers, 2022, 29(5): 342-354.
Fig.3 Mechanism diagram of the impact of mid-Holocene Earth orbit parameters on the Asian monsoon through the variation of summer solar radiation in the Northern Hemisphere
[1] | 汪品先. 新生代亚洲形变与海陆相互作用[J]. 地球科学: 中国地质大学学报, 2005, 30(1): 1-18. |
[2] | 吴国雄. 亚洲季风区海-陆-气相互作用对我国气候变化的影响(全4卷)[M]. 北京: 气象出版社, 2005. |
[3] |
AN Z S, WU G X, LI J P, et al. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 29-77.
DOI URL |
[4] |
WANG P X, WANG B, CHENG H, et al. The global monsoon across time scales: mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174: 84-121.
DOI URL |
[5] | 刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 1998, 18(3): 194-204. |
[6] |
FU C B, AILIKUN, ZHANG R J, et al. Introducing a new international program: monsoon Asia integrated regional study (MAIRS)[J]. China Particuology, 2006, 4(6): 352-355.
DOI URL |
[7] | 丁一汇, 孙颖, 刘芸芸, 等. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, 2013, 37(2): 253-280. |
[8] | 汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5): 535-556. |
[9] |
陈发虎, 董广辉, 陈建徽, 等. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
DOI |
[10] |
MAYEWSKI P A, ROHLING E E, STAGER J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3): 243-255.
DOI URL |
[11] | 郭正堂, PETIT-MAIRE N, 刘东生. 全新世期间亚洲和非洲干旱区环境的短尺度变化[J]. 古地理学报, 1999, 1(1): 68-74. |
[12] | 安芷生, 吴国雄, 李建平, 等. 全球季风动力学与气候变化[J]. 地球环境学报, 2015, 6(6): 341-381. |
[13] | 鹿化煜, 郭正堂. 末次盛冰期以来气候变化和人类活动对我国沙漠和沙地环境的影响[J]. 中国基础科学, 2015, 17(2): 3-8. |
[14] | 肖举乐, 蔡演军, 强明瑞, 等. 全新世亚洲季风变异与干旱演变及其驱动机制[J]. 中国基础科学, 2017, 19(5): 12-17. |
[15] | 程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 49(10): 1565-1589. |
[16] | 汪永进, 刘殿兵. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报, 2016, 61(9): 938-951. |
[17] |
CHEN F, XU Q, CHEN J, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186.
DOI URL |
[18] |
CAI Y J, CHENG X, MA L, et al. Holocene variability of East Asian summer monsoon as viewed from the speleothem δ18O records in central China[J]. Earth and Planetary Science Letters, 2021, 558(6): 116758.
DOI URL |
[19] | 谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义: 古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009, 29(5): 851-862. |
[20] |
WANG H J. Role of vegetation and soil in the Holocene megathermal climate over China[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D8): 9361-9367.
DOI URL |
[21] |
JIANG D B, LANG X M, TIAN Z P, et al. Mid-Holocene East Asian summer monsoon strengthening: insights from paleoclimate modeling intercomparison project (PMIP) simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 422-429.
DOI URL |
[22] | 任国玉, 姜大膀, 燕青. 古气候演化特征、驱动与反馈及对现代气候变化研究的启示意义[J]. 第四纪研究, 2021, 41(3): 824-841. |
[23] |
MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11 300 years[J]. Science, 2013, 339(6124): 1198-1201.
DOI URL |
[24] |
MARSICEK J, SHUMAN B N, BARTLEIN P J, et al. Reconciling divergent trends and millennial variations in Holocene temperatures[J]. Nature, 2018, 554: 92-96.
DOI URL |
[25] |
KAUFMAN D, MCKAY N, ROUTSON C, et al. A global database of Holocene paleotemperature records[J]. Scientific Data, 2020, 7: 115.
DOI URL |
[26] |
BOVA S, ROSENTHAL Y, LIU Z, et al. Seasonal origin of the thermal maxima at the Holocene and the last interglacial[J]. Nature, 2021, 589: 548-533.
DOI URL |
[27] |
JIANG D B, LANG X M, TIAN Z P, et al. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations[J]. Journal of. Climate, 2012, 25: 4135-4153.
DOI URL |
[28] |
TIMM O, TIMMERMANN A. Simulation of the last 21 000 years using accelerated transient boundary conditions[J]. Journal of Climate, 2007, 20(17): 4377-4401.
DOI URL |
[29] | HE F. Simulating transient climate evolution of the last deglaciation with CCSM3[D]. Madison: University of Wisconsin-Madison, 2010. |
[30] |
SMITH R S, GREGORY J. The last glacial cycle: transient simulations with an AOGCM[J]. Climate Dynamics, 2012, 38(7/8): 1545-1559.
DOI URL |
[31] | LIU Z, ZHU J, ROSENTHAL Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): E3501-E3505. |
[32] |
BADER J, JUNGCLAUS J, KRIVOVA N, et al. Global temperature modes shed light on the Holocene temperature conundrum[J]. Nature Communications, 2020, 11: 4726.
DOI URL |
[33] |
OTTO-BLIESNER B L, BRACONNOT P, HARRISON S P, et al. The PMIP4 contribution to CMIP6-Part 2: two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations[J]. Geoscientific Model Development, 2017, 10(11): 3979-4003.
DOI URL |
[34] |
JIANG D B, TIAN Z P, LANG X M. Mid-Holocene global monsoon area and precipitation from PMIP simulations[J]. Climate Dynamics, 2015, 44(9/10): 2493-2512.
DOI URL |
[35] |
JIANG D B, TIAN Z P, LANG X M. Mid-Holocene net precipitation changes over China: model-data comparison[J]. Quaternary Science Reviews, 2013, 82: 104-120.
DOI URL |
[36] |
BARTLEIN P J, HARRISON S P, BREWER S, et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis[J]. Climate Dynamics, 2011, 37(3/4): 775-802.
DOI URL |
[37] |
BRACONNOT P, HARRISON S P, KAGEYAMA M, et al. Evaluation of climate models using palaeoclimatic data[J]. Nature Climate Change, 2012, 2(6): 417-424.
DOI URL |
[38] |
BRIERLEY C M, ZHAO A N, HARRISON S P, et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations[J]. Climate of the Past, 2020, 16(5):1847-1872.
DOI URL |
[39] |
SUN Y B, KUTZBACH J, AN Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115:132-142.
DOI URL |
[40] | 李新周, 刘晓东. 早全新世与未来10 ka后东亚区域气候变化对比: 自然强迫和人类活动的影响[J]. 第四纪研究, 2020, 40(6): 1611-1621. |
[41] | 万凌峰, 刘健, 高超超, 等. 全新世火山喷发对温度变化趋势影响的模拟研究[J]. 第四纪研究, 2020, 40(6): 1597-1610. |
[42] |
LIU Z Y, WEN X Y, BRADY E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128.
DOI URL |
[43] |
WEN X, LIU Z, WANG S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoon during the last 21,000 years[J]. Nature Communications, 2016, 7: 11999.
DOI URL |
[44] |
CHENG J, MA W Y, LIU Z Y, et al. Varying sensitivity of East Asia summer monsoon circulation to temperature change since last glacial maximum[J]. Geophysical Research Letters, 2019, 46(15): 9103-9109.
DOI URL |
[45] |
SHI J, YAN Q. Evolution of the Asian-African monsoonal precipitation over the last 21 kyr and the associated dynamic mechanisms[J]. Journal of Climate, 2019, 32(19): 6551-6569.
DOI URL |
[46] |
CHENG J, MA Y Y, WU H B, et al. Migration of Afro-Asian monsoon fringe since last glacial maximum[J]. Frontiers in Earth Science, 2020, 8:322.
DOI URL |
[47] |
WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294(5550): 2345-2348.
DOI URL |
[48] |
CAI Y J, TAN L C, CHENG H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 21-31.
DOI URL |
[49] |
DONG J G, SHEN C C, KONG X G, et al. Rapid retreat of the East Asian summer monsoon in the middle Holocene and a millennial weak monsoon interval at 9 ka in northern China[J]. Journal of Asian Earth Sciences, 2018, 151: 31-39.
DOI URL |
[50] | 陈建徽, 饶志国, 刘建宝, 等. 全新世东亚夏季风最强盛期出现在何时?兼论中国南方石笋氧同位素的古气候意义[J]. 中国科学: 地球科学, 2016, 46(11): 1494-1504. |
[51] |
LU H, YI S, LIU Z, et al. Variation of East Asian monsoon precipitation during the past 21 kyr and potential CO2 forcing[J]. Geology, 2013, 41(9): 1023-1026.
DOI URL |
[52] |
LI Q, WU H B, YU Y Y, et al. Reconstructed moisture evolution of the deserts in northern China since the Last Glacial Maximum and its implications for the East Asian summer monsoon[J]. Global and Planetary Change, 2014, 121: 101-112.
DOI URL |
[53] | 孙炜毅, 刘健, 万凌峰, 等. 全新世北半球中纬度降水变化对不同外强迫响应的模拟研究[J]. 第四纪研究, 2020, 40(6): 1588-1596. |
[54] |
MAN W M, ZHOU T J, JUNGCLAUS J H. Simulation of the East Asian summer monsoon during the last Millennium with the MPI earth system model[J]. Journal of Climate, 2012, 25(22): 7852-7866.
DOI URL |
[55] |
SUN W Y, LIU J, WANG Z Y. Simulation of centennial-scale drought events over eastern China during the past 1500 years[J]. Journal of Meteorological Research, 2017, 31(1): 17-27.
DOI URL |
[56] |
SHI J, YAN Q, WANG H J. Timescale dependence of the relationship between the East Asian summer monsoon strength and precipitation over eastern China in the last millennium[J]. Climate of the Past, 2018, 14(4): 577-591.
DOI URL |
[57] |
CHENG H, FLEITMANN D, EDWARDS R L, et al. Timing and structure of the 8.2 kyr BP event inferred from δ18O records of stalagmites from China, Oman, and Brazil[J]. Geology, 2009, 37(11): 1007-1010.
DOI URL |
[58] | TAN L C, LI Y Z, WANG X Q, et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273. |
[59] |
NING L, LIU J, BRADLEY R S, et al. Comparing the spatial patterns of climate change in the 9th and 5th millennia BP from TRACE-21 model simulations[J]. Climate of the Past, 2019, 15(1): 41-52.
DOI URL |
[60] |
MORRILL C, ANDERSON D M, BAUER B A, et al. Proxy benchmarks for intercomparison of 8.2 ka simulations[J]. Climate of the Past, 2013, 9(1): 423-432.
DOI URL |
[61] |
MATERO I S O, GREGOIRE L J, IVANOVIC R F, et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse[J]. Earth and Planetary Science Letters, 2017, 473: 205-214.
DOI URL |
[62] |
MATERO I S O, GREGOIRE L J, IVANOVIC R F. Simulating the early Holocene demise of the Laurentide Ice Sheet with BISICLES (public trunk revision 3298)[J]. Geoscientific Model Development, 2020, 13(9): 4555-4577.
DOI URL |
[63] |
YAN M, LIU J. Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations[J]. Climate of the Past, 2019, 15(1): 265-277.
DOI URL |
[64] |
KLUS A, PRANGE M, VARMA V, et al. Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation[J]. Climate of the Past, 2018, 14(8): 1165-1178.
DOI URL |
[65] | IPCC. Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change[C]// Climate change 2013: the physical science basis. Cambridge: Cambridge University Press, 2013. |
[66] |
KUTZBACH J E. Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago[J]. Science, 1981, 214(4516): 59-61.
DOI URL |
[67] |
TIAN Z P, LI T, JIANG D B. Strengthening and westward shift of the tropical pacific walker circulation during the mid-Holocene: PMIP simulation results[J]. Journal of Climate, 2018, 31(6): 2283-2298.
DOI URL |
[68] |
WANG N, JIANG D B, LANG X M. Mechanisms for spatially inhomogeneous changes in east Asian summer monsoon precipitation during the mid-Holocene[J]. Journal of Climate, 2020, 33(8): 2945-2965.
DOI URL |
[69] |
ZHANG X J, JIN L Y. Association of the northern hemisphere circumglobal teleconnection with the Asian summer monsoon during the Holocene in a transient simulation[J]. The Holocene, 2016, 26(2): 290-301.
DOI URL |
[70] |
WU C H, LEE S Y, CHIANG J C H. Relative influence of precession and obliquity in the early Holocene: topographic modulation of subtropical seasonality during the Asian summer monsoon[J]. Quaternary Science Reviews, 2018, 191: 238-255.
DOI URL |
[71] |
PELTIER W R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and grace[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 111-149.
DOI URL |
[72] |
PELTIER W R, ARGUS D F, DRUMMOND R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1):450-487.
DOI URL |
[73] |
ZHU J, LIU Z Y, ZHANG X, et al. Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3[J]. Geophysical Research Letters, 2014, 41(17): 6252-6258.
DOI URL |
[74] |
LIU Z, LU Z, WEN X, et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature, 2014, 515: 550-553.
DOI URL |
[75] |
YAN Q, OWEN L A, ZHANG Z S, et al. Deciphering the evolution and forcing mechanisms of glaciation over the Himalayan-Tibetan orogen during the past 20 000 years[J]. Earth and Planetary Science Letters, 2020, 541: 116295.
DOI URL |
[76] |
YAN Q, ZHANG Z S. Dominating roles of ice sheets and insolation in variation of tropical cyclone genesis potential over the north Atlantic during the last 21 000 years[J]. Geophysical Research Letters, 2017, 44(20): 10624-10632.
DOI URL |
[77] |
ULLMAN D J, CARLSON A E, HOSTETLER S W, et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change[J]. Quaternary Science Reviews, 2016, 152: 49-59.
DOI URL |
[78] |
LIU J, WANG B, CANE M A, et al. Divergent global precipitation changes induced by natural versus anthropogenic forcing[J]. Nature, 2013, 493(7434): 656-659.
DOI URL |
[79] |
LJUNGQVIST F C, ZHANG Q, BRATTSTRÖM G, et al. Centennial-scale temperature change in last millennium simulations and proxy-based reconstructions[J]. Journal of Climate, 2019, 32(9): 2441-2482.
DOI URL |
[80] |
JIN C H, LIU J, WANG B, et al. Decadal variations of the East Asian summer monsoon forced by the 11-year insolation cycle[J]. Journal of Climate, 2019, 32(10): 2735-2745.
DOI URL |
[81] |
SHI H, WANG B, LIU J, et al. Decadal-multidecadal variations of Asian summer rainfall from the little ice age to the present[J]. Journal of Climate, 2019, 32(22): 7663-7674.
DOI URL |
[82] | MILLER G H, GEIRSDÓTTIR Á, ZHONG Y F, et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks[J]. Geophysical Research Letters, 2012, 39(2): l02708. |
[83] | 葛全胜, 华中, 郑景云, 等. 过去2000年全球典型暖期的形成机制及其影响[J]. 科学通报, 2015, 60(18): 1728-1735. |
[84] |
VIEIRA L E A, SOLANKI S K, KRIVOVA N A, et al. Evolution of the solar irradiance during the Holocene[J]. Astronomy and Astrophysics, 2011, 531: A6.
DOI URL |
[85] | 张志平, 黄伟, 陈建徽, 等. 全新世东亚夏季风演化的多尺度周期变化及其可能机制探讨[J]. 第四纪研究, 2017, 37(3): 498-509. |
[86] |
MING G, ZHOU W J, CHENG P, et al. Lacustrine record from the eastern Tibetan Plateau associated with Asian summer monsoon changes over the past - 6 ka and its links with solar and ENSO activity[J]. Climate Dynamics, 2020, 55(5/6): 1075-1086.
DOI URL |
[87] |
ZHANG W C, YAN H, DODSON J, et al. The 9.2 ka event in Asian summer monsoon area: the strongest millennial scale collapse of the monsoon during the Holocene[J]. Climate Dynamics, 2018, 50(7/8): 2767-2782.
DOI URL |
[88] | JOOS F, SPAHNI R. Rates of change in natural and anthropogenic radiative forcing over the past 20 000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1425-1430. |
[89] |
SCHMITT J, SCHNEIDER R, ELSIG J, et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores[J]. Science, 2012, 336(6082): 711-714.
DOI URL |
[90] |
D'AGOSTINO R, BADER J, BORDONI S, et al. Northern hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming[J]. Geophysical Research Letters, 2019, 46(3): 1591-1601.
DOI URL |
[91] |
JIN C H, WANG B, LIU J. Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models[J]. Journal of Climate, 2020, 33(21): 9307-9326.
DOI URL |
[92] |
CHENG J, WU H, LIU Z, et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene[J]. Nature Communications, 2021, 12: 1843.
DOI URL |
[93] |
SUN W Y, WANG B, ZHANG Q, et al. Northern hemisphere land monsoon precipitation increased by the Green Sahara during middle Holocene[J]. Geophysical Research Letters, 2019, 46(16): 9870-9879.
DOI URL |
[94] |
GRIFFITHS M L, JOHNSON K R, PAUSATA F, et al. End of Green Sahara amplified mid- to late Holocene megadroughts in mainland southeast Asia[J]. Nature Communications, 2020, 11: 4204.
DOI URL |
[95] |
SUN W Y, WANG B, ZHANG Q, et al. Middle east climate response to the Saharan vegetation collapse during the mid-Holocene[J]. Journal of Climate, 2021, 34(1): 229-242.
DOI URL |
[96] |
BRACONNOT P, ZHU D, MARTI O, et al. Strengths and challenges for transient mid- to late Holocene simulations with dynamical vegetation[J]. Climate of the Past, 2019, 15(3): 997-1024.
DOI URL |
[97] |
LIU Y, ZHANG M, LIU Z, et al. A possible role of dust in resolving the Holocene temperature conundrum[J]. Scientific Reports, 2018, 8: 4434.
DOI URL |
[98] |
PAUSATA F S R, MESSORI G, ZHANG Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period[J]. Earth and Planetary Science Letters, 2016, 434: 298-307.
DOI URL |
[99] |
THOMPSON A J, SKINNER C B, POULSEN C J, et al. Modulation of mid-Holocene African rainfall by dust aerosol direct and indirect effects[J]. Geophysical Research Letters, 2019, 46(7): 3917-3926.
DOI URL |
[100] |
GǍINUŞǍ-BOGDAN A, SWINGEDOUW D, YIOU P, et al. AMOC and summer sea ice as key drivers of the spread in mid-Holocene winter temperature patterns over Europe in PMIP3 models[J]. Global and Planetary Change, 2020, 184: 103055.
DOI URL |
[101] |
ZHU J, LIU Z Y, ZHANG J X, et al. AMOC response to global warming: dependence on the background climate and response timescale[J]. Climate Dynamics, 2015, 44(11/12): 3449-3468.
DOI URL |
[102] |
MA X, LIU W, BURLS N, et al. Evolving AMOC multidecadal variability under different CO2 forcings[J]. Climate Dynamics, 2021, 57(1/2): 593-610.
DOI URL |
[103] |
ZHANG X, PRANGE M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability[J]. Quaternary Science Reviews, 2020, 242:106443.
DOI URL |
[104] |
YAN X Q, ZHANG R, KNUTSON T R. Underestimated AMOC variability and implications for AMV and predictability in CMIP models[J]. Geophysical Research Letters, 2018, 45(9): 4319-4328.
DOI URL |
[105] |
DING Y H. The variability of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan Ser II, 2007, 85B:21-54.
DOI URL |
[106] |
CONROY J L, OVERPECK J T, COLE J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos Lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11/12):1166-1180.
DOI URL |
[107] |
BROWN J R, BRIERLEY C M, AN S I, et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models[J]. Climate of the Past, 2020, 16(5): 1777-1805.
DOI URL |
[108] |
PAUSATA F S R, ZHANG Q, MUSCHITIELLO F, et al. Greening of the Sahara suppressed ENSO activity during the mid-Holocene[J]. Nature Communications, 2017, 8: 16020.
DOI URL |
[109] |
DU X J, HENDY I, HINNOV L, et al. High-resolution interannual precipitation reconstruction of Southern California: implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters, 2021, 554: 116670.
DOI URL |
[110] |
EMILE-GEAY J, COBB K, CARRÉ M, et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene[J]. Nature Geoscience, 2016, 9: 168-173.
DOI URL |
[111] |
LIU H Y, GU Y S, HUANG X Y, et al. A 13,000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley[J]. Quaternary Science Reviews, 2019, 212: 80-91.
DOI URL |
[112] |
SHAO X H, WANG T, WANG Y, et al. ENSO-Like Pacing of the Asian Summer Monsoon during the early Holocene[J]. Journal of Meteorological Research, 2020, 34(2): 325-335.
DOI URL |
[113] |
TIERNEY J E, PAUSATA F S R, DEMENOCAL P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling[J]. Nature Geoscience, 2016, 9: 46-50.
DOI URL |
[114] |
AN Z S, CLEMENS S C, SHEN J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043):719-723.
DOI URL |
[115] |
DING X D, ZHENG L W, ZHENG X F, et al. Holocene East Asian summer monsoon rainfall variability in Taiwan[J]. Frontiers in Earth Science, 2020, 8:234.
DOI URL |
[116] |
TIAN Z P, JIANG D B. Mid-Holocene ocean and vegetation feedbacks over East Asia[J]. Climate of the Past, 2013, 9(5): 2153-2171.
DOI URL |
[117] | TIAN Z P, JIANG D B. Mid-Holocene ocean feedback on global monsoon area and precipitation[J]. Atmospheric and Oceanic Science Letters, 2015, 8(1): 29-32. |
[118] |
BIASUTTI M, VOIGT A, BOOS W R, et al. Global energetics and local physics as drivers of past, present and future monsoons[J]. Nature Geoscience, 2018, 11: 392-400.
DOI URL |
[119] | 周天军, 吴波, 郭准, 等. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题、机遇和挑战[J]. 大气科学, 2018, 42(4): 902-934. |
[1] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[2] | YAN Qing. Climate change and the associated glacier response in High-Mountain Asia during the mid-Holocene: A modeling study [J]. Earth Science Frontiers, 2022, 29(5): 372-381. |
[3] | TIAN Zhiping, ZHANG Ran, JIANG Dabang. Mid-Holocene climate in China and the East Asian monsoon: Insights from PMIP4 simulations [J]. Earth Science Frontiers, 2022, 29(5): 355-371. |
[4] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[5] | ZHANG Yang, XU Jishang, LI Guangxue, LIU Yong. ENSO-like patterns and its driving mechanism in Western Pacific Warm Pool during the glacial cycles [J]. Earth Science Frontiers, 2022, 29(4): 168-178. |
[6] | WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view [J]. Earth Science Frontiers, 2022, 29(4): 156-167. |
[7] | GUO Yongqiang, GE Yonggang, CHEN Xiaoqing, LIU Weiming, MAO Peini, LIU Tao. Progress in the reconstruction of palaeoflood events in the mountain canyon valleys around the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 168-180. |
[8] | SHU Cheng, MA Chun-Mei, LI Lan, SUN Zhi-Ban, ZHENG Chao-Gui, BAI Jiu-Jiang, SHU Guang-Yao, HUANG Run. The progress in the study of environmental archaeology during the Holocene in Three Gorges reservoir area of the Yangtze River. [J]. Earth Science Frontiers, 2010, 17(3): 222-232. |
[9] | LI Shi-Jie, Bernd Wünnemann, JIA Wei-Lan, XU Shou-Bing, CHEN De-Fu, JIANG Yong-Jian. A preliminary study of the Holocene lake level changes and their causes derived from the sediment record of Zigetang Lake, Tibetan Plateau. [J]. Earth Science Frontiers, 2009, 16(6): 162-167. |
[10] | TU Ke-Bi, CHEN Te-Gu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the late Holocene. [J]. Earth Science Frontiers, 2009, 16(6): 138-145. |
[11] | SHI Chen-Xi, MO Che-Wen, MAO Long-Jiang, LIU Hui. The impact of middle to late Holocene environmental changes on human activities in the Qujialing region, Jingshan, Hubei Province. [J]. Earth Science Frontiers, 2009, 16(6): 120-128. |
[12] | CHEN Fa-Hu, CHEN Jian-Hui, HUANG Wei. A discussion on the westerlydominated climate model in midlatitude Asia during the modern interglacial period. [J]. Earth Science Frontiers, 2009, 16(6): 23-32. |
[13] | LIU Zai-Hua SUN Hai-Long ZHANG Jin-Liu. Changes in climate and vegetation in Niangziguan Spring Watershed of Shanxi Province since MIS12/11 recorded by the spring tufa. [J]. Earth Science Frontiers, 2009, 16(5): 99-. |
[14] | FANG Jing WU E-Fang LI Rui-Wu ZHOU Jiang KANG Ling-Ling CHAI Dui MA Nan. Discussion on the marine regression event during the EarlyMiddle Holocene in the Liaoning Coast. [J]. Earth Science Frontiers, 2009, 16(2): 396-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||