Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 438-445.DOI: 10.13745/j.esf.sf.2020.10.21
YU Hao1(), SU Zhijie1, ZHU Peitian2, CHEN Yong1, YANG Qiao1, ZHAO Zhongqiu1,3,*(
)
Received:
2020-03-13
Revised:
2020-12-18
Online:
2021-01-25
Published:
2021-01-28
Contact:
ZHAO Zhongqiu
CLC Number:
YU Hao, SU Zhijie, ZHU Peitian, CHEN Yong, YANG Qiao, ZHAO Zhongqiu. Relationship between Cd contents in rice or wheat and soil: Insight from a simulation study[J]. Earth Science Frontiers, 2021, 28(1): 438-445.
参数相关 指标 | 水稻田各参数情况 | 小麦田各参数情况 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
土壤Cd 含量 | pH | CEC | 有机碳 含量 | 水稻Cd 含量 | 土壤Cd 含量 | pH | CEC | 有机碳 含量 | 小麦Cd 含量 | |
样本数 | 45 | 45 | 45 | 45 | 45 | 51 | 51 | 51 | 51 | 51 |
取值范围 | 0.15~3.20 | 5.1~7.7 | 3.6~16.0 | 3.5~30.1 | 0.003~2.04 | 0.13~3.20 | 4.2~7.5 | 3.5~16.2 | 5.0~22.0 | 0.02~1.60 |
算术均值 | 0.66 | 6.3 | 8.44 | 12.96 | 0.27 | 0.6 | 6.21 | 8.49 | 12.53 | 0.21 |
标准差 | 0.79 | 0.49 | 2.26 | 4.65 | 0.4 | 0.75 | 0.57 | 2.28 | 3.72 | 0.32 |
变异系数 | 120% | 8% | 27% | 36% | 151% | 125% | 9% | 27% | 30% | 152% |
Table 1 Descriptive statistics of the Cd content, pH, CEC and OC in soil, and Cd content in crops
参数相关 指标 | 水稻田各参数情况 | 小麦田各参数情况 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
土壤Cd 含量 | pH | CEC | 有机碳 含量 | 水稻Cd 含量 | 土壤Cd 含量 | pH | CEC | 有机碳 含量 | 小麦Cd 含量 | |
样本数 | 45 | 45 | 45 | 45 | 45 | 51 | 51 | 51 | 51 | 51 |
取值范围 | 0.15~3.20 | 5.1~7.7 | 3.6~16.0 | 3.5~30.1 | 0.003~2.04 | 0.13~3.20 | 4.2~7.5 | 3.5~16.2 | 5.0~22.0 | 0.02~1.60 |
算术均值 | 0.66 | 6.3 | 8.44 | 12.96 | 0.27 | 0.6 | 6.21 | 8.49 | 12.53 | 0.21 |
标准差 | 0.79 | 0.49 | 2.26 | 4.65 | 0.4 | 0.75 | 0.57 | 2.28 | 3.72 | 0.32 |
变异系数 | 120% | 8% | 27% | 36% | 151% | 125% | 9% | 27% | 30% | 152% |
参数 | 各参数间相关系数 | ||||
---|---|---|---|---|---|
Cd(土壤) 含量 | Cd(水稻) 含量 | pH | CEC | OC 含量 | |
Cd(土壤)含量 | 1 | ||||
Sig | - | ||||
Cd(水稻)含量 | 0.651** | 1 | |||
Sig | 0 | - | |||
pH | 0.096 | 0.105 | 1 | ||
Sig | 0.529 | 0.491 | - | ||
CEC | 0.241 | 0.028 | 0.631** | 1 | |
Sig | 0.111 | 0.856 | 0 | - | |
OC含量 | -0.284 | -0.134 | 0.058 | 0.169 | 1 |
Sig | 0.059 | 0.382 | 0.705 | 0.266 | - |
Table 2 Correlation between Cd content in rice or soil and soil properties
参数 | 各参数间相关系数 | ||||
---|---|---|---|---|---|
Cd(土壤) 含量 | Cd(水稻) 含量 | pH | CEC | OC 含量 | |
Cd(土壤)含量 | 1 | ||||
Sig | - | ||||
Cd(水稻)含量 | 0.651** | 1 | |||
Sig | 0 | - | |||
pH | 0.096 | 0.105 | 1 | ||
Sig | 0.529 | 0.491 | - | ||
CEC | 0.241 | 0.028 | 0.631** | 1 | |
Sig | 0.111 | 0.856 | 0 | - | |
OC含量 | -0.284 | -0.134 | 0.058 | 0.169 | 1 |
Sig | 0.059 | 0.382 | 0.705 | 0.266 | - |
参数 | 各参数间相关系数 | ||||
---|---|---|---|---|---|
Cd(土壤) 含量 | Cd(小麦) 含量 | pH | CEC | OC 含量 | |
Cd(土壤)含量 | 1 | ||||
Sig | - | ||||
Cd(小麦)含量 | 0.780** | 1 | |||
Sig | 0 | - | |||
pH | 0.097 | 0.059 | 1 | ||
Sig | 0.497 | 0.679 | - | ||
CEC | 0.184 | -0.138 | 0.498** | 1 | |
Sig | 0.195 | 0.335 | 0 | - | |
OC含量 | -0.215 | -0.141 | 0.108 | 0.227 | 1 |
Sig | 0.130 | 0.323 | 0.449 | 0.110 | - |
Table 3 Correlation between Cd content in wheat or soil and soil properties
参数 | 各参数间相关系数 | ||||
---|---|---|---|---|---|
Cd(土壤) 含量 | Cd(小麦) 含量 | pH | CEC | OC 含量 | |
Cd(土壤)含量 | 1 | ||||
Sig | - | ||||
Cd(小麦)含量 | 0.780** | 1 | |||
Sig | 0 | - | |||
pH | 0.097 | 0.059 | 1 | ||
Sig | 0.497 | 0.679 | - | ||
CEC | 0.184 | -0.138 | 0.498** | 1 | |
Sig | 0.195 | 0.335 | 0 | - | |
OC含量 | -0.215 | -0.141 | 0.108 | 0.227 | 1 |
Sig | 0.130 | 0.323 | 0.449 | 0.110 | - |
水稻 组合 | 模型 | R | R2 | 误差 |
---|---|---|---|---|
1 | Y=0.048+0.331X1 | 0.651 | 0.424 | 0.310 |
2 | Y=0.838+0.344X1-0.116X2-0.008X3 | 0.673 | 0.454 | 0.309 |
3 | Y=-0.020+0.339X1+0.005X4 | 0.653 | 0.427 | 0.313 |
4 | Y=0.722+0.359X1-0.108X2-0.013X3+0.007X4 | 0.678 | 0.460 | 0.311 |
Table 4 Regression analysis of rice combination models
水稻 组合 | 模型 | R | R2 | 误差 |
---|---|---|---|---|
1 | Y=0.048+0.331X1 | 0.651 | 0.424 | 0.310 |
2 | Y=0.838+0.344X1-0.116X2-0.008X3 | 0.673 | 0.454 | 0.309 |
3 | Y=-0.020+0.339X1+0.005X4 | 0.653 | 0.427 | 0.313 |
4 | Y=0.722+0.359X1-0.108X2-0.013X3+0.007X4 | 0.678 | 0.460 | 0.311 |
小麦 组合 | 模型 | R | R2 | 误差 |
---|---|---|---|---|
1 | Y=0.011+0.329X1 | 0.780 | 0.608 | 0.203 |
2 | Y=0.322+0.351X1+0.003X2-0.041X3 | 0.831 | 0.690 | 0.183 |
3 | Y=-0.020+0.331X1+0.002X4 | 0.780 | 0.608 | 0.202 |
4 | Y=0.225+0.364X1+0.004X2-0.045X3+0.010X4 | 0.838 | 0.702 | 0.181 |
Table 5 Regression analysis of wheat combination models
小麦 组合 | 模型 | R | R2 | 误差 |
---|---|---|---|---|
1 | Y=0.011+0.329X1 | 0.780 | 0.608 | 0.203 |
2 | Y=0.322+0.351X1+0.003X2-0.041X3 | 0.831 | 0.690 | 0.183 |
3 | Y=-0.020+0.331X1+0.002X4 | 0.780 | 0.608 | 0.202 |
4 | Y=0.225+0.364X1+0.004X2-0.045X3+0.010X4 | 0.838 | 0.702 | 0.181 |
作物 | R | MSE | ||||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | |
水稻 | 0.937 6 | 0.859 7 | 0.712 0 | 0.027 3 | 0.066 4 | 0.005 5 |
小麦 | 0.981 4 | 0.938 7 | 0.895 1 | 0.006 2 | 0.020 4 | 0.035 4 |
Table 6 Accuracy evaluation index of neural network model
作物 | R | MSE | ||||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | |
水稻 | 0.937 6 | 0.859 7 | 0.712 0 | 0.027 3 | 0.066 4 | 0.005 5 |
小麦 | 0.981 4 | 0.938 7 | 0.895 1 | 0.006 2 | 0.020 4 | 0.035 4 |
[1] | 庄国泰. 我国土壤污染现状与防控策略[J]. 中国科学院院刊, 2015, 30(4):477-483. |
[2] | 刘维明, 王晓飞, 魏萌萌, 等. 基于物元分析法的农田土壤重金属污染评价[J]. 浙江农业学报, 2015, 27(2):249-253. |
[3] | 张亚男. 农用地土壤重金属污染防治与管控研究[D]. 北京: 中国地质大学(北京), 2018. |
[4] | 王广林, 刘登义. 冶炼厂污灌区土壤-水稻系统重金属积累特征的研究[J]. 土壤, 2005(3):299-303. |
[5] | 龚伟群, 李恋卿, 潘根兴. 杂交水稻对Cd的吸收与籽粒积累: 土壤和品种的交互影响[J]. 环境科学, 2006(8):1647-1653. |
[6] |
ZHAO K, ZHANG W, ZHOU L, et al. Modeling transfer of heavy metals in soil-rice system and their risk assessment in paddy fields[J]. Environmental Earth Sciences, 2009, 59(3):519-527.
DOI URL |
[7] | 龙育堂, 刘世凡, 熊建平, 等. 苎麻对稻田土壤汞净化效果研究[J]. 农业环境保护, 1994(1):30-33. |
[8] | 王祖伟, 李宗梅, 王景刚, 等. 天津污灌区土壤重金属含量与理化性质对小麦吸收重金属的影响[J]. 农业环境科学学报, 2007, 26(4):1406-1410. |
[9] | BHATTACHARYA P, SAMAL A C, MAJUMDAR J, et al. Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India[J]. Paddy & Water Environment, 2010, 8(1):63-70. |
[10] | 张孝飞. 徐州地区土壤重金属污染及其对农产品安全的影响[D]. 南京: 南京农业大学, 2003. |
[11] | 李正文, 张艳玲, 潘根兴, 等. 不同水稻品种籽粒Cd、 Cu和Se的含量差异及其人类膳食摄取风险[J]. 环境科学, 2003(3):112-115. |
[12] |
MIC$\acute{O}$ C, RECATAL$\acute{A}$ L, PERIS M, et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis[J]. Chemosphere, 2006, 65(5):863-872.
DOI URL |
[13] | 中华人民共和国生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB15618—2018[EB/OL]. (2018-08-01)[2020-12-01].https://wenku.baidu.com/view/ad043c562bf90242a8956bec0975f46527d3a7d7.html |
[14] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品污染物限量: GB2762—2017[EB/OL]. (2017-09-17)[2020-12-01]. https://wenku.baidu.com/view/e13d81f1690203d8ce2f0066f5335a8103d26603.html |
[15] | 闫加力, 徐春燕, 杨军, 等. 湖北省不同区域土壤与农作物硒相关性研究[J]. 安徽农业科学, 2018, 46(6):127-129, 144. |
[16] | 刘玉金. 基于主成分分析与多元线性回归分析的灌溉水利用效率影响因素分析[D]. 呼和浩特: 内蒙古农业大学, 2014. |
[17] | 范德成, 李昊, 刘贇. 基于改进DEA: 以复相关系数为基准的滞后期的我国产业结构演化效率评价[J]. 运筹与管理, 2016, 25(3):195-203. |
[18] | 侯艺璇, 赵华甫, 吴克宁, 等. 基于BP神经网络的作物Cd含量预测及安全种植分区[J]. 资源科学, 2018, 40(12):2414-2424. |
[19] | 陈博, 欧阳竹. 基于BP神经网络的冬小麦耗水预测[J]. 农业工程学报, 2010, 26(4):81-86. |
[20] | 刘巍, 陈效民, 景峰, 等. 生物质炭对土壤-水稻系统中Cd迁移累积的影响[J]. 水土保持学报, 2019, 33(1):323-327. |
[21] | 史静, 潘根兴, 张乃明. 镉胁迫对不同杂交水稻品种Cd、 Zn吸收与积累的影响[J]. 环境科学学报, 2013(10):2904-2910. |
[22] | 范健, 廖启林, 许宏铭, 等. 稻米与小麦吸收土壤重金属的基本特征[J]. 地质学刊, 2016, 40(4):701-719. |
[23] | 王梦梦, 何梦媛, 苏德纯. 稻田土壤性质与稻米镉含量的定量关系[J]. 环境科学, 2018, 39(4):1918-1925. |
[24] | 廖启林, 刘聪, 王轶, 等. 水稻吸收Cd的地球化学控制因素研究: 以苏锡常典型区为例[J]. 中国地质, 2015, 42(5):1621-1632. |
[25] | 李杨, 李海东, 施卫省, 等. 基于神经网络的土壤重金属预测及生态风险评价[J]. 长江流域资源与环境, 2017(4):591-597. |
[1] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[2] | WANG Hanyu, ZHOU Yongzhang, XU Yating, WANG Weixi, CAO Wei, LIU Yongqiang, HE Juxiang, LU Kefei. IoT monitoring and visualization of urban soil pollution based on microservice architecture [J]. Earth Science Frontiers, 2024, 31(4): 165-182. |
[3] | ZHANG Shunyao, SHI Zeming, YANG Zhibin, ZHOU Yalong, ZHANG Fugui, PENG Min. Advances and trends on soil methane emission in permafrost region [J]. Earth Science Frontiers, 2024, 31(4): 354-365. |
[4] | YANG Zheng, PENG Min, ZHAO Chuandong, YANG Ke, LIU Fei, LI Kuo, ZHOU Yalong, TANG Shiqi, MA Honghong, ZHANG Qing, CHENG Hangxin. The study of geochemical background and baseline for 54 chemical indicators in Chinese soil [J]. Earth Science Frontiers, 2024, 31(4): 380-402. |
[5] | YAN Liping, XIE Xianming, TANG Zhenhua. Study on soil heavy metal environmental capacity in Shantou City based on source analysis [J]. Earth Science Frontiers, 2024, 31(4): 403-416. |
[6] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[7] | ZHANG Jiawen, LI Mingchao, HAN Shuai, ZHANG Jingyi. Analysis and discrimination of tectonic settings based on stacking quantum neural networks [J]. Earth Science Frontiers, 2024, 31(3): 511-519. |
[8] | SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang. Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques [J]. Earth Science Frontiers, 2024, 31(3): 530-540. |
[9] | LI Shanshan, ZHANG Rong, FEI Yang, LIANG Jiahui, YANG Bing, WANG Meng, SHI Huading, CHEN Shibao. How iron influence heavy metal migration and transformation in paddy soils—a review [J]. Earth Science Frontiers, 2024, 31(2): 103-110. |
[10] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[11] | DING Changfeng, ZHOU Zhigao, WANG Yurong, ZHANG Taolin, WANG Xingxiang. Environmental criteria for cadmium in soils based on ecological safety considerations in China [J]. Earth Science Frontiers, 2024, 31(2): 130-136. |
[12] | ZHANG Jingyuan, WANG Xuedong, LIANG Lichuan, DUAN Guilan. Derivation of ecotoxicity thresholds for Co in soils in China [J]. Earth Science Frontiers, 2024, 31(2): 137-146. |
[13] | WANG Meng, YU Lei, QIN Luyao, SUN Xiaoyi, WANG Jing, LIU Jiaxiao, CHEN Shibao. Scientific issues and research methods of soil environmental standards: A case study on cadmium [J]. Earth Science Frontiers, 2024, 31(2): 147-156. |
[14] | LEI Ming, ZHOU Yimin, HUANG Darui, HUANG Yayuan, WANG Xinqi, LI Bingyu, DU Huihui, LIU Xiaoli, TIE Boqing. Prevention and control of heavy metal contamination in cropland and in commercial rice in Hunan Province: Current status and practical considerations [J]. Earth Science Frontiers, 2024, 31(2): 173-182. |
[15] | LIU He, SONG Shuxian, SUN Mei, LI Shuangshuang, YU Xiaojing, DAI Jiulan. Microplastics in soils and plants: Current research status and progress on detection methods [J]. Earth Science Frontiers, 2024, 31(2): 183-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||