Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 104-115.DOI: 10.13745/j.esf.sf.2020.6.5
Previous Articles Next Articles
GUO Junfeng1,2(), QIANG Yaqin1,2, HAN Jian3, SONG Zuchen1,2, WANG Wenzhe1,2, ZHANG Zhifei3
Received:
2020-03-05
Revised:
2020-05-14
Online:
2020-11-02
Published:
2020-11-02
CLC Number:
GUO Junfeng, QIANG Yaqin, HAN Jian, SONG Zuchen, WANG Wenzhe, ZHANG Zhifei. Recent research progress on small shelly fossils from the Cambrian (Terreneuvian) Yanjiahe Formation in the Three Gorges area[J]. Earth Science Frontiers, 2020, 27(6): 104-115.
[1] |
SHU D G. Cambrian explosion: birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240.
DOI URL |
[2] |
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097.
DOI URL |
[3] |
SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895.
DOI URL |
[4] |
ZHURAVLEV A Y, WOOD R A. The two phases of the Cambrian Explosion[J]. Scientific Reports, 2018, 8: 16656.
DOI URL |
[5] | 朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1455-1490. |
[6] | QIAN Y. Stratigraphy and palaeontology of systematic boundaries in China, Precambrian-Camhrian boundary (2), Early Cambrian small shelly fossils of China with special reference to the Precambrian-Cambrian boundary[M]. Nanjing: Nanjing University Publishing House, 1989. |
[7] | BENGTSON S, MORRIS S C. Early radiation of biomineralizing phyla[M]. Boston, America: Springer, 1992: 447-481. |
[8] | 陈平. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义[G]//地层古生物论文集(第十三辑). 北京: 中国地质学会, 1984: 49-64. |
[9] | 丁莲芳, 李勇, 陈会鑫. 湖北宜昌震旦系—寒武系界线地层Micrhystridium regulare化石的发现及其地层意义[J]. 微体古生物学报, 1992, 9(3): 303-309, 345. |
[10] |
YAO J X, XIAO S H, YIN L M, et al. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations(Tarim, North-West China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs[J]. Palaeontology, 2005, 48(4): 687-708.
DOI URL |
[11] |
GUO J F, LI Y, HAN J, et al. Fossil association from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, South China[J]. Acta Geologica Sinica (English Edition), 2008, 82(6): 1124-1132.
DOI URL |
[12] |
ISHIKAWA T, UENO Y, KOMIYA T, et al. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion[J]. Gondwana Research, 2008, 14(1/2): 193-208.
DOI URL |
[13] |
ISHIKAWA T, UENO Y, SHU D G, et al. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China[J]. Precambrian Research, 2013, 225: 190-208.
DOI URL |
[14] | 郭俊锋, 李勇, 韩健, 等. 原锥虫属(Protoconites Chen et al., 1994)在湖北三峡地区纽芬兰统(Terreneuvian)岩家河组的发现[J]. 自然科学进展, 2009, 19(2): 180-184. |
[15] | 郭俊锋, 李勇, 舒德干. 湖北三峡地区纽芬兰统岩家河组的宏体藻类化石[J]. 古生物学报, 2010, 49(3): 336-342. |
[16] | 郭俊锋, 李勇, 舒德干, 等. 湖北宜昌纽芬兰统岩家河组结核的特征及形成过程[J]. 沉积学报, 2010, 28(4): 676-681. |
[17] | 郭俊锋, 李勇, 舒德干. 湖北宜昌寒武系纽芬兰统岩家河组中的蓝菌类化石[J]. 微体古生物学报, 2010, 27(2): 144-149. |
[18] | 郭俊锋, 强亚琴, 宋祖晨, 等. 寒武纪早期岩家河生物群: 研究进展和展望[J]. 古生物学报, 2017, 56(4): 461-475. |
[19] |
DONG L, XIAO S H, SHEN B, et al. Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area(Tarim Block, Northwestern China)[J]. Journal of Paleontology, 2009, 83(1): 30-44.
DOI URL |
[20] |
JIANG G Q, WANG X Q, SHI X Y, et al. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform[J]. Earth and Planetary Science Letters, 2012, 317/318: 96-110.
DOI URL |
[21] |
GUO J F, LI Y, HAN H P, et al. New macroscopic problematic fossil from the Early Cambrian Yanjiahe Biota, Yichang, Hubei, China[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 791-798.
DOI URL |
[22] |
GUO J F, LI Y, LI G X. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China[J]. Gondwana Research, 2014, 25(3): 999-1007.
DOI URL |
[23] | 王丹, 凌洪飞, 李达, 等. 三峡地区岩家河埃迪卡拉系-寒武系界线剖面碳同位素地层学研究[J]. 地层学杂志, 2012, 36(1): 21-30. |
[24] |
SHANG X D, LIU P J, YANG B, et al. Ecology and phylogenetic affinity of the Early Cambrian tubular microfossil Megathrix longus[J]. Palaeontology, 2016, 59(1): 13-28.
DOI URL |
[25] |
AHN S Y, ZHU M Y. Lowermost Cambrian acritarchs from the Yanjiahe Formation, South China: implication for defining the base of the Cambrian in the Yangtze Platform[J]. Geological Magazine, 2017, 154(6): 1217-1231.
DOI URL |
[26] |
CHANG S, FENG Q L, CLAUSEN S, et al. Sponge spicules from the lower Cambrian in the Yanjiahe Formation, South China: the earliest biomineralizing sponge record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 36-44.
DOI URL |
[27] |
CHANG S, FENG Q L, ZHANG L. New siliceous microfossils from the Terreneuvian Yanjiahe Formation, South China: the possible earliest radiolarian fossil record[J]. Journal of Earth Science, 2018, 29(4): 912-919.
DOI URL |
[28] |
CHANG S, CLAUSEN S, ZHANG L, et al. New probable cnidarian fossils from the lower Cambrian of the Three Gorges area, South China, and their ecological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 150-166.
DOI URL |
[29] |
CHANG S, ZHANG L, CLAUSEN S, et al. The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems[J]. Precambrian Research, 2019, 333: 105438.
DOI URL |
[30] |
CHANG S, ZHANG L, CLAUSEN S, et al. Source of silica and silicification of the lowermost Cambrian Yanjiahe Formation in the three Gorges area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 548: 109697.
DOI URL |
[31] | 潘时妹, 冯庆来, 常珊. 湖北宜昌寒武系纽芬兰统岩家河组小壳化石[J]. 微体古生物学报, 2018, 35(1): 30-40. |
[32] |
TOPPER T P, GUO J F, CLAUSEN S, et al. A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria[J]. Nature Communications, 2019, 10: 1366.
DOI URL |
[33] |
STEINER M, LI G X, QIAN Y, et al. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.
DOI URL |
[34] |
GUO J F, HAN J, VAN ITEN H, et al. A new tetraradial olivooid (Medusozoa) from the Lower Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(3): 457-466.
DOI URL |
[35] |
GUO J F, HAN J, VAN ITEN H, et al. A fourteen-faced hexangulaconulariid from the early Cambrian (Stage 2) Yanjiahe Formation, South China[J]. Journal of Paleontology, 2020, 94(1): 45-55.
DOI URL |
[36] | GUO J F, LI G X, QIANG Y Q, et al. Watsonella crosbyi from the lower Cambrian (Terreneuvian, Stage 2) Yanjiahe Formation in Three Gorges area, South China[J]. Palaeoworld, 2020. https://doi.org/10.1016/j.palwor.2020.04.006. |
[37] | STEINER M, YANG B, HOHL S, et al. Small skeletal fossil and carbon isotope record of the southern Huangling Anticline, Hubei (China) and implications for chemostratigraphy on the Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020. https://doi.org/10.1016/j.palaeo.2020.109817. |
[38] |
LI G X, ZHAO X, GUBANOV A P, et al. Early Cambrian mollusc Watsonella crosbyi: a potential GSSP index fossil for the base of the Cambrian Stage 2[J]. Acta Geologica Sinica (English Edition), 2011, 85(2): 309-319.
DOI URL |
[39] | DEVAERE L, CLAUSEN S, STEINER M, et al. Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France[J]. Palaeontologia Electronica, 2013, 16: 1-91. |
[40] |
JACQUET S M, BROUGHAM T, SKOVSTED C B, et al. Watsonella crosbyi from the lower Cambrian (Terreneuvian, Stage 2) Normanville Group in South Australia[J]. Geological Magazine, 2017, 154(5): 1088-1104.
DOI URL |
[41] | KOUCHINSKY A, BENGTSON S, LANDING E, et al. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia[J]. Acta Palaeontologica Polonica, 2017, 62: 311-440. |
[42] | PEEL J S. Functional morphology of the class Helcionelloida nov., and the early evolution of the Mollusca[M]//SIMONETTA A, CONWAY MORRIS S. The early evolution of metazoa and the significance of problematic taxa. Cambridge: Cambridge University Press and University of Camerino, 1991: 157-177. |
[43] | PEEL J S. The classes Tergomya and Helcionelloida and early molluscan evolution[J]. Grønlands Geologiske Undersøgelse Bulletin, 1991, 161: 11-65. |
[44] | RUNNEGAR B. Early evolution of the Mollusca: the fossil record[M]//TAYLOR J D. Origin and evolutionary radiation of the Mollusca. Oxford: Oxford University Press, 1996: 77-87. |
[45] | PARKHAEV P Y. Molluscs and siphonoconchs[M]//ALEXANDER E M, JAGO J B, ROZANOV A Y, et al. The Cambrian biostratigraphy of the Stansbury Basin, South Australia. Moscow: Nauka, 2001: 133-210. |
[46] |
KOUCHINSKY A, BENGTSON S, RUNNEGAR B, et al. Chronology of early Cambrian biomineralisation[J]. Geological Magazine, 2012, 149(2): 221-251.
DOI URL |
[47] |
LANDING E, GEYER G, BRASIER M D, et al. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy-overcoming deficiencies of the first appearance datum (FAD) concept[J]. Earth-Science Reviews, 2013, 123: 133-172.
DOI URL |
[48] |
LANDING E D, KOUCHINSKY A. Correlation of the Cambrian evolutionary radiation: geochronology, evolutionary stasis of earliest Cambrian (Terreneuvian) small shelly fossil (SSF) taxa, and chronostratigraphic significance[J]. Geological Magazine, 2016, 153(4): 750-756.
DOI URL |
[49] |
BETTS M J, PATERSON J R, JACQUET S M, et al. Early Cambrian chronostratigraphy and geochronology of South Australia[J]. Earth-Science Reviews, 2018, 185: 498-543.
DOI URL |
[50] |
BRASIER M D, SHIELDS G, KULESHOV V N, et al. Integrated chemo-and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia[J]. Geological Magazine, 1996, 133(4): 445-485.
DOI URL |
[51] |
ROZANOV A Y, ZHU M Y, PAK K L, et al. The second Sino-Russian Symposium on the Lower Cambrian Subdivision[J]. Paleontological Journal, 2008, 42(4): 441-446.
DOI URL |
[52] |
YANG B, STEINER M, LI G X, et al. Terreneuvian small shelly faunas of East Yunnan (South China) and their biostratigraphic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 28-58.
DOI URL |
[53] |
BETTS M J, PATERSON J R, JAGO J B, et al. A new lower Cambrian shelly fossil biostratigraphy for South Australia[J]. Gondwana Research, 2016, 36: 176-208.
DOI URL |
[54] |
BETTS M J, PATERSON J R, JAGO J B, et al. Global correlation of the early Cambrian of South Australia: shelly fauna of the Dailyatia odyssei Zone[J]. Gondwana Research, 2017, 46: 240-279.
DOI URL |
[55] |
NAGOVITSIN K E, ROGOV V I, MARUSIN V V, et al. Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform[J]. Precambrian Research, 2015, 270: 226-245.
DOI URL |
[56] |
SMITH E F, MACDONALD F A, PETACH T A, et al. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia[J]. Geological Society of America Bulletin, 2016, 128(3/4): 442-468.
DOI URL |
[57] |
PARKHAEV P Y. A finding of Mollusks Watsonella crosbyi Grabau (Gastropoda: Helcionelliformes) in the Botomian of China[J]. Doklady Earth Sciences, 2019, 488(2): 1161-1165.
DOI URL |
[58] |
YUN H, ZHANG X L, LI L Y, et al. Skeletal fossils and microfacies analysis of the lowermost Cambrian in the southwestern margin of the North China Platform[J]. Journal of Asian Earth Sciences, 2016, 129: 54-66.
DOI URL |
[59] |
LI L Y, ZHANG X L, YUN H, et al. New occurrence of Cambroclavus absonus from the lowermost Cambrian of North China and its stratigraphical importance[J]. Alcheringa: An Australasian Journal of Palaeontology, 2016, 40(1): 45-52.
DOI URL |
[60] |
PAN B, SKOVSTED C B, SUN H J, et al. Biostratigraphical and palaeogeographical implications of Early Cambrian hyoliths from the North China Platform[J]. Alcheringa: An Australasian Journal of Palaeontology, 2019, 43(3): 351-380.
DOI URL |
[61] | PARKHAEV P, KARLOVA G A, ROZANOV A Y. Taxonomy, stratigraphy and biogeography of Aldanella attleborensis: a possible candidate for defining the base of Cambrian Stage 2[J]. Museum of Northern Arizona Bulletin, 2011, 67: 298-300. |
[62] | PARKHAEV P Y. On the stratigraphy of Aldanella attleborensis-potential index species for defining the base of Cambrian Stage 2[C]//ZHAN R B, HUANG B. Extended Summary, IGCP Project 591 Field Workshop. Nanjing: Nanjing University Press, 2014: 102-105. |
[63] |
PARKHAEV P Y, KARLOVA G A. Taxonomic revision and evolution of Cambrian mollusks of the genus Aldanella Vostokova, 1962 (Gastropoda: Archaeobranchia)[J]. Paleontological Journal, 2011, 45(10): 1145-1205.
DOI URL |
[64] | POJETA J, RUNNEGAR B. The palaeontology of rostroconch mollusks and the early history of the phylum Mollusca[J]. Geological Survey Professional Paper, 1976, 968(968): 1-88. |
[65] | PARKHAEV P Y. The Early Cambrian radiation of Mollusca[M]//PONDER W F, LINDBERG D R. Phylogeny and evolution of the Mollusca. Berkeley, America: University of California Press, 2008: 33-69. |
[66] |
PARKHAEV P Y. On the position of Cambrian archaeobranchians in the system of the class Gastropoda[J]. Paleontological Journal, 2017, 51(5): 453-463.
DOI URL |
[67] |
VINTHER J. The origins of molluscs[J]. Palaeontology, 2015, 58(1): 19-34.
DOI URL |
[68] | PARKHAEV P Y. The functional morphology of the Cambrian univalved mollusks-helcionellids(Art.2)[J]. Paleontological Journal, 2001, 35(5): 470-475. |
[69] | THOMAS R D K, RUNNEGAR B, MATT K. Pelagiella exigua, an early Cambrian stem gastropod with chaetae: lophotrochozoan heritage and conchiferan novelty[J]. Palaeontology, 2020. https://doi.org/10.1111/pala.12476. |
[70] |
RUNNEGAR B. Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs[J]. Lethaia, 1981, 14(4): 311-322.
DOI URL |
[71] |
HAN J, LI G X, WANG X, et al. Olivooides-like tube aperture in Early Cambrian carinachitids (Medusozoa, Cnidaria)[J]. Journal of Paleontology, 2018, 92(1): 3-13.
DOI URL |
[72] |
MORRIS S C, CHEN M G. Carinachitiids, hexangulaconulariids, and Punctatus: problematic metazoans from the Early Cambrian of South China[J]. Journal of Paleontology, 1992, 66(3): 384-406.
DOI URL |
[73] |
DONG X P, CUNNINGHAM J A, BENGTSON S, et al. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1757): 20130071.
DOI URL |
[74] |
DONG X P, VARGAS K, CUNNINGHAM J A, et al. Developmental biology of the early Cambrian cnidarian Olivooides[J]. Palaeontology, 2016, 59(3): 387-407.
DOI URL |
[75] |
HAN J, KUBOTA S, LI G X, et al. Early Cambrian pentamerous cubozoan embryos from South China[J]. PLoS One, 2013, 8(8): e70741.
DOI URL |
[76] | 韩健, 郭俊锋, 欧强, 等. 华南寒武纪早期刺胞动物演化框架[J]. 地学前缘, 2020, 27(6): 67-78. |
[77] | 何廷贵. 扬子地台区早寒武世锥石动物及其早期演化[J]. 成都地质学院学报, 1987, 14(2): 7-18. |
[78] |
STEINER M, QIAN Y, LI G X, et al. The developmental cycles of early Cambrian Olivooidae fam. nov.(?Cycloneuralia) from the Yangtze Platform (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 97-124.
DOI URL |
[79] |
DUAN B C, DONG X P, PORRAS L, et al. The early Cambrian fossil embryo Pseudooides is a direct-developing cnidarian, not an early ecdysozoan[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1869): 20172188.
DOI URL |
[80] | 陈孟莪. 四川峨眉麦地坪剖面震旦系-寒武系界线的新认识及有关化石群的记述[J]. 地质科学, 1982, 17(3): 253-262, 345. |
[81] | 何原相, 杨暹和. 四川南江早寒武世早期的腔肠动物化石[G]//中国地质科学院成都地质矿产研究所文集. 成都: 中国地质科学院成都地质矿产研究所, 1986: 31-48. |
[82] |
LIU Y H, LI Y, SHAO T Q, et al. Quadrapyrgites from the lower Cambrian of South China: growth pattern, post-embryonic development, and affinity[J]. Chinese Science Bulletin, 2014, 59(31): 4086-4095.
DOI URL |
[83] |
HAN J, KUBOTA S, LI G X, et al. Divergent evolution of medusozoan symmetric patterns: evidence from the microanatomy of Cambrian tetramerous cubozoans from South China[J]. Gondwana Research, 2016, 31: 150-163.
DOI URL |
[84] | HAN J, LI G X, KUBOTA S, et al. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides[J]. Acta Geologica Sinica (English Edition), 2016, 90(1): 38-65. |
[85] |
SHAO T Q, LIU Y H, DUAN B C, et al. The Fortunian (lowermost Cambrian) Qinscyphus necopinus (Cnidaria, Scyphozoa, Coronatae) underwent direct development[J]. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 2018, 289(2): 149-159.
DOI URL |
[86] |
LI G X, STEINER M, ZHU X J, et al. Early Cambrian metazoan fossil record of South China: generic diversity and radiation patterns[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 229-249.
DOI URL |
[87] |
MALOOF A C, PORTER S M, MOORE J L, et al. The earliest Cambrian record of animals and ocean geochemical change[J]. Geological Society of America Bulletin, 2010, 122(11/12): 1731-1774.
DOI URL |
[88] |
CARTWRIGHT P, HALGEDAHL S L, HENDRICKS J R, et al. Exceptionally preserved jellyfishes from the Middle Cambrian[J]. PLoS One, 2007, 2(10): e1121.
DOI URL |
[89] |
HAN J, HU S X, CARTWRIGHT P, et al. The earliest pelagic jellyfish with rhopalia from Cambrian Chengjiang Lagerstätte[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 166-173.
DOI URL |
[90] | 杨宝忠, 杨坤光, 夏文臣. 鄂东黄石地区中上寒武统风暴岩的发现及意义[J]. 地质科技情报, 2007, 26(3): 33-36. |
[91] | 宋金民, 刘树根, 赵异华, 等. 川中地区中下寒武统风暴岩特征及沉积地质意义[J]. 石油学报, 2016, 37(1): 30-42. |
[92] | 王欣, 华洪, 李朋, 等. 陕南早寒武世宽川铺生物群沉积环境及埋藏机制研究[J]. 古生物学报, 2010, 49(1): 125-132. |
[93] | 钱逸, 陈孟莪, 何廷贵, 等. 中国小壳化石分类学与生物地层学[M]. 北京: 科学出版社, 1999: 1-247. |
[1] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[2] | LING Yuan, WANG Yong, WANG Shuxian, SUN Qing, LI Haibing. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity: A review [J]. Earth Science Frontiers, 2022, 29(2): 327-342. |
[3] | ZHANG Zhiliang, CHEN Feiyang, ZHANG Zhifei. The earliest phosphatic-shelled brachiopods from the carbonates of South China: their diversification, ontogeny and distribution [J]. Earth Science Frontiers, 2020, 27(6): 79-103. |
[4] | HAN Jian, GUO Junfeng, OU Qiang, SONG Zuchen, LIU Ping, HAO Wenjing, SUN Jie, WANG Xing. Evolutionary framework of early Cambrian cnidarians from South China [J]. Earth Science Frontiers, 2020, 27(6): 67-78. |
[5] | OU Qiang. Cambrian lobopodians: confusion and consideration [J]. Earth Science Frontiers, 2020, 27(6): 47-66. |
[6] | LU Liwu, TAN Kai, WANG Xi. Redescription of Eochondrosteus sinensis (Acipenseriformes, Actinopterygii) and its geological age [J]. Earth Science Frontiers, 2020, 27(6): 371-381. |
[7] | JI Shu’an, ZHANG Lifu. A new Early Cretaceous pterosaur from the Ordos region, Inner Mongolia [J]. Earth Science Frontiers, 2020, 27(6): 365-370. |
[8] | WANG Xiaolin, LI Yang, QIU Rui, JIANG Shunxing, ZHANG Xinjun, CHEN He, WANG Junxia, CHENG Xin. Comparison of biodiversity of the Early Cretaceous pterosaur faunas of China [J]. Earth Science Frontiers, 2020, 27(6): 347-364. |
[9] | GUO Xianpu, WANG Shitao, GAI Zhikun, ZHAO Ziran, DING Xiaozhong, LI Tianfu. The Late Ordovician fish-like animal from Xinjiang [J]. Earth Science Frontiers, 2020, 27(6): 341-346. |
[10] | WANG Jianhua, ZHAO Wenjin, ZHU Min, LI Qiang, CAI Jiachen, ZHANG Na, PENG Lijian, LUO Yanchao. Microvertebrate remains from the Kuanti Formation of the Liujiachong Section in Qujing, Yunnan and their stratigraphic significance [J]. Earth Science Frontiers, 2020, 27(6): 329-340. |
[11] | HUANG Mingli, TIAN Kunxuan, SHI Yukun. Artinskian (Early Permian) marine environmental disparity and evolved fusulinid foranminifa in the Dianqiangui Basin, South China [J]. Earth Science Frontiers, 2020, 27(6): 313-328. |
[12] | DONG Zhi, SHI Xuefa, ZOU Xinqing, ZOU Jianjun, YANG Baoju, LIU Jihua, CHENG Zhenbo. Spatial distribution characteristics of radiolarian species in surface sediments from the Okinawa Trough and the impact of environmental factors [J]. Earth Science Frontiers, 2020, 27(6): 300-312. |
[13] | LUO Hai, LI Jie, ZOU Yafei, XU Huiming. Rapid response of diatom biodiversity to millennial-scale abrupt change of climate: a case study of the last glacial record of the Yunlong Lake, Yunnan Province [J]. Earth Science Frontiers, 2020, 27(6): 289-299. |
[14] | HUA Hong, CAI Yaoping, MIN Xiao, CHAI Shu, DAI Qiaokun, CUI Zaihang. Ecological diversity in the terminal Ediacaran Gaojiashan biota [J]. Earth Science Frontiers, 2020, 27(6): 28-46. |
[15] | YUAN Jieqiong, DING Xuan, ZOU Xinqing. Distribution of benthic foraminiferal taphocoenose in surface sediments and the environmental implication in the radial sand ridge of the South Yellow Sea [J]. Earth Science Frontiers, 2020, 27(6): 276-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||