Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 42-67.DOI: 10.13745/j.esf.sf.2020.5.56
Previous Articles Next Articles
Received:
2020-04-14
Revised:
2020-04-19
Online:
2020-05-20
Published:
2020-05-20
Contact:
WANG Rui
CLC Number:
ZHOU Qiushi, WANG Rui. Advances in chlorine isotope geochemistry[J]. Earth Science Frontiers, 2020, 27(3): 42-67.
储库 | 储库质量/kg | 占地球质量比例/% | Cl质量分数/10-6 | Cl质量/kg | Cl质量占 总质量比例/% |
---|---|---|---|---|---|
大气圈 | 5.1×1018 | 0.000 1 | 0.001 6 | 8.16×109 | <10-8 |
海洋 | 1.4×1021 | 0.023 | 19 353 | 2.71×1019 | 17.8 |
蒸发岩 | 3.12×1019 | 0.033 | 606 838 449 509 | 1.89×1019 (1.4×1019) | 12.4 |
沉积物(含孔隙水) | 1.97×1021 | 0.033 | 19 206 | 3.78×1019 | 24.8 |
陆壳 | 1.08×1022 | 0.18 | 210 | 2.27×1018 | 1.5 |
洋壳 | 4.8×1021 | 0.08 | 48 | 2.30×1017 | 0.2 |
地幔 | 4.01×1024 | 67.07 | 16 11 | 6.59×1019 (4.6×1019) | 43.3 |
地核 | 1.95×1024 | 32.61 | |||
地球 | 5.98×1024 | 100.03 | 17.39 25.42 | (1.04×1020) 1.52×1020 | 100.0 |
Table 1 Chlorine in the various reservoirs on the Earth
储库 | 储库质量/kg | 占地球质量比例/% | Cl质量分数/10-6 | Cl质量/kg | Cl质量占 总质量比例/% |
---|---|---|---|---|---|
大气圈 | 5.1×1018 | 0.000 1 | 0.001 6 | 8.16×109 | <10-8 |
海洋 | 1.4×1021 | 0.023 | 19 353 | 2.71×1019 | 17.8 |
蒸发岩 | 3.12×1019 | 0.033 | 606 838 449 509 | 1.89×1019 (1.4×1019) | 12.4 |
沉积物(含孔隙水) | 1.97×1021 | 0.033 | 19 206 | 3.78×1019 | 24.8 |
陆壳 | 1.08×1022 | 0.18 | 210 | 2.27×1018 | 1.5 |
洋壳 | 4.8×1021 | 0.08 | 48 | 2.30×1017 | 0.2 |
地幔 | 4.01×1024 | 67.07 | 16 11 | 6.59×1019 (4.6×1019) | 43.3 |
地核 | 1.95×1024 | 32.61 | |||
地球 | 5.98×1024 | 100.03 | 17.39 25.42 | (1.04×1020) 1.52×1020 | 100.0 |
Fig.7 Schematic diagram showing fluid sources in subducting slab, outputs across the arc, and their average δ37Cl values. Modified after [20]. The δ37Cl value of island arc magma is considered to heritage from subduction fluid.
[1] |
SUN S S. Chemical composition and origin of the Earth's primitive mantle[J]. Geochimica et Cosmochimica Acta, 1982, 46(2):179-192.
DOI URL |
[2] |
UREY H C. The origin and development of the earth and other terrestrial planets[J]. Geochimica et Cosmochimica Acta, 1951, 1(4/5/6):209-277.
DOI URL |
[3] | SHARP Z D, DRAPER D S. The chlorine abundance of Earth: implications for a habitable planet[J]. Earth and Planetary Science Letters, 2013, 369:71-77. |
[4] |
ALLEGRE C, MANHES G, LEWIN É. Chemical composition of the Earth and the volatility control on planetary genetics[J]. Earth and Planetary Science Letters, 2001, 185(1/2):49-69.
DOI URL |
[5] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.
DOI URL |
[6] | EGGENKAMP H. The geochemistry of stable chlorine and bromine isotopes[M]. Berlin: Springer, 2014: 8-10, 16, 31-37. |
[7] | STACEY F D, DAVIS P M. Physics of the Earth[M]. Cambridge: Cambridge University Press, 2008. |
[8] | RAHN K A. The chemical composition of the atmospheric aerosol[M]. Kingston: Graduate School of Oceanography, University of Rhode Island, 1976. |
[9] | PYTKOWICZ R M, KESTER D R. The physical chemistry of seawater[J]. Annual Review Oceanographic Marine Biology, 1971, 9:11-60. |
[10] |
HAY W W, MIGDISOV A, BALUKHOVSKY A N, et al. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2):3-46.
DOI URL |
[11] |
EGGENKAMP H G M, MIDDELBURG J J, KREULEN R. Preferential diffusion of35Cl relative to37Cl in sediments of Kau Bay, Halmahera, Indonesia[J]. Chemical Geology, 1994, 116(3/4):317-325.
DOI URL |
[12] |
LAND L S. The role of saline formation water in crustal cycling[J]. Aquatic Geochemistry, 1995, 1(2):137-145.
DOI URL |
[13] |
KNAUTH L P. Salinity history of the Earth's early ocean[J]. Nature, 1998, 395(6702):554-555.
DOI URL |
[14] | GAST P W. The chemical composition of the earth, the moon, and chondritic meteorites[M]// The nature of the solid Earth. New York: McGraw-Hill, 1972: 19-40. |
[15] | TUREKIAN K K. Geochemical distribution of elements[J]. Encyclopedia of Science and Technology, 1977, 4:627-630. |
[16] |
SCHILLING J G, UNNI C K, BENDER M L. Origin of chlorine and bromine in the oceans[J]. Nature, 1978, 273(5664):631-636.
DOI URL |
[17] | DUBOIS J L, OJHA S. Production of dioxygen in the dark: dismutases of oxyanions[M]// Sustaining life on planet earth: metalloenzymes mastering dioxygen and other chewy gases. Cham: Springer, 2015: 45-87. |
[18] |
RAJAGOPALAN S, ANDERSON T A, FAHLQUIST L, et al. Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico[J]. Environmental Science & Technology, 2006, 40(10):3156-3162.
DOI URL |
[19] |
BONIFACIE M, BUSIGNY V, MéVEL C, et al. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes[J]. Geochimica et Cosmochimica Acta, 2008, 72(1):126-139.
DOI URL |
[20] |
BARNES J D, SHARP Z D, FISCHER T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc[J]. Geology, 2008, 36(11):883-886.
DOI URL |
[21] |
CHIARADIA M, BARNES J D, CADET-VOISIN S. Chlorine stable isotope variations across the Quaternary volcanic arc of Ecuador[J]. Earth and Planetary Science Letters, 2014, 396:22-33.
DOI URL |
[22] |
ZHANG C, HOLTZ F, MA C, et al. Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China)[J]. Contributions to Mineralogy and Petrology, 2012, 164(5):859-879.
DOI URL |
[23] |
KONZETT J, RHEDE D, FROST D J. The high p-T stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle[J]. Contributions to Mineralogy and Petrology, 2012, 163(2):277-296.
DOI URL |
[24] | MUNOZ J L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits[J]. Micas, 2018, 13:469. |
[25] |
KURODA P K, SANDELL E B. Chlorine in igneous rocks: some aspects of the geochemistry of chlorine[J]. Geological Society of America Bulletin, 1953, 64(8):879-896.
DOI URL |
[26] |
YOSHIDA M, TAKAHASHI K, YONEHARA N, et al. The fluorine, chlorine, bromine, and iodine contents of volcanic rocks in Japan[J]. Bulletin of the Chemical Society of Japan, 1971, 44(7):1844-1850.
DOI URL |
[27] |
ANDERSON A T. Chlorine, sulfur, and water in magmas and oceans[J]. Geological Society of America Bulletin, 1974, 85(9):1485-1492.
DOI URL |
[28] |
JOHNSTON D A. Volcanic contribution of chlorine to the stratosphere: more significant to ozone than previously estimated?[J]. Science, 1980, 209(4455):491-493.
DOI URL |
[29] |
MUNGALL J E, BRENAN J M. Experimental evidence for the chalcophile behavior of the halogens[J]. The Canadian Mineralogist, 2003, 41(1):207-220.
DOI URL |
[30] |
STEENSTRA E S, VAN HAASTER F, VAN MULLIGEN R, et al. An experimental assessment of the chalcophile behavior of F, Cl, Br and I: implications for the fate of halogens during planetary accretion and the formation of magmatic ore deposits[J]. Geochimica et Cosmochimica Acta, 2020, 273:275-290.
DOI URL |
[31] | JAGO B C, MORRISON G G, LITTLE T L. Metal zonation patterns and microtextural and micromineralogical evidence for alkali-and halogen-rich fluids in the genesis of the Victor Deep and McCreedy East footwall copper orebodies, Sudbury Igneous Complex[J]. Sudbury Igneous Complex: Ontario Geological Survey Special, 1994, 5:65-75. |
[32] |
WILLMORE C C, BOUDREAU A E, KRUGER F J. The halogen geochemistry of the Bushveld Complex, Republic of South Africa: implications for chalcophile element distribution in the lower and critical zones[J]. Journal of Petrology, 2000, 41(10):1517-1539.
DOI URL |
[33] | HANLEY J J. The distribution of the halogens in Sudbury Breccia matrix as pathfinder elements for footwall copper-PGE mineralization at the Fraser copper zone, Barnet main copper zone, and surrounding margin of the Sudbury igneous complex, Onaping-Levack area, Ontario, Canada[D]. Toronto: University of Toronto, 2003. |
[34] |
CANDELA P A, HOLLAND H D. The partitioning of copper and molybdenum between silicate melts and aqueous fluids[J]. Geochimica et Cosmochimica Acta, 1984, 48(2):373-380.
DOI URL |
[35] |
HACK A C, MAVROGENES J A. A synthetic fluid inclusion study of copper solubility in hydrothermal brines from 525 to 725 ℃ and 0.3 to 1.7 GPa[J]. Geochimica et Cosmochimica Acta, 2006, 70(15):3970-3985.
DOI URL |
[36] |
RUBEY W W. Geologic history of sea water: an attempt to state the problem[J]. Geological Society of America Bulletin, 1951, 62(9):1111-1148.
DOI URL |
[37] |
ANDERSON A T. Some basaltic and andesitic gases[J]. Reviews of Geophysics, 1975, 13(1):37-55.
DOI URL |
[38] |
ITO E, HARRIS D M, ANDERSON A TJr. Alteration of oceanic crust and geologic cycling of chlorine and water[J]. Geochimica et Cosmochimica Acta, 1983, 47(9):1613-1624.
DOI URL |
[39] |
SYMONDS R B, ROSE W I, REED M H. Contribution of Cl- and F- bearing gases to the atmosphere by volcanoes[J]. Nature, 1988, 334(6181):415-418.
DOI URL |
[40] | JARRARD R D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(5):8905. |
[41] |
EGGENKAMP H G M, LOUVAT P, AGRINIER P, et al. The bromine and chlorine isotope composition of primary halite deposits and their significance for the secular isotope composition of seawater[J]. Geochimica et Cosmochimica Acta, 2019, 264:13-29.
DOI URL |
[42] | KAUFMANN R S. Chlorine in ground water: Stable isotope distribution[D]. Tucson: University of Arizona, 1984. |
[43] |
GODON A, JENDRZEJEWSKI N, EGGENKAMP H G M, et al. A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material[J]. Chemical Geology, 2004, 207(1/2):1-12.
DOI URL |
[44] |
ZHOU A, GAN Y, LIU C, et al. An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a Gasbench II[J]. Journal of Central South University, 2013, 20(1):193-198.
DOI URL |
[45] |
EASTOE C J, PERYT T M, PETRYCHENKO Y, et al. Stable chlorine isotopes in Phanerozoic evaporites[J]. Applied Geochemistry, 2007, 22(3):575-588.
DOI URL |
[46] |
SHARP Z D, BARNES J D, BREARLEY A J, et al. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites[J]. Nature, 2007, 446(7139):1062-1065.
DOI URL |
[47] | SHIRODKAR P V, XIAO Y K, HAI L. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge[J]. Current Science, 2003, 85(3):313-320. |
[48] |
XIAO Y K, YINMING Z, QINGZHONG W, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology, 2002, 182(2/3/4):655-661.
DOI URL |
[49] |
HAN J L, HUSSAIN S A, HAN F Q. Stable chlorine isotopes in saline springs from the Nangqen basin, Qinghai-Tibet Plateau: brine genesis and evolution[J]. Journal of Earth System Science, 2019, 128(8):206.
DOI URL |
[50] |
LI Q, ZHANG X, FAN Q, et al. Influence of non-marine fluid inputs on potash deposits in northeastern Thailand: evidence from δ37Cl value and Br/Cl ratio of halite[J]. Carbonates and Evaporites, 2020, 35(1):1-10.
DOI URL |
[51] |
WEI H Z, JIANG S Y, XIAO Y K, et al. Precise determination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by the positive thermal ionization mass spectrometer-Cs2Cl+-graphite method[J]. Analytical Chemistry, 2012, 84(23):10350-10358.
DOI URL |
[52] | HOEFS J. Stable isotope geochemistry[M]. Berlin: Springer, 2009. |
[53] |
ASTON F W. A positive ray spectrograph[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1919, 38(228):707-714.
DOI URL |
[54] |
MADORSKY S L, STRAUS S. Concentration of isotopes of chlorine by the counter-current electromigration method[J]. Journal of Research of the National Bureau of Standards, 1947, 38:185-189.
PMID |
[55] |
HOERING T C, PARKER P L. The geochemistry of the stable isotopes of chlorine[J]. Geochimica et Cosmochimica Acta, 1961, 23(3/4):186-199.
DOI URL |
[56] |
MAGENHEIM A J, SPIVACK A J, VOLPE C, et al. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples[J]. Geochimica et Cosmochimica Acta, 1994, 58(14):3117-3121.
DOI URL |
[57] | BLATT A H. Organic Synbook, Collective Volume 2[M]. New York: Wiley, 1943: 251. |
[58] | LANGVAD T. Separation of chlorine isotopes by ion-exchange chromatography[J]. Acta Chemica Scandinavica (Denmark): Series A and Series B, 1954, 8:526-527. |
[59] | EGGENKAMP H. δ37Cl: the geochemistry of chlorine isotopes[J]. Geologica Ultraiectina, 1994, 116:1-150. |
[60] |
HOLT B D, STURCHIO N C, ABRAJANO T A, et al. Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine[J]. Analytical Chemistry, 1997, 69(14):2727-2733.
DOI URL |
[61] |
FUJITANI T, YAMASHITA K, NUMATA M, et al. Measurement of chlorine stable isotopic composition by negative thermal ionization mass spectrometry using total evaporation technique[J]. Geochemical Journal, 2010, 44(3):241-246.
DOI URL |
[62] |
XIAO Y K, ZHANG C G. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 116(3):183-192.
DOI URL |
[63] |
BANKS D A, GREEN R, CLIFF R A, et al. Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids[J]. Geochimica et Cosmochimica Acta, 2000, 64(10):1785-1789.
DOI URL |
[64] |
MAGENHEIM A J, SPIVACK A J, MICHAEL P J, et al. Chlorine stable isotope composition of the oceanic crust: Implications for Earth's distribution of chlorine[J]. Earth and Planetary Science Letters, 1995, 131(3/4):427-432.
DOI URL |
[65] |
SHIRODKAR P V, XIAO Y K, SARKAR A, et al. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in δ37Cl: A statistical inference[J]. Environment International, 2006, 32(2):235-239.
DOI URL |
[66] | NAKAMURA N, NYQUIST L E, REESE Y, et al. Stable chlorine isotopes and elemental chlorine by thermal ionization mass spectrometry and ion chromatography: Martian meteorites, carbonaceous chondrites and standard rocks[C]// Proceedings of the 42nd Lunar and Planetary Science Conference, 2011, 42:2513. |
[67] |
MAGENHEIM A J, SPIVACK A J, VOLPE C, et al. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples[J]. Geochimica et Cosmochimica Acta, 1994, 58(14):3117-3121.
DOI URL |
[68] |
XIAO Y K, ZHOU Y M, LIU W G. Precise measurement of chlorine isotopes based on Cs2Cl2 by thermal ionization mass spectrometry[J]. Analytical Letters, 1995, 28(7):1295-1304.
DOI URL |
[69] | STEWART MA. Geochemistry of dikes and lavas from Hess Deep: implications for crustal construction processes beneath Mid-Ocean Ridges and the stable-chlorine isotope geochemistry of Mid-Ocean Ridge Basalt glasses[D]. Durham: Duke University, 2002. |
[70] |
ROSENBAUM J M, CLIFF R A, COLEMAN M L. Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements[J]. Analytical Chemistry, 2000, 72(10):2261-2264.
DOI URL |
[71] |
BONIFACIE M, JENDRZEJEWSKI N, AGRINIER P, et al. Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions: application to oceanic crust and meteorite samples[J]. Chemical Geology, 2007, 242(1/2):187-201.
DOI URL |
[72] |
SHARP Z D, BARNES J D. Comment to “Chlorine stable isotopes and halogen concentrations in convergent margins with implications for the Cl isotopes cycle in the ocean” by Wei et al. A review of the Cl isotope composition of serpentinites and the global chlorine cycle[J]. Earth and Planetary Science Letters, 2008, 274(3/4):531-534.
DOI URL |
[73] |
MANZINI M, BOUVIER A S, BARNES J D, et al. SIMS chlorine isotope analyses in melt inclusions from arc settings[J]. Chemical Geology, 2017, 449:112-122.
DOI URL |
[74] |
LAYNE G D, GODON A, WEBSTER J D, et al. Secondary ion mass spectrometry for the determination of δ37Cl: Part I. Ion microprobe analysis of glasses and fluids[J]. Chemical Geology, 2004, 207(3/4):277-289.
DOI URL |
[75] |
JOHN T, LAYNE G D, HAASE K M, et al. Chlorine isotope evidence for crustal recycling into the Earth's mantle[J]. Earth and Planetary Science Letters, 2010, 298(1/2):175-182.
DOI URL |
[76] |
SHARP Z D, SHEARER C K, MCKEEGAN K D, et al. The chlorine isotope composition of the Moon and implications for an anhydrous mantle[J]. Science, 2010, 329(5995):1050-1053.
DOI URL |
[77] | FLORES E M M, MELLO P A, KRZYZANIAK S R, et al. Challenges and trends for halogen determination by inductively coupled plasma mass spectrometry: a review[J]. Rapid Communications in Mass Spectrometry, 2020: e8727. |
[78] |
FIETZKE J, FRISCHE M, HANSTEEN T H, et al. A simplified procedure for the determination of stable chlorine isotope ratios (δ37Cl) using LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(5):769-772.
DOI URL |
[79] |
VAN ACKER M R M D, SHAHAR A, YOUNG E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13):4663-4667.
DOI URL |
[80] | UREY H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed), 1947, 0:562-581. |
[81] |
SCHAUBLE E A, ROSSMAN G R, TAYLOR JR H P. Theoretical estimates of equilibrium chlorine-isotope fractionations[J]. Geochimica et Cosmochimica Acta, 2003, 67(17):3267-3281.
DOI URL |
[82] | CISNEROS M. An experimental calibration of chlorine isotope fractionation between amphibole and fluid at 700 ℃ and 0.2 GPa[D]. Austin: University of Texas, 2013. |
[83] |
AEPPLI C, BASTVIKEN D, ANDERSSON P, et al. Chlorine isotope effects and composition of naturally produced organochlorines from chloroperoxidases, flavin-dependent halogen gases, and in forest soil[J]. Environmental Science & Technology, 2013, 47(13):6864-6871.
DOI URL |
[84] |
SHARP Z D, BARNES J D, FISCHER T P, et al. An experimental determination of chlorine isotope fractionation in acid systems and applications to volcanic fumaroles[J]. Geochimica et Cosmochimica Acta, 2010, 74(1):264-273.
DOI URL |
[85] |
EGGENKAMP H G M, KREULEN R, VAN GROOS A F K. Chlorine stable isotope fractionation in evaporites[J]. Geochimica et Cosmochimica Acta, 1995, 59(24):5169-5175.
DOI URL |
[86] |
EASTOE C J, LONG A, KNAUTH L P. Stable chlorine isotopes in the Palo Duro Basin, Texas: evidence for preservation of Permian evaporite brines[J]. Geochimica et Cosmochimica Acta, 1999, 63(9):1375-1382.
DOI URL |
[87] |
EASTOE C J, PERYT T. Stable chlorine isotope evidence for non-marine chloride in Badenian evaporites, Carpathian mountain region[J]. Terra Nova, 1999, 11(2/3):118-131.
DOI URL |
[88] | LINDEMANN F A. Discussion on isotopes[J]. Proceedings of the Royal Society of London Series A, 1921, 99:102-104. |
[89] |
RICHTER F M, MENDYBAEV R A, CHRISTENSEN J N, et al. Kinetic isotopic fractionation during diffusion of ionic species in water[J]. Geochimica et Cosmochimica Acta, 2006, 70(2):277-289.
DOI URL |
[90] |
BOURG I C, RICHTER F M, CHRISTENSEN J N, et al. Isotopic mass dependence of metal cation diffusion coefficients in liquid water[J]. Geochimica et Cosmochimica Acta, 2010, 74(8):2249-2256.
DOI URL |
[91] | KONSTANTINOV B P, BAKULIN E A. Separation of chlorine isotopes in aqueous LiCl, NaCl and HCl solutions[J]. Zhurnal Fizicheskoi Khimii (USSR) (For English Translation See Russian Journal of Physical Chemistry B), 1965, 39(3):592-596. |
[92] |
EGGENKAMP H G M, COLEMAN M L. The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes[J]. Geochimica et Cosmochimica Acta, 2009, 73(12):3539-3548.
DOI URL |
[93] |
GROEN J, VELSTRA J, MEESTERS A. Salinization processes in paleowaters in coastal sediments of Suriname: evidence from δ37Cl analysis and diffusion modelling[J]. Journal of Hydrology, 2000, 234(1/2):1-20.
DOI URL |
[94] |
BEEKMAN H E, EGGENKAMP H G M, APPELO C A J. An integrated modelling approach to reconstruct complex solute transport mechanisms: Cl and δ37Cl in pore water of sediments from a former brackish lagoon in the Netherlands[J]. Applied Geochemistry, 2011, 26(3):257-268.
DOI URL |
[95] |
GODON A, JENDRZEJEWSKI N, CASTREC-ROUELLE M, et al. Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex[J]. Geochimica et Cosmochimica Acta, 2004, 68(9):2153-2165.
DOI URL |
[96] |
ZIEGLER K, COLEMAN M L, HOWARTH R J. Palaeohydrodynamics of fluids in the Brent Group (Oseberg Field, Norwegian North Sea) from chemical and isotopic compositions of formation waters[J]. Applied Geochemistry, 2001, 16(6):609-632.
DOI URL |
[97] |
SHARP Z D, MERCER J A, JONES R H, et al. The chlorine isotope composition of chondrites and Earth[J]. Geochimica et Cosmochimica Acta, 2013, 107:189-204.
DOI URL |
[98] | BARNES J D, SHARP Z D, FISCHER T P, et al. Chlorine isotope variations along the Central American volcanic front and back arc[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11): Q11S17. |
[99] |
BARNES J D, SHARP Z D. Chlorine isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):345-378.
DOI URL |
[100] | RIZZO A L, CARACAUSI A, LIOTTA M, et al. Chlorine isotope composition of volcanic gases and rocks at Mount Etna (Italy) and inferences on the local mantle source[J]. Earth and Planetary Science Letters, 2013, 371:134-142. |
[101] |
COLEMAN M L, ADER M, CHAUDHURI S, et al. Microbial isotopic fractionation of perchlorate chlorine[J]. Applied and Environmental Microbiology, 2003, 69(8):4997-5000.
DOI URL |
[102] | WANG Y, HSU W, GUAN Y. An extremely heavy chlorine reservoir in the Moon: insights from the apatite in lunar meteorites[J]. Scientific Reports, 2019, 9(1):1-8. |
[103] |
FARLEY K A, MARTIN P, ARCHER P DJr, et al. Light and variable 37Cl/35Cl ratios in rocks from Gale Crater, Mars: possible signature of perchlorate[J]. Earth and Planetary Science Letters, 2016, 438:14-24.
DOI URL |
[104] |
RANSOM B, SPIVACK A J, KASTNER M. Stable Cl isotopes in subduction-zone pore waters: implications for fluid-rock reactions and the cycling of chlorine[J]. Geology, 1995, 23(8):715-718.
DOI URL |
[105] | KAUFMANN R S, FRAPE S K, FRITZ P, et al. Chlorine stable isotope composition of Canadian Shield brines[J]. Saline Water and Gases in Crystalline Rocks, 1987, 33:89-93. |
[106] |
KAUFMANN R S, FRAPE S K, MCNUTT R, et al. Chlorine stable isotope distribution of Michigan Basin formation waters[J]. Applied Geochemistry, 1993, 8(4):403-407.
DOI URL |
[107] | KAUFMANN R S, LONG A, CAMPBELL D J. Chlorine isotope distribution in formation waters, Texas and Louisiana[J]. AAPG Bulletin, 1988, 72(7):839-844. |
[108] |
EASTOE C J, LONG A, LAND L S, et al. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution[J]. Chemical Geology, 2001, 176(1/2/3/4):343-360.
DOI URL |
[109] |
SHOUAKAR-STASH O, ALEXEEV S V, FRAPE S K, et al. Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia[J]. Applied Geochemistry, 2007, 22(3):589-605.
DOI URL |
[110] |
STOTLER R L, FRAPE S K, SHOUAKAR-STASH O. An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian Shields[J]. Chemical Geology, 2010, 274(1/2):38-55.
DOI URL |
[111] | STURCHIO N C, BÖHLKE J K, GU B, et al. Stable isotopic composition of chlorine and oxygen in synthetic and natural perchlorate[M]// Perchlorate. Boston: Springer, 2006: 93-109. |
[112] |
JACKSON W A, BÖHLKE J K, GU B, et al. Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States[J]. Environmental Science & Technology, 2010, 44(13):4869-4876.
DOI URL |
[113] |
SELVERSTONE J, SHARP Z D. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks[J]. Earth and Planetary Science Letters, 2015, 417:120-131.
DOI URL |
[114] |
BARNES J D, SHARP Z D. A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process[J]. Chemical Geology, 2006, 228(4):246-265.
DOI URL |
[115] | BARNES J D, CISNEROS M. Mineralogical control on the chlorine isotope composition of altered oceanic crust[J]. Chemical Geology, 2012, 326:51-60. |
[116] |
BARNES J D, ELDAM R, LEE C T A, et al. Petrogenesis of serpentinites from the Franciscan Complex, western California, USA[J]. Lithos, 2013, 178:143-157.
DOI URL |
[117] |
TREIMAN A H, BOYCE J W, GROSS J, et al. Phosphate-halogen metasomatism of lunar granulite 79215: impact-induced fractionation of volatiles and incompatible elements[J]. American Mineralogist, 2014, 99(10):1860-1870.
DOI URL |
[118] |
BOYCE J W, TREIMAN A H, GUAN Y, et al. The chlorine isotope fingerprint of the lunar magma ocean[J]. Science Advances, 2015, 1(8):e1500380.
DOI URL |
[119] | SHARP Z, WILLIAMS J, SHERARER C, et al. The chlorine isotope composition of Martian meteorites 2: implications for the early solar system and the formation of Mars[J]. Meteoritics & Planetary Science, 2016, 51(11):2111-2126. |
[120] |
BELLUCCI J J, WHITEHOUSE M J, JOHN T, et al. Halogen and Cl isotopic systematics in Martian phosphates: implications for the Cl cycle and surface halogen reservoirs on Mars[J]. Earth and Planetary Science Letters, 2017, 458:192-202.
DOI URL |
[121] | MCCUBBIN F M, BOYCE J W, SRINIVASAN P, et al. Heterogeneous distribution of H2O in the Martian interior: implications for the abundance of H2O in depleted and enriched mantle sources[J]. Meteoritics & Planetary Science, 2016, 51(11):2036-2060. |
[122] | GARGANO A M, SHARP Z D. The chlorine isotope composition of the Solar Nebula & implications to the sources of volatiles to the terrestrial planets[R]. New Orleans: American Geophysical Union Fall Meeting, 2017. |
[123] | GARGANO A M, SHARP Z D. The chlorine isotope composition of iron meteorites: evidence for the Cl isotope composition of the solar nebula and implications for extensive devolatilization during planet formation[J]. Meteoritics & Planetary Science, 2019, 54(7):1619-1631. |
[124] |
LUCEY P, KOROTEV R L, GILLIS J J, et al. Understanding the lunar surface and space-Moon interactions[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1):83-219.
DOI URL |
[125] |
TAYLOR S R, PIETERS C M, MACPHERSON G J. Earth-Moon system, planetary science, and lessons learned[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1):657-704.
DOI URL |
[126] |
WIECZOREK M A, JOLLIFF B L, KHAN A, et al. The constitution and structure of the lunar interior[J]. Reviews in Mineralogy and Geochemistry, 2006, 60(1):221-364.
DOI URL |
[127] | EPSTEIN S, TAYLOR JR H P. 18O/16O, 30Si/28Si, D/H and 13C/12C ratios in lunar samples[C]// Lunar and planetary science conference proceedings. Texas: LPI Contribution No. 1569, 1971, 2:1421. |
[128] | THODE H G, REES C E. Sulphur isotopes in grain size fractions of lunar soils[C]// Lunar and planetary science conference proceedings. Texas: LPI Contribution No.1573, 1976, 7:459-468. |
[129] |
SHARP Z D, MCCUBBIN F M, SHEARER C K. A hydrogen-based oxidation mechanism relevant to planetary formation[J]. Earth and Planetary Science Letters, 2013, 380:88-97.
DOI URL |
[130] |
CAVOSIE A J, VALLEY J W, WILDE S A. Magmatic δ18O in 4400-3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean[J]. Earth and Planetary Science Letters, 2005, 235(3/4):663-681.
DOI URL |
[131] |
BONIFACIE M, JENDRZEJEWSKI N, AGRINIER P, et al. The chlorine isotope composition of Earth's mantle[J]. Science, 2008, 319(5869):1518-1520.
DOI URL |
[132] |
LAYNE G D, KENT A J R, BACH W. δ37Cl systematics of a backarc spreading system: the Lau Basin[J]. Geology, 2009, 37(5):427-430.
DOI URL |
[133] |
PINTI D L, SHOUAKAR-STASH O, CASTRO M C, et al. The bromine and chlorine isotopic composition of the mantle as revealed by deep geothermal fluids[J]. Geochimica et Cosmochimica Acta, 2020, 276:14-30.
DOI URL |
[134] | CHEN Y H. Sequence of salt separation and regularity of some trace-elements distribution during isothermal evaporation (25 ℃) of the Huanghai seawater[J]. Acta Geologica Sinica, 1983, 57(4):379-390. |
[135] |
LUO C, XIAO Y, WEN H, et al. Stable isotope fractionation of chlorine during the precipitation of single chloride minerals[J]. Applied Geochemistry, 2014, 47:141-149.
DOI URL |
[136] |
ARCURI T, BRIMHALL G. The chloride source for atacamite mineralization at the Radomiro Tomic porphyry copper deposit, northern Chile[J]. Economic Geology, 2003, 98(8):1667-1681.
DOI URL |
[137] |
SHARP Z D, BARNES J D. Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones[J]. Earth and Planetary Science Letters, 2004, 226(1/2):243-254.
DOI URL |
[138] |
LAUBE J C, KAISER J, STURGES W T, et al. Chlorine isotope fractionation in the stratosphere[J]. Science, 2010, 329(5996):1167-1167.
DOI URL |
[139] |
BRENNINKMEIJER C A M, JANSSEN C, KAISER J, et al. Isotope effects in the chemistry of atmospheric trace compounds[J]. Chemical Reviews, 2003, 103(12):5125-5162.
DOI URL |
[140] |
BERNAL N F, GLEESON S A, DEAN A S, et al. The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island, New Zealand[J]. Geochimica et Cosmochimica Acta, 2014, 126:265-283.
DOI URL |
[141] |
CULLEN J, BARNES J D, HURWITZ S, et al. Halogen and chlorine isotope composition of thermal springs along and across the Cascadia arc[J]. Earth and Planetary Science Letters, 2015, 426:225-234.
DOI URL |
[142] |
LI L, BONIFACIE M, AUBAUD C, et al. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity[J]. Earth and Planetary Science Letters, 2015, 413:101-110.
DOI URL |
[143] |
ENGLAND P, ENGDAHL R, THATCHER W. Systematic variation in the depths of slabs beneath arc volcanoes[J]. Geophysical Journal International, 2004, 156(2):377-408.
DOI URL |
[144] |
ZHANG M, FRAPE S K, LOVE A J, et al. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia[J]. Applied Geochemistry, 2007, 22(3):557-574.
DOI URL |
[145] |
NAHNYBIDA T, GLEESON S A, RUSK B G, et al. Cl/Br ratios and stable chlorine isotope analysis of magmatic-hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah[J]. Mineralium Deposita, 2009, 44(8):837.
DOI URL |
[146] |
REDMOND P B, EINAUDI M T, INAN E E, et al. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 2004, 32(3):217-220.
DOI URL |
[147] | WILLIAMS P J, BARTON M D, JOHNSON D A, et al. Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin[J]. Economic Geology, 2005: 371-405. |
[148] |
EASTOE C J, GUILBERT J M, KAUFMANN R S. Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming hydrothermal systems[J]. Geology, 1989, 17(3):285-288.
DOI URL |
[149] | ROEDDER E. Fluid inclusions[J]. Reviews in Mineralogy and Geochemistry, 1984, 12:79-148. |
[150] |
EASTOE C J, GUILBERT J M. Stable chlorine isotopes in hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 1992, 56(12):4247-4255.
DOI URL |
[151] |
EGGENKAMP H G M, SCHUILING R D. δ37Cl variations in selected minerals: a possible tool for exploration[J]. Journal of Geochemical Exploration, 1995, 55(1/2/3):249-255.
DOI URL |
[152] |
STEWART M A, SPIVACK A J. The stable-chlorine isotope compositions of natural and anthropogenic materials[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1):231-254.
DOI URL |
[153] |
GLEESON S A, SMITH M P. The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates[J]. Geochimica et Cosmochimica Acta, 2009, 73(19):5658-5672.
DOI URL |
[154] |
CHIARADIA M, BANKS D, CLIFF R, et al. Origin of fluids in iron oxide-copper-gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br[J]. Mineralium Deposita, 2006, 41(6):565-573.
DOI URL |
[155] |
HANLEY J, AMES D, BARNES J, et al. Interaction of magmatic fluids and silicate melt residues with saline groundwater in the footwall of the Sudbury Igneous Complex, Ontario, Canada: new evidence from bulk rock geochemistry, fluid inclusions and stable isotopes[J]. Chemical Geology, 2011, 281(1/2):1-25.
DOI URL |
[156] |
ANNABLE W K, FRAPE S K, SHOUAKAR-STASH O, et al. 37Cl, 15N, 13C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants[J]. Applied Geochemistry, 2007, 22(7):1530-1536.
DOI URL |
[157] |
SHOUAKAR-STASH O, FRAPE S K, DRIMMIE R J. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents[J]. Journal of Contaminant Hydrology, 2003, 60(3/4):211-228.
DOI URL |
[158] |
JENDRZEJEWSKI N, EGGENKAMP H G M, COLEMAN M L. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems[J]. Applied Geochemistry, 2001, 16(9/10):1021-1031.
DOI URL |
[159] |
CHEN G, SHOUAKAR-STASH O, PHILLIPS E, et al. Dual carbon-chlorine isotope analysis indicates distinct anaerobic dichloromethane degradation pathways in two members of Peptococcaceae[J]. Environmental Science & Technology, 2018, 52(15):8607-8616.
DOI URL |
[160] |
FILIPPELLI G M. The global phosphorus cycle: past, present, and future[J]. Elements, 2008, 4(2):89-95.
DOI URL |
[161] |
FILIPPELLI G M. The global phosphorus cycle[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1):391-425.
DOI URL |
[162] |
SOMMERAUER J, KATZ-LEHNERT K. A new partial substitution mechanism of $CO_{3}^{2-}$/CO3OH3- and $SiO_{4}^{4-}$ for the $PO_4^{3-}$ group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW-Germany)[J]. Contributions to Mineralogy and Petrology, 1985, 91(4):360-368.
DOI URL |
[163] |
PAN Y, FLEET M E. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1):13-49.
DOI URL |
[164] |
HUGHES J M, RAKOVAN J F. Structurally robust, chemically diverse: apatite and apatite supergroup minerals[J]. Elements, 2015, 11(3):165-170.
DOI URL |
[165] | HUGHES J M, CAMERON M, CROWLEY K D. Structural variations in natural F, OH, and Cl apatites[J]. American Mineralogist, 1989, 74(7/8):870-876. |
[166] |
HUGHES J M, RAKOVAN J. The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl)[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1):1-12.
DOI URL |
[167] |
ZHU C, SVERJENSKY D A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 1991, 55(7):1837-1858.
DOI URL |
[168] | O’REILLY S Y, GRIFFIN W L. Mantle metasomatism[M]// Metasomatism and the chemical transformation of rock. Berlin: Springer, 2013: 471-533. |
[169] | ELLIOTT J C. Structure and chemistry of the apatites and other calcium orthophosphates[M]. Amsterdam: Elsevier, 2013. |
[170] | KOHN M J, RAKOVAN J, HUGHES J M. Phosphates: geochemical, geobiological, and materials importance[J]. Reviews in Mineralogy & Geochemistry, 2002, 48:294-335. |
[171] | BOUDREAU A E, MCCALLUM I S. Low temperature alteration of REE-rich chlorapatite from the Stillwater Complex, Montana[J]. American Mineralogist, 1990, 75(5/6):687-693. |
[172] |
HARLOV D E. Apatite: a fingerprint for metasomatic processes[J]. Elements, 2015, 11(3):171-176.
DOI URL |
[173] |
ANDERSSON S S, WAGNER T, JONSSON E, et al. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: the case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden[J]. Geochimica et Cosmochimica Acta, 2019, 255:163-187.
DOI URL |
[174] |
O’REILLY S Y, GRIFFIN W L. Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle[J]. Lithos, 2000, 53(3/4):217-232.
DOI URL |
[175] |
BOYCE J W, HERVIG R L. Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica[J]. Contributions to Mineralogy and Petrology, 2009, 157(2):135.
DOI URL |
[176] |
FARLEY K A, SHUSTER D L, KETCHAM R A. U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J]. Geochimica et Cosmochimica Acta, 2011, 75(16):4515-4530.
DOI URL |
[177] |
WILLIAMS M L, JERCINOVIC M J, HETHERINGTON C J. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology[J]. Annual Review of Earth and Planetary Sciences, 2007, 35:137-175.
DOI URL |
[178] |
BOYCE J W, TOMLINSON S M, MCCUBBIN F M, et al. The lunar apatite paradox[J]. Science, 2014, 344(6182):400-402.
DOI URL |
[179] |
MCCUBBIN F M, STEELE A, HAURI E H, et al. Nominally hydrous magmatism on the Moon[J]. Proceedings of the National Academy of Sciences, 2010, 107(25):11223-11228.
DOI URL |
[180] |
BOYCE J W, LIU Y, ROSSMAN G R, et al. Lunar apatite with terrestrial volatile abundances[J]. Nature, 2010, 466(7305):466-469.
DOI URL |
[181] |
BARNES J J, TARTESE R, ANAND M, et al. Early degassing of lunar urKREEP by crust-breaching impact(s)[J]. Earth and Planetary Science Letters, 2016, 447:84-94.
DOI URL |
[182] |
BOYCE J W, KANEE S A, MCCUBBIN F M, et al. Early loss, fractionation, and redistribution of chlorine in the Moon as revealed by the low-Ti lunar mare basalt suite[J]. Earth and Planetary Science Letters, 2018, 500:205-214.
DOI URL |
[183] |
STEPHANT A, ANAND M, ZHAO X, et al. The chlorine isotopic composition of the Moon: insights from melt inclusions[J]. Earth and Planetary Science Letters, 2019, 523:115715.
DOI URL |
[1] | LIU Jinping, WANG Gaiyun, JIAN Xiaoling, ZHU Chuanqing, HU Xiaoqiang, YUAN Xiaoqiang, WANG Chao. Tectono-thermal mechanism and hydrocarbon generation action in the North Yellow Sea Eastern Sub-basin [J]. Earth Science Frontiers, 2024, 31(4): 206-218. |
[2] | LI Xi, ZHU Guangyou, LI Tingting, CHEN Zhiyong, AI Yifei, ZHANG Yan, TIAN Lianjie. Uranium isotope fractionation and application of uranium isotopes in environmental geosciences—a review [J]. Earth Science Frontiers, 2024, 31(2): 447-471. |
[3] | CHEN Yu, XU Fei, CHENG Hongfei, CHEN Xianzhe, WEN Hanjie. Lithium isotope geochemistry—a review [J]. Earth Science Frontiers, 2023, 30(5): 469-490. |
[4] | YANG Shuang, WANG Rui. Research progress on the mechanism for the formation of Nb-Ta deposits by fractionation and enrichment and method development for columbite-tantalite analysis—a review [J]. Earth Science Frontiers, 2023, 30(5): 151-170. |
[5] | NIE Xiao, CHEN Lei, GUO Xianqing, YU Tao, WANG Zongqi. Geochemical analysis of apatite and columbite-group minerals of beryl-columbite pegmatites in Ningshan, southern Qinling orogen, China [J]. Earth Science Frontiers, 2023, 30(5): 115-133. |
[6] | LIU Jiawen, TIAN Shihong, WANG Ling. Application of magnesium stable isotopes for studying important geological processes—a review [J]. Earth Science Frontiers, 2023, 30(3): 399-424. |
[7] | WANG Jiaqi, LI Zongxing, LIU Kui. Rehabilitation status of denuded land in the eastern Qaidam Basin: Geophysical and thermochronological evidences [J]. Earth Science Frontiers, 2022, 29(4): 371-384. |
[8] | ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution [J]. Earth Science Frontiers, 2021, 28(5): 175-185. |
[9] | LI Yuan, WANG Changqiu, LU Anhuai, LI Yan, YANG Chongqing, LI Kang. Mineralogical characteristics and distribution patterns of different types of calcification in a cerebrovascular atherosclerotic lesion [J]. Earth Science Frontiers, 2020, 27(5): 291-299. |
[10] | LUO Shaoyong, ZHOU Yuefei, LIU Xing. Effect of apatite on the stability of ferrihydrite in lacustrine sediments [J]. Earth Science Frontiers, 2020, 27(5): 218-226. |
[11] | LIU Xi, WANG Yijing, WEI Haizhen. Advances in stable chlorine isotope geochemistry [J]. Earth Science Frontiers, 2020, 27(3): 29-41. |
[12] | ZHAO Xinfu, ZENG Liping, LIAO Wang, LI Wanting, HU Hao, LI Jianwei. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and its implication for ore genesis [J]. Earth Science Frontiers, 2020, 27(2): 197-217. |
[13] | CHEN Li,JIA Chunhong,LIU Bingjie,JING Junjie,ZHAO Ercheng,YU Pingzhong,HE Min. Simultaneous determination of seven fluoroquinolones in sewage sludge by high performance liquid chromatography with fluorescence detection [J]. Earth Science Frontiers, 2019, 26(6): 7-12. |
[14] | CHEN Xue,YUAN Wanming,YUAN Erjun,WANG Ke,FENG Zirui. Apatite fission track analysis of tectonic activity in the Dongshangen mining area, East Kunlun, QinghaiTibet Plateau. [J]. Earth Science Frontiers, 2018, 25(6): 330-337. |
[15] | . Highprecision measurement of lithium isotopes using MCICPMS. [J]. Earth Science Frontiers, 2011, 18(2): 304-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||