Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 218-231.DOI: 10.13745/j.esf.sf.2020.3.19
Previous Articles Next Articles
YAO Shuzhen1,*(), GONG Yongjun1, HU Xinlu1, ZHOU Zonggui1, SHEN Chuanbo1, PI Daohui1, XIONG Suofei2, TAN Mantang3
Received:
2019-12-18
Revised:
2020-02-22
Online:
2020-03-25
Published:
2020-03-25
Contact:
YAO Shuzhen
CLC Number:
YAO Shuzhen, GONG Yongjun, HU Xinlu, ZHOU Zonggui, SHEN Chuanbo, PI Daohui, XIONG Suofei, TAN Mantang. The main metallogenic systems and metallogenic lineages around the Middle and Upper Yangtze Block[J]. Earth Science Frontiers, 2020, 27(2): 218-231.
成矿系统类型 | 成矿系统 | 构造环境 | 容矿建造 | 成矿系列 | 主成矿元素 | 典型矿床 |
---|---|---|---|---|---|---|
同生沉积-热 水沉积成矿 系统类 | 南华纪沉积-热水沉积锰成矿系统(667~657 Ma) | 南华裂谷盆地中次级地堑盆地 | 南华系大塘坡组富含有机碳为特征的间冰期沉积细碎屑岩建造 | 沉积Mn成矿系列(深源热液系统与陆源系统共同作用下的产物) | Mn | 小茶园、黑水溪、李家湾-道坨、上坪等锰矿床 |
震旦纪沉积-热水沉积铅锌成矿系统 | 大陆边缘碳酸盐岩台地或裂陷盆地 | 震旦系灯影组台地相白云岩、礁灰岩建造,局部夹硅质岩 | 沉积-热水沉积Pb-Zn成矿系列 | Pb、Zn、Ag、Ge、Cd | 凹子岗锌矿床、乌斯河铅锌矿床 | |
震旦纪—寒武纪沉积-热水沉积银钒多金属成矿系统 | 大陆边缘碳酸盐台地前缘半开阔海浅水陆棚潟湖或大陆边缘的深海-半深海盆地 | 震旦系—寒武系陡山沱组及黑色页岩建造(富含有机质、磷质结核、草莓状黄铁矿) | 低温热水沉积银钒多金属成矿系列 | V、Ag | 白果园银钒、杨家堡、岑巩注溪钒矿床 | |
二叠纪沉积-热水沉积锰成矿系统 | 裂谷带边缘台沟 | 二叠系茅口组台盆相炭泥质硅质岩、硅质灰岩与城墙式硅质岩体建造 | 热水沉积锰成矿系列 | Mn | 铜锣井、冯家湾、共青湖、团溪、南茶锰矿等锰矿床 | |
后生盆地流体 成矿系统类 | 印支—燕山早期后生盆地流体Pb-Zn成矿系统 | 盆山结合带的断裂-褶皱构造网络系统 | 震旦系灯影组、寒武系清虚洞组等台地相白云岩、礁灰岩建造 | 盆地流体充填-交代Pb-Zn成矿系列 | Pb、Zn、Ag、Ge、Cd | 马元、冰冻山、会泽、花垣等铅锌矿床 |
岩浆热液成矿 系统类 | 燕山期岩浆热液型Pb、Zn多金属成矿系统 | 造山带印支—燕山期岩浆侵入接触带外带 | 花岗岩类侵入接触带夕卡岩与碳酸盐岩建造 | 岩浆热液充填-交代型Pb-Zn多金属成矿系列 | Pb-Zn为主,伴生有W、Sn、Mo、Ag、Cu | 黄沙坪、张十八铅锌矿床 |
燕山期岩浆热液型Au多金属成矿系统 | 盆山结合带印支—燕山期隐伏岩体外围 | 远离花岗岩类侵入体碳酸盐岩与碎屑岩或火山碎屑岩界面附近的构造蚀变体(Sbt)/泥质碳酸盐岩或火山碎屑岩建造 | 远成岩浆热液充填-交代型Au多金属成矿系列 | Au、Hg、Sb、As、Te | 水银洞、戈塘、紫木凼、烂泥沟、架底金矿床 |
Table 1 Features of major metal metallogenic systems
成矿系统类型 | 成矿系统 | 构造环境 | 容矿建造 | 成矿系列 | 主成矿元素 | 典型矿床 |
---|---|---|---|---|---|---|
同生沉积-热 水沉积成矿 系统类 | 南华纪沉积-热水沉积锰成矿系统(667~657 Ma) | 南华裂谷盆地中次级地堑盆地 | 南华系大塘坡组富含有机碳为特征的间冰期沉积细碎屑岩建造 | 沉积Mn成矿系列(深源热液系统与陆源系统共同作用下的产物) | Mn | 小茶园、黑水溪、李家湾-道坨、上坪等锰矿床 |
震旦纪沉积-热水沉积铅锌成矿系统 | 大陆边缘碳酸盐岩台地或裂陷盆地 | 震旦系灯影组台地相白云岩、礁灰岩建造,局部夹硅质岩 | 沉积-热水沉积Pb-Zn成矿系列 | Pb、Zn、Ag、Ge、Cd | 凹子岗锌矿床、乌斯河铅锌矿床 | |
震旦纪—寒武纪沉积-热水沉积银钒多金属成矿系统 | 大陆边缘碳酸盐台地前缘半开阔海浅水陆棚潟湖或大陆边缘的深海-半深海盆地 | 震旦系—寒武系陡山沱组及黑色页岩建造(富含有机质、磷质结核、草莓状黄铁矿) | 低温热水沉积银钒多金属成矿系列 | V、Ag | 白果园银钒、杨家堡、岑巩注溪钒矿床 | |
二叠纪沉积-热水沉积锰成矿系统 | 裂谷带边缘台沟 | 二叠系茅口组台盆相炭泥质硅质岩、硅质灰岩与城墙式硅质岩体建造 | 热水沉积锰成矿系列 | Mn | 铜锣井、冯家湾、共青湖、团溪、南茶锰矿等锰矿床 | |
后生盆地流体 成矿系统类 | 印支—燕山早期后生盆地流体Pb-Zn成矿系统 | 盆山结合带的断裂-褶皱构造网络系统 | 震旦系灯影组、寒武系清虚洞组等台地相白云岩、礁灰岩建造 | 盆地流体充填-交代Pb-Zn成矿系列 | Pb、Zn、Ag、Ge、Cd | 马元、冰冻山、会泽、花垣等铅锌矿床 |
岩浆热液成矿 系统类 | 燕山期岩浆热液型Pb、Zn多金属成矿系统 | 造山带印支—燕山期岩浆侵入接触带外带 | 花岗岩类侵入接触带夕卡岩与碳酸盐岩建造 | 岩浆热液充填-交代型Pb-Zn多金属成矿系列 | Pb-Zn为主,伴生有W、Sn、Mo、Ag、Cu | 黄沙坪、张十八铅锌矿床 |
燕山期岩浆热液型Au多金属成矿系统 | 盆山结合带印支—燕山期隐伏岩体外围 | 远离花岗岩类侵入体碳酸盐岩与碎屑岩或火山碎屑岩界面附近的构造蚀变体(Sbt)/泥质碳酸盐岩或火山碎屑岩建造 | 远成岩浆热液充填-交代型Au多金属成矿系列 | Au、Hg、Sb、As、Te | 水银洞、戈塘、紫木凼、烂泥沟、架底金矿床 |
[1] | 涂光炽. 关于超大型矿床的寻找和理论研究[J]. 地球科学进展, 1989, 4(6): 14-20. |
[2] | 芮宗瑶, 叶锦华, 张立生, 等. 扬子克拉通周边及其隆起边缘的铅锌矿床[J]. 中国地质, 2004, 31(4): 337-346. |
[3] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 13-28. |
[4] | 翟裕生, 彭润民, 邓军, 等. 成矿系统分析与新类型矿床预测[J]. 地学前缘, 2000, 7(1): 123-132. |
[5] | 潘桂棠, 陆松年, 肖庆辉, 等. 中国大地构造阶段划分和演化[J]. 地学前缘, 2016, 23(6): 1-23. |
[6] | HE C S, DONG S W, SANTOSH M, et al. Seismic evidence for a geosuture between the Yangtze and Cathaysia Blocks, South China[J]. Scientific Reports, 2013, 3: 1-7. |
[7] |
GE X, SHEN C B, SELBY D, et al. Petroleum-generation timing and source in the northern Longmen Shan thrust belt, Southwest China: implications for multiple oil-generation episodes and sources[J]. AAPG Bulletin, 2018, 102(5): 913-938.
DOI URL |
[8] | 翟裕生, 邓军, 李晓波. 区域成矿学[M]. 北京: 地质出版社, 1999. |
[9] | 翟裕生, 邓军, 汤中立, 等. 古陆边缘成矿系统[M]. 北京: 地质出版社, 2002. |
[10] | 姚书振, 周宗桂, 宫勇军, 等. 初论成矿系统的时空结构及其构造控制[J]. 地质通报, 2011, 30(4): 469-477. |
[11] | 中国地质调查局宜昌地质调查中心. 宜昌找矿部署研讨会研究报告[R]. 宜昌:中国地质调查局宜昌地质调查中心, 2003. |
[12] | 中国地质调查局宜昌地质调查中心, 湖南省国土资源厅. 南岭地区深部找矿研讨会研究报告[R]. 长沙:湖南省国土资源厅, 2008. |
[13] | 林丽, 朱利东, 庞艳春, 等. 西成铅锌矿床的生物成矿模拟实验研究[J]. 矿床地质, 2002, 21(增刊1): 423-426. |
[14] | 汤朝阳, 段其发, 邹先武, 等. 鄂西—湘西地区震旦系灯影期岩相古地理与层控铅锌矿关系初探[J]. 地质论评, 2009, 55(5): 712-721. |
[15] | 林方成. 扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J]. 地质学报, 2005, 79(4): 540-556, 583-584. |
[16] | 张长青. 中国川滇黔交界地区密西西比型(MVT)铅锌矿床成矿模型[D]. 北京: 中国地质科学院, 2008. |
[17] |
WANG C M, DENG J, CARRANZA E J M, et al. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China[J]. Ore Geology Reviews, 2014, 56: 327-351.
DOI URL |
[18] | 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 北京: 地质出版社, 2011: 151-185. |
[19] | 叶天竺, 韦昌山, 王玉柱, 等. 勘查区找矿预测理论与方法(各论)[M]. 北京: 地质出版社, 2016. |
[20] | 韩润生, 胡煜昭, 王学琨, 等. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 2012, 86(2): 280-294. |
[21] |
XIONG S F, GONG Y J, JIANG S Y, et al. Ore genesis of the Wusihe carbonate-hosted Zn-Pb deposit in the Dadu River Valley district, Yangtze Block, SW China: evidence from ore geology, S-Pb isotopes, and sphalerite Rb-Sr dating[J]. Mineralium Deposita, 2018, 53(7): 967-979.
DOI URL |
[22] | XIONG S F, GONG Y J, YAO S Z, et al. Nature and evolution of the ore-forming fluids from Nanmushu carbonate-hosted Zn-Pb deposit in the Mayuan district, Shaanxi Province, Southwest China[J]. Geofluids, 2017(5): 1-19. |
[23] |
XIONG S F, JIANG S Y, MA Y, et al. Ore genesis of Kongxigou and Nanmushu Zn-Pb deposits hosted in Neoproterozoic carbonates, Yangtze Block, SW China: constraints from sulfide chemistry, fluid inclusions, and in situ S-Pb isotope analyses[J]. Precambrian Research, 2019, 333: 105405.
DOI URL |
[24] | 黄智龙. 云南会泽超大型铅锌矿床地球化学及成因:兼论峨眉山玄武岩与铅锌成矿的关系[M]. 北京: 地质出版社, 2004. |
[25] | 曹亮, 段其发, 周云. 湖北凹子岗锌矿床Rb-Sr同位素测年及其地质意义[J]. 中国地质, 2015, 42(1): 235-247. |
[26] | 段其发, 曹亮, 曾健康, 等. 湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义[J]. 地球科学: 中国地质大学学报, 2014, 39(8): 977-986, 999. |
[27] | 李文博, 黄智龙, 陈进, 等. 会泽超大型铅锌矿床成矿时代研究[J]. 矿物学报, 2004, 24(2): 112-116. |
[28] | 蔺志永, 王登红, 张长青. 四川宁南跑马铅锌矿床的成矿时代及其地质意义[J]. 中国地质, 2010, 37(2): 488-494. |
[29] | 鲍淼, 周家喜, 黄智龙, 等. 铅锌矿床定年方法及川-滇-黔铅锌成矿域年代学研究进展[J]. 矿物学报, 2011, 31(3): 391-396. |
[30] | 吴越, 张长青, 毛景文, 等. 油气有机质与MVT铅锌矿床的成矿: 以四川赤普铅锌矿为例[J]. 地球学报, 2013, 34(4): 425-436. |
[31] |
HU X L, GONG Y J, PI D H, et al. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling Range, South China: geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit[J]. Ore Geology Reviews, 2017, 91: 877-895.
DOI URL |
[32] | 姚军明, 华仁民, 屈文俊, 等. 湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义[J]. 中国科学(D辑: 地球科学), 2007, 37(4): 471-477. |
[33] | 雷泽恒, 陈富文, 陈郑辉, 等. 黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义[J]. 地球学报, 2010, 31(4): 532-540. |
[34] |
LI H, YONEZU K, WATANABE K, et al. Fluid origin and migration of the Huangshaping W-Mo polymetallic deposit, South China: geochemistry and 40Ar/39Ar geochronology of hydrothermal K-feldspars[J]. Ore Geology Reviews, 2017, 86: 117-129.
DOI URL |
[35] |
YU W C, ALGEO T J, DU Y S, et al. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 321-337.
DOI URL |
[36] |
MA Z X, LIU X T, YU W C, et al. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin: insight from the basal Datangpo Formation of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 529: 39-52.
DOI URL |
[37] | 杜远生, 周琦, 余文超, 等. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用[J]. 地质科技情报, 2015, 34(6): 1-7. |
[38] |
YU W C, POLGÁRI M, GYOLLAI I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122-135.
DOI URL |
[39] | 黄世坤, 林琦. 锰成矿作用的新认识: 兼论中国锰矿[J]. 地质与勘探, 1992, 28(4): 4-10, 29. |
[40] | 杨瑞东, 高军波, 程玛莉, 等. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征[J]. 地质学报, 2010, 84(12): 1781-1790. |
[41] | 王砚耕. 一个浅海裂谷盆地的古老热水沉积锰矿: 以武陵山震旦纪锰矿为例[J]. 岩相古地理, 1990, 10(1): 38-45. |
[42] | 余文超, 杜远生, 周琦, 等. 黔东松桃南华系大塘坡组锰矿层物源: 来自Sr同位素的证据[J]. 地球科学, 2016, 41(7): 1110-1120. |
[43] | 周琦. 古天然气渗漏与锰矿成矿: 以黔东地区南华纪“大塘坡式”锰矿为例[M]. 北京: 地质出版社, 2012: 89-92. |
[44] | 周琦, 杜远生, 覃英. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式: 以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例[J]. 矿床地质, 2013, 32(3): 457-466. |
[45] | 周琦, 杜远生, 袁良军, 等. 古天然气渗漏沉积型锰矿床找矿模型: 以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例[J]. 地质学报, 2017, 91(10): 2285-2298. |
[46] | 陶平, 杜昌乾, 马荣, 等. 贵州及邻区二叠系锰矿地质特征及成矿作用探讨[J]. 贵州地质, 2005, 22(2): 103-108, 102. |
[47] | 林贵生, 李赟. 遵义锰矿地质特征及找矿潜力分析[J]. 中国锰业, 2006, 24(3): 26-29. |
[48] | 陈文一, 刘家仁, 王中刚, 等. 贵州峨眉山玄武岩喷发期的岩相古地理研究[J]. 古地理学报, 2003, 5(1): 17-28. |
[49] | 刘平, 廖友常, 殷科华, 等. 与火山活动有关的热水沉积锰矿: 以贵州二叠纪锰矿为例[J]. 中国地质, 2008, 35(5): 992-1006. |
[50] | 刘志臣, 王聪, 张远国, 等. 贵州遵义锰矿床地球化学特征及成因分析[J]. 矿物学报, 2015, 35(4): 481-488. |
[51] | 向文勤, 肖永开. 铜仁—松桃地区南华系大塘坡式锰矿地质特征及成矿规律探讨[J]. 西南科技大学学报, 2013, 28(4): 31-38. |
[52] | 闫浩, 皮道会, 陆宇川. 贵州遵义铜锣井锰矿床的热水沉积成因:来自矿石结构构造和热液矿物的证据[J]. 矿物学报, 2015, 35(增刊1): 734-735. |
[53] |
HU X L, GONG Y J, ZENG G P, et al. Multistage pyrite in the Getang sediment-hosted disseminated gold deposit, southwestern Guizhou Province, China: insights from textures and in situ chemical and sulfur isotopic analyses[J]. Ore Geology Reviews, 2018, 99: 1-16.
DOI URL |
[54] |
HU X L, ZENG G P, ZHANG Z J, et al. Gold mineralization associated with Emeishan basaltic rocks: mineralogical, geochemical, and isotopic evidences from the Lianhuashan ore field, southwestern Guizhou Province, China[J]. Ore Geology Reviews, 2018, 95: 604-619.
DOI URL |
[55] |
ZENG G P, LUO D W, GONG Y J, et al. Structures and implications for fluid migration in the Jiadi carlin-type gold deposit, Guizhou Province, Southwest China[J]. Resource Geology, 2018, 68(4): 373-394.
DOI URL |
[56] |
LUO D W, ZENG G P. Application and effects of singularity analysis in evaluating the denudation degree of Carlin-type gold deposits in southwest Guizhou, China[J]. Ore Geology Reviews, 2018, 96: 164-180.
DOI URL |
[57] |
XIE Z J, XIA Y, CLINE J S, et al. Magmatic origin for sediment-hosted Au deposits, Guizhou Province, China: in situ chemistry and sulfur isotope composition of pyrites, Shuiyindong and Jinfeng deposits[J]. Economic Geology, 2018, 113(7): 1627-1652.
DOI URL |
[58] | 苏文超, 胡瑞忠, 漆亮, 等. 黔西南卡林型金矿床流体包裹体中微量元素研究[J]. 地球化学, 2001, 30(6): 512-516. |
[59] |
TAN Q P, XIA Y, XIE Z J, et al. Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Ore Geology Reviews, 2015, 69: 140-156.
DOI URL |
[60] |
SU W C, HU R Z, XIA B, et al. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4): 269-274.
DOI URL |
[61] |
SEWARD T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37(3): 379-399.
DOI URL |
[62] | 王永磊, 陈毓川, 王登红, 等. 湖南渣滓溪 W-Sb 矿床白钨矿Sm-Nd 测年及其地质意义[J]. 中国地质, 2012, 39(5): 1339-1344. |
[1] | WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting [J]. Earth Science Frontiers, 2024, 31(4): 26-36. |
[2] | WANG Yan, WANG Denghong, WANG Chenghui, LI Hua, LIU Jinyu, SUN He, GAO Xinyu, JIN Yanan, QIN Yan, HUANG Fan. Quantitative research on metallogenic regularity of gold deposits in China based on geological big data [J]. Earth Science Frontiers, 2024, 31(4): 438-455. |
[3] | WANG Kunyi, ZHOU Yongzhang. Machine-readable expression of unstructured geological information and intelligent prediction of mineralization associated anomaly areas in Pangxidong District, Guangdong, China [J]. Earth Science Frontiers, 2024, 31(4): 47-57. |
[4] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[5] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
[6] | HE Jinzhong, DING Zhenju, ZHU Yongxin, ZHEN Hongxu, ZHANG Wanren, LIU Jie. The metallogenic series in West Qinling, Gansu Province, and their quantitative estimation [J]. Earth Science Frontiers, 2024, 31(3): 218-234. |
[7] | WANG Yan, QIN Yan, LI Hua, WANG Denghong, SUN He, WANG Chenghui, HUANG Fan. Metallogenic regularity and prospecting direction of gold deposits in Northeast China [J]. Earth Science Frontiers, 2024, 31(3): 235-244. |
[8] | GU Hao, YANG Zeqiang, GAO Meng, TANG Xiangwei, WANG Dongxiao, LIU Kuisong, YANG Shuren, GUO Yueshan, WANG Yun, WANG Gongwen. Three-dimensional geological modeling and mineral prospectivity mapping in the Weishancheng gold-silver district, Henan, China [J]. Earth Science Frontiers, 2024, 31(3): 245-259. |
[9] | FU Xiaofang, HUANG Tao, HAO Xuefeng, WANG Denghong, LIANG Bin, YANG Rong, PAN Meng, Fan Junbo. Granitic aplite-pegmatite lithium deposits in western Sichuan: Ore-bearing property evaluation and geological indicators [J]. Earth Science Frontiers, 2023, 30(5): 227-243. |
[10] | HAN Runsheng, ZHAO Dong. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits—a preliminary study [J]. Earth Science Frontiers, 2022, 29(5): 420-437. |
[11] | WANG Yue, SU Shangguo, ZHANG Qi, ZHOU Qiming, ZHANG Yanan. Cu-S Isotope characteristics and metallogenic prediction of orebodies in the Dajing Sn-Cu polymetallic deposit in Inner Mongolia [J]. Earth Science Frontiers, 2022, 29(3): 319-328. |
[12] | ZHENG Youye, WANG Da, YI Jianzhou, YU Zezhang, JIANG Zongyang, LI Xiaoxia, SHI Gongwen, XU Jian, LIANG Yuchun, DOU Xiaofang, REN Huan. Antimony mineralization and prospecting orientation in the North Himalayan Metallogenic Belt, Tibet [J]. Earth Science Frontiers, 2022, 29(1): 200-230. |
[13] | LÜ Chengxun, ZHANG Da, XU Yaqing, GUO Tao, WANG Zongyong, HUO Qinglong, YUAN Yuelei. Calculation of metallogenic depth in the Jiaodong gold deposits: Tectonic correction method and metallogenic prediction [J]. Earth Science Frontiers, 2022, 29(1): 427-438. |
[14] | YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins [J]. Earth Science Frontiers, 2021, 28(6): 10-28. |
[15] | CHEN Yongqing, MO Xuanxue. Metallogenic background, process and exploration as one: A trinity concept for prospecting for super-large ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 26-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||