[1] |
ZHANG Huanbao, HE Haiyang, YANG Shijiao, LI Yalin, BI Wenjun, HAN Shili, GUO Qinpeng, DU Qing.
Machine learning-based approach for adakitic rocks tectonic setting determination
[J]. Earth Science Frontiers, 2024, 31(4): 417-428.
|
[2] |
ZHI Qian, REN Rui, DUAN Fenghao, HUANG Jiaxuan, ZHU Zhao, ZHANG Xinyuan, LI Yongjun.
Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean
[J]. Earth Science Frontiers, 2024, 31(3): 40-58.
|
[3] |
ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan.
Rock and mineral thin section identification based on deep learning
[J]. Earth Science Frontiers, 2024, 31(3): 498-510.
|
[4] |
LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui.
Machine learning: A new approach to intelligent exploration of seafloor mineral resources
[J]. Earth Science Frontiers, 2024, 31(3): 520-529.
|
[5] |
SU Kaiming, XU Yaohui, XU Wanglin, ZHANG Yueqiao, BAI Bin, LI Yang, YAN Gang.
Contribution ratio and distribution patterns of multiple oil sources in the Yanchang Formation of the Ordos Basin: A study utilizing machine learning and interpretability techniques
[J]. Earth Science Frontiers, 2024, 31(3): 530-540.
|
[6] |
CHENG Qiuming.
Long-range effects of mid-ocean ridge dynamics on earthquakes, magmatic activities, and mineralization events in plate subduction zones
[J]. Earth Science Frontiers, 2024, 31(1): 1-14.
|
[7] |
LI Shuguang, WANG Yang, LIU Sheng’ao.
Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability
[J]. Earth Science Frontiers, 2024, 31(1): 15-27.
|
[8] |
WANG Ziye, ZUO Renguang.
Mapping Himalayan leucogranites by machine learning using multi-source data
[J]. Earth Science Frontiers, 2023, 30(5): 216-226.
|
[9] |
SONG Xuanyu, XU Min, KANG Shichang, SUN Liping.
Modeling of hydrological processes in cryospheric watersheds based on machine learning
[J]. Earth Science Frontiers, 2023, 30(4): 451-469.
|
[10] |
WANG Wenlu, LI Xiaowei, ZHANG Zeming, TIAN Zuolin, LI Zengsheng, SUN Yuqin, LIU Qiang, DING Huixia, HAO Zhaoge.
Genetic mineralogy of Late Cretaceous intermediate intrusive rocks in the eastern segment of the Gangdese Belt, southern Tibet—construction of a trans-crustal magma system
[J]. Earth Science Frontiers, 2023, 30(2): 183-214.
|
[11] |
ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng.
Machine learning-based approach for zircon classification and genesis determination
[J]. Earth Science Frontiers, 2022, 29(5): 464-475.
|
[12] |
JIAO Xiaoqin, ZHANG Guanlong, NIU Huapeng, WANG Shengzhu, YU Hongzhou, XIONG Zhengrong, ZHOU Jian, GU Wenlong.
Genesis of Carboniferous volcanic rocks in northeastern Junggar Basin: New insights into the Junggar Ocean closure
[J]. Earth Science Frontiers, 2022, 29(4): 385-402.
|
[13] |
HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin.
Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm
[J]. Earth Science Frontiers, 2022, 29(3): 284-291.
|
[14] |
ZUO Renguang.
Data science-based theory and method of quantitative prediction of mineral resources
[J]. Earth Science Frontiers, 2021, 28(3): 49-55.
|
[15] |
ZHANG Zhenjie, CHENG Qiuming, YANG Jie, WU Guopeng, GE Yunzhao.
Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in southwestern Fujian
[J]. Earth Science Frontiers, 2021, 28(3): 221-235.
|