

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 39-49.DOI: 10.13745/j.esf.sf.2025.10.21
Previous Articles Next Articles
QIAO Gang1,2(
), YIN Lihe1,2,*(
), XU Yong1,2, ZHANG Jun1, SHI Changchun3, YU Kun1
Received:2025-06-18
Revised:2025-08-12
Online:2026-01-25
Published:2025-11-10
CLC Number:
QIAO Gang, YIN Lihe, XU Yong, ZHANG Jun, SHI Changchun, YU Kun. Impact mechanisms of groundwater dynamics on root water uptake of Salix matsudana in Mu Us Sandy Land, China[J]. Earth Science Frontiers, 2026, 33(1): 39-49.
| 监测 要素 | 监测 详情 | 监测仪 器型号 | 监测频 率/h | 传感器距地 表距离/m | 样本 数/个 | 单位 | 最大值 | 最小值 | 均值 | 方差 |
|---|---|---|---|---|---|---|---|---|---|---|
| 气象要素 | 大气降水 | HOBO30 | 1 | 1.5 | 744 | mm∙day-1 | 3.20 | 0.00 | 0.10 | 0.57 |
| 太阳辐射 | 2.5 | 744 | W∙m-2 | 7.52 | 2.09 | 5.92 | 1.63 | |||
| 气温 | 2.0 | 744 | ℃ | 27.37 | 9.70 | 17.52 | 4.58 | |||
| 湿度 | 2.0 | 744 | % | 76.43 | 23.62 | 39.99 | 13.62 | |||
| 旱柳生长 生理参数 | 液流强度 | TDP-30 | 1(注水期间12/h) | 1.5m | 1536 | g∙cm-2∙day-1 | 24.68 | 5.92 | 15.48 | 5.54 |
| 叶水势 | PSY1 | 1(注水期间12/h) | 2.5 | 1536 | MPa | -0.02 | -0.17 | -0.10 | 0.04 | |
| 包气带不 同埋深压 力水头 | — | MPS-6 | 1(注水 期间12/h) | -0.05 | 1536 | m | -6.30 | -22.70 | -12.67 | 4.76 |
| -0.15 | 1536 | m | -4.23 | -18.00 | -8.66 | 4.35 | ||||
| -0.3 | 1536 | m | -15.40 | -58.50 | -34.09 | 14.80 | ||||
| -0.5 | 1536 | m | -5.72 | -53.50 | -27.70 | 16.59 | ||||
| -1.0 | 1536 | m | -6.06 | -14.13 | -8.13 | 2.44 | ||||
| -1.5 | 1536 | m | -19.20 | -23.59 | -20.62 | 1.59 | ||||
| -2.0 | 1536 | m | -14.60 | -17.70 | -16.25 | 1.05 | ||||
| -2.5 | 1536 | m | -8.54 | -12.87 | -10.47 | 1.58 | ||||
| -3.0 | 1536 | m | -4.89 | -11.52 | -8.45 | 2.08 | ||||
| -4.0 | 1536 | m | -1.05 | -4.42 | -3.19 | 0.99 | ||||
| -4.5 | 1536 | m | -1.95 | -12.21 | -8.49 | 2.94 | ||||
| -5.0 | 1536 | m | -1.08 | -10.21 | -5.57 | 2.89 | ||||
| 地下水 位埋深 | — | Solinst Level Vent 5 | 1(注水 期间12/h) | -8 | 1536 | m | -3.78 | -7.15 | -6.51 | 0.88 |
Table 1 Monitoring instrument model and sample data attributes table
| 监测 要素 | 监测 详情 | 监测仪 器型号 | 监测频 率/h | 传感器距地 表距离/m | 样本 数/个 | 单位 | 最大值 | 最小值 | 均值 | 方差 |
|---|---|---|---|---|---|---|---|---|---|---|
| 气象要素 | 大气降水 | HOBO30 | 1 | 1.5 | 744 | mm∙day-1 | 3.20 | 0.00 | 0.10 | 0.57 |
| 太阳辐射 | 2.5 | 744 | W∙m-2 | 7.52 | 2.09 | 5.92 | 1.63 | |||
| 气温 | 2.0 | 744 | ℃ | 27.37 | 9.70 | 17.52 | 4.58 | |||
| 湿度 | 2.0 | 744 | % | 76.43 | 23.62 | 39.99 | 13.62 | |||
| 旱柳生长 生理参数 | 液流强度 | TDP-30 | 1(注水期间12/h) | 1.5m | 1536 | g∙cm-2∙day-1 | 24.68 | 5.92 | 15.48 | 5.54 |
| 叶水势 | PSY1 | 1(注水期间12/h) | 2.5 | 1536 | MPa | -0.02 | -0.17 | -0.10 | 0.04 | |
| 包气带不 同埋深压 力水头 | — | MPS-6 | 1(注水 期间12/h) | -0.05 | 1536 | m | -6.30 | -22.70 | -12.67 | 4.76 |
| -0.15 | 1536 | m | -4.23 | -18.00 | -8.66 | 4.35 | ||||
| -0.3 | 1536 | m | -15.40 | -58.50 | -34.09 | 14.80 | ||||
| -0.5 | 1536 | m | -5.72 | -53.50 | -27.70 | 16.59 | ||||
| -1.0 | 1536 | m | -6.06 | -14.13 | -8.13 | 2.44 | ||||
| -1.5 | 1536 | m | -19.20 | -23.59 | -20.62 | 1.59 | ||||
| -2.0 | 1536 | m | -14.60 | -17.70 | -16.25 | 1.05 | ||||
| -2.5 | 1536 | m | -8.54 | -12.87 | -10.47 | 1.58 | ||||
| -3.0 | 1536 | m | -4.89 | -11.52 | -8.45 | 2.08 | ||||
| -4.0 | 1536 | m | -1.05 | -4.42 | -3.19 | 0.99 | ||||
| -4.5 | 1536 | m | -1.95 | -12.21 | -8.49 | 2.94 | ||||
| -5.0 | 1536 | m | -1.08 | -10.21 | -5.57 | 2.89 | ||||
| 地下水 位埋深 | — | Solinst Level Vent 5 | 1(注水 期间12/h) | -8 | 1536 | m | -3.78 | -7.15 | -6.51 | 0.88 |
Fig.4 The curve showing the variation of the negative water head of the vadose zone at monitoring points in the area with a burial depth of less than 2.0 meters over time
Fig.5 The curve showing the variation of the negative water pressure head of the vadose zone at monitoring points in the area with a burial depth of 2.0 meters over time
| 试验阶段 | 树干液流强度/(g∙cm-2∙day-1) | 叶水势/MPa | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 最大值 | 最小值 | 均值 | 方差 | 最大值 | 最小值 | 均值 | 方差 | ||
| 第一阶段1~5日注水前 | 8.21 | 5.92 | 7.02 | 0.825 | -0.15 | -0.17 | -0.16 | 0.006 | |
| 第二阶段6~8日注水中 | 11.32 | 10.92 | 11.12 | 0.285 | -0.13 | -0.16 | -0.14 | 0.025 | |
| 第三阶段9~15日结束后 | 24.68 | 12.59 | 16.72 | 4.153 | -0.02 | -0.13 | -0.07 | 0.041 | |
| 第四阶段16~21日结束后 | 23.91 | 13.46 | 21.38 | 3.629 | -0.03 | -0.1 | -0.07 | 0.023 | |
| 第五阶段22~31日结束后 | 17.59 | 14.93 | 16.53 | 0.766 | -0.09 | -0.1 | -0.09 | 0.005 | |
Table 2 Monitoring data table of sap flow intensity and leaf water potential of willow trees during the experiment
| 试验阶段 | 树干液流强度/(g∙cm-2∙day-1) | 叶水势/MPa | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 最大值 | 最小值 | 均值 | 方差 | 最大值 | 最小值 | 均值 | 方差 | ||
| 第一阶段1~5日注水前 | 8.21 | 5.92 | 7.02 | 0.825 | -0.15 | -0.17 | -0.16 | 0.006 | |
| 第二阶段6~8日注水中 | 11.32 | 10.92 | 11.12 | 0.285 | -0.13 | -0.16 | -0.14 | 0.025 | |
| 第三阶段9~15日结束后 | 24.68 | 12.59 | 16.72 | 4.153 | -0.02 | -0.13 | -0.07 | 0.041 | |
| 第四阶段16~21日结束后 | 23.91 | 13.46 | 21.38 | 3.629 | -0.03 | -0.1 | -0.07 | 0.023 | |
| 第五阶段22~31日结束后 | 17.59 | 14.93 | 16.53 | 0.766 | -0.09 | -0.1 | -0.09 | 0.005 | |
| 试验 阶段 | 地下水位 动态/m | 根区不同埋深响应压力水头值/m | 树干液流强度 响应规律/ (g∙cm-2·day-1) | 气象特征 | 根系吸 水来源 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 2.5 | 3 | 4.5 | 响应 特征 | 降水 量/mm | 太阳 辐射 | ||||
| 第一阶段 1~5日 注水前 | 波动不变 背景值 6.5 | -17.7 | -12.9 | -11.2 | -9.9 | 背景值 -12.9 | 低值不变 低值 7.02 | 0 | 缓慢波 动上升 | 包气带储 存的水分 |
| 第二阶段 6~8日 注水中 | 水位升高 最大值 3.8 | -17.7 | -12.9 | -11.2 | 0 | 压力水头增加 -10.5 | 缓慢上升 上升值 11.12 | 0 | 波动不变 | 地下水转化的 包气带水分 |
| 第三阶段 9~15日 结束后 | 水位下降 最小值 7.1 | -14.6 | -8.5 | -4.9 | -7.2 | 最大值 -8.8 | 波动升高 最大值 24.68 | 0 | 波动不变 | |
| 第四阶段 16~21日 结束后 | 波动不变 低值 7 | -15.2 | -9.7 | -8.2 | -9.5 | 阈值 -10.7 | 高值不变 高值 21.4 | 0 | 波动不变 | |
| 第五阶段 22~31日 结束后 | 波动不变 低值 6.9 | -16.7 | -10.9 | -9.9 | -12.2 | 压力水 头减小 -12.4 | 先降,后波动不 变下降值 16.53 | 3.2 | 波动不变 | 包气带储 存的水分 |
Table 3 List of responses of groundwater level dynamics to groundwater head in the perched aquifer
| 试验 阶段 | 地下水位 动态/m | 根区不同埋深响应压力水头值/m | 树干液流强度 响应规律/ (g∙cm-2·day-1) | 气象特征 | 根系吸 水来源 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 2.5 | 3 | 4.5 | 响应 特征 | 降水 量/mm | 太阳 辐射 | ||||
| 第一阶段 1~5日 注水前 | 波动不变 背景值 6.5 | -17.7 | -12.9 | -11.2 | -9.9 | 背景值 -12.9 | 低值不变 低值 7.02 | 0 | 缓慢波 动上升 | 包气带储 存的水分 |
| 第二阶段 6~8日 注水中 | 水位升高 最大值 3.8 | -17.7 | -12.9 | -11.2 | 0 | 压力水头增加 -10.5 | 缓慢上升 上升值 11.12 | 0 | 波动不变 | 地下水转化的 包气带水分 |
| 第三阶段 9~15日 结束后 | 水位下降 最小值 7.1 | -14.6 | -8.5 | -4.9 | -7.2 | 最大值 -8.8 | 波动升高 最大值 24.68 | 0 | 波动不变 | |
| 第四阶段 16~21日 结束后 | 波动不变 低值 7 | -15.2 | -9.7 | -8.2 | -9.5 | 阈值 -10.7 | 高值不变 高值 21.4 | 0 | 波动不变 | |
| 第五阶段 22~31日 结束后 | 波动不变 低值 6.9 | -16.7 | -10.9 | -9.9 | -12.2 | 压力水 头减小 -12.4 | 先降,后波动不 变下降值 16.53 | 3.2 | 波动不变 | 包气带储 存的水分 |
Fig.9 The comparison curve of soil moisture and groundwater level in the vadose zone at a depth of 2.0 meters or deeper, showing the changes over time
| [1] | HAN X Y, YANG G, QIN F C, et al. Spatial and temporal dynamic patterns of sandy land in Mu Us in the last 30 years[J]. Research of Soil and Water Conservation, 2019, 26(5): 144-150, 157. |
| [2] | 程东会, 王文科, 侯光才, 等. 毛乌素沙地植被与地下水关系[J]. 吉林大学学报(地球科学版), 2012, 42(1):184-189. |
| [3] | 拉本, 胡娟, 张旭萍. 干旱胁迫对植物生理的影响以及分子机制的响应研究进展[J]. 青海草业, 2022, 31(4):31-35. |
| [4] | 尹立河, 王平, 王田野, 等. 西北地区地下水依赖型植被生态水文过程研究进展与展望[J]. 西北地质, 2025, 58(2):16-30. |
| [5] | 陈亚宁, 李忠勤, 徐建华, 等. 中国西北干旱区水资源与生态环境变化及保护建议[J]. 中国科学院院刊, 2023, 38(3): 385-393. |
| [6] |
刘秀花, 周子怡, 贺屹, 等. 毛乌素典型固沙植物的水分利用特性与吸水机制[J]. 应用生态学报, 2024, 35(4): 897-908.
DOI |
| [7] |
CHEN Y P, CHEN Y N, XU C C, et al. The effects of groundwater depth on water uptake of populus euphratica and tamarix ramosissima in the hyperarid region of northwestern China[J]. Environmental Science and Pollution Research International, 2016, 23(17): 17404-17412.
DOI PMID |
| [8] | 翟巧婷, 张铁钢, 许丽, 等. 基于稳定氧同位素的毛乌素沙地旱柳和小叶杨水分来源[J]. 地球科学与环境学报, 2024, 46(6): 804-815. |
| [9] | PENNA D, HOPP L, SCANDELLARI F, et al. Ideas and perspectives: tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes: challenges and opportunities from an interdisciplinary perspective[J]. Biogeo sciences, 2018, 15(21): 6399-6415. |
| [10] |
王欣, 贾国栋, 邓文平, 等. 季节性干旱地区典型树种长期水分利用特征与模式[J]. 应用生态学报, 2021, 32(6): 1943-1950.
DOI |
| [11] |
GU H L, CHEN G P, REN H, et al. Seasonal dyna-mics of water-use strategies and response to precipitation in different habitats of notaria L.[J]. Journal of Hydrology, 2025, 648:132388.
DOI URL |
| [12] | 尹立河, 黄金廷, 王晓勇, 等. 毛乌素沙地4种植物叶水势变化及其影响因素分析[J]. 植物资源与环境学报, 2016, 25(1): 17-23. |
| [13] | HARRISON J L, REIMANN A B, MALONEY A S, et al. Transpiration of dominant tree species varies in response to projected changes in climate: implications for composition and water balance of temperate forest ecosystems[J]. Ecosystems, 2022, 25(7): 1598-1613. |
| [14] | 裴艳武, 黄来明, 李荣磊, 等. 毛乌素沙地东南缘人工林樟子松根系吸水来源与影响因素[J]. 土壤学报, 2022, 59(5):1336-1348. |
| [15] | 戴军杰, 章新平, 罗紫东, 等. 长沙地区樟树林土壤水稳定同位素的变化及影响因素[J]. 土壤学报, 2020, 57(6):1514-1525. |
| [16] |
SANDERS-DEMOTT R, SORENSEN P O, REIMANN A B, et al. Growing season warming and winter freeze-thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem[J]. Biogeochemistry, 2018, 137(3): 337-349.
DOI |
| [17] | JUICE S M, TEMPLAR P H, PHILLIPS N G, et al. Ecosystem warming increases sap flow rates of northern red oak trees[J]. Ecosphere, 2016, 7(9): 1221. |
| [18] |
HUANG L M, PEI Y W, SHAO M A, et al. Multi-species plantation intensifies soil water competition and groundwater depletion in a water-limited desert region[J]. Forest Ecology and Management, 2023, 537: 120953.
DOI URL |
| [19] | 刘树宝, 陈亚宁, 陈亚鹏, 等. 基于稳定同位素技术的黑河下游不同林龄胡杨的吸水深度研究[J]. 生态学报, 2016, 36(3):72-739. |
| [20] | ROTHFUSS Y, JAVAUX M. Reviews and syntheses: isotopic approaches to quantify root water uptake : a review and comparison of methods [ J ]. Biogen-sciences, 2017, 14(8): 2199-2224. |
| [21] |
CHEN Y F, HE J Q, HE Y, et al. Seasonal hydrological traits in salix psammophila and its responses to soil moisture and meteorological factors in desert areas[J]. Ecological Indicators, 2022, 136: 108626.
DOI URL |
| [22] |
陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658.
DOI |
| [23] | 苏鹏燕, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源[J]. 应用生态学报, 2020, 31(6): 1835-1843. |
| [24] |
DAI Y, WANG H W, SHI Q D, et al. Contrasting plant water-use responses to groundwater depth from seedlings to mature trees in the gurbantunggut desert[J]. Journal of Hydrology, 2022, 610: 127986.
DOI URL |
| [25] |
张江, 李桂芳, 贺亚玲, 等. 基于稳定同位素技术的塔里木河下游不同林龄胡杨的水分利用来源[J]. 生物多样性, 2018, 26(6):564-571.
DOI |
| [26] | 陈喜, 董建志, 王礼春, 等. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. DOI:10.13745/j.esf.sf.2025.3.13. |
| [27] | 胡新宇, 申媛媛, 褚婷雯, 等. 生态补水下的永定河流域地下水水位变化规律[J]. 现代地质, 2023, 37(4): 986-993. DOI:10.19657/j.geoscience.1000-8527.2021.155. |
| [28] | 桑丽源, 郭威, 张静文, 等. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461. DOI:10.13745/j.esf.sf.2025.3.28. |
| [29] | 温国胜, 王林和, 吉川贤. 毛乌素沙地臭柏群落地下水位的变化[J]. 自然资源学报, 2005, 20(2): 111-116. |
| [30] |
CHANG E H, LI P, LI Z B, et al. Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the loess plateau, China[J]. Catena, 2019, 181: 104095.
DOI URL |
| [31] | 李荣磊, 黄来明, 裴艳武, 等. 毛乌素沙地圪丑沟小流域沙柳水分利用来源研究[J]. 水土保持学报, 2021, 35(2):122-130. |
| [32] |
YANG Y M, WANG X K, HE Y L, et al. Study on the water absorption depth of artemisia ordosica roots at the eastern edge of Mu Us Sandy Land, using isotope labeling[J]. Sustainability, 2022, 14: 15149.
DOI URL |
| [33] |
PEI Y W. HUANG L M, SHAO M A, et al. Patterns and drivers of seasonal water sources for artificial sand - fixing plants in the northeastern Mu Us Sandy Land, northwest China[J]. Pedosphere, 2024, 34(1): 63-77.
DOI URL |
| [34] | 徐庆, 任冉冉, 张蓓蓓, 等. 碳氢氧稳定同位素在陆地生态系统植物水分利用研究中的应用[J]. 陆地生态系统与保护学报, 2022, 2(1):73-81. |
| [35] |
王阿晴, 朱雅娟, 马媛, 等. 乌兰布和沙漠两个沙冬青群落的水分来源差异[J]. 应用生态学报, 2024, 35(7): 1762-1770.
DOI |
| [36] | 杨峰, 刘立, 王文科, 等. 毛乌素沙地不同地貌下沙柳根系分布特征研究[J]. 安徽农业科学, 2011, 39(25): 15582-15583, 15607. |
| [37] |
ZHAO Y L, WANG Y Q, HE M N, et al. Transference of robinia pseudoacacia water-use patterns from deep to shallow soil layers -limited region[J]. Forest Ecology and Management, 2020, 457:117727.
DOI URL |
| [38] | 杜勤勤. 基于氢氧稳定同位素的兰州市南北两山植物水分来源研究[D]. 兰州: 西北师范大学, 2020. |
| [39] | 刘泽琛, 张明军, 张宇, 等. 基于氢氧稳定同位素示踪的侧柏与白榆水源对比[J]. 生态学杂志, 2024, 43(3): 694-700. |
| [40] |
BALBETYA A, BORER R, MARTIN-GOMEZ P, et al. Evidence for different isotopic compositions of sap and tissue water in tree stems: implications for plant water source identification[J]. New Phytologist, 2022, 233: 1121 - 1132.
DOI URL |
| [41] | 赵鹏, 徐先英, 姜生秀, 等. 石羊河下游不同衰退程度多枝柽柳灌丛水分利用格局研究[J]. 生态学报, 2022, 42(17): 7187-7197. |
| [42] | 李涛, 罗光明, 董克鹏, 等. 克里雅河尾闾河岸不同生长阶段胡杨的水分利用[J]. 生态学杂志, 2021, 40(4): 989-997. |
| [43] |
李新乐, 鲍芳, 吴波, 等. 荒漠植物白刺新固定碳在植物-土壤系统中的分配[J]. 草业学报, 2019, 28(2): 33-40.
DOI |
| [44] |
宋兆斌, 辛智鸣, 朱雅娟. 内蒙古荒漠-草原过渡带灌木群落特征[J]. 中国沙漠, 2022, 42(2): 104-112.
DOI |
| [45] |
WANG H J, TIAN L H, ZHANG H W, et al. Water absorption of artemisia ordosica roots at different topographic positions in alpine desert dunes in the northeastern qinghai-tibet plateau[J]. Frontiers in Earth Science, 2022, 10: 686441.
DOI URL |
| [46] |
SONG L N, ZHU J J, LI M C, et al. Sources of water used by pinus sylvestris var. mongolica trees based on stable isotope measurements in a semiarid sandy region of north east China[J]. Agricultural Water Management, 2016, 164: 281-290.
DOI URL |
| [47] |
万彦博, 师庆东, 戴岳, 等. 沙漠腹地天然绿洲不同林龄胡杨水分利用来源[J]. 应用生态学报, 2022, 33(2): 353-359.
DOI |
| [48] | 杨国敏, 王爱, 王力. 六道沟流域2种典型灌木不同季节水分来源及利用效率[J]. 西北植物学报, 2018, 38(1): 140-149. |
| [49] |
WANG J, FU B J, LU N, et al. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau[J]. Science of the Total Environment, 2017, 609: 27-37.
DOI URL |
| [50] |
Wu H W, Li X Y, Jiang Z Y, et al. Contrasting water use patterns of introduced and native plants in an alpine desert ecosystem, northeast Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2016, 542: 182-191.
DOI URL |
| [51] | 苏文旭, 贾德彬, 冯蕴, 等. 浑善达克沙地杨树水分利用特征[J]. 干旱区研究, 2020, 37(2): 357-363. |
| [52] | 曾祥明, 徐宪立, 钟飞霞, 等. MixSIAR和IsoSource模型解析植物水分来源的比较研究[J]. 生态学报, 2020, 40(16): 5611-5619. |
| [53] |
YING Z, LI W. Insights into the isotopic mismatch between bulk soil water and salix matsudana koidz trunk water from root water stable isotope measurements[J]. Hydrology and Earth System Sciences, 2021, 25(7): 3975-3989.
DOI URL |
| [1] | ZHI Chuanshun, HU Xiaonong, BAI Jing, MU Hui, WU Xiancang, YANG Fan, CHANG Wenbo, WEI Ruchun, LI Yuxi. Microbial community structure and environmental driving mechanisms in high-salinity groundwater of the Yellow River Delta [J]. Earth Science Frontiers, 2026, 33(1): 95-106. |
| [2] | SHI Zheming, WANG Guangcai, YAN Rui, Qi Zhiyu. Earthquake hydrogeology: Water rock interaction from a disaster per-spective [J]. Earth Science Frontiers, 2026, 33(1): 80-94. |
| [3] | YU Furong, LI Rui, LI Zhiping, WU Lin, LIU Zhongpei. Distribution prediction of natural low-quality groundwater in the plains of Henan Province based on machine learning [J]. Earth Science Frontiers, 2026, 33(1): 63-79. |
| [4] | ZHAO Yongsheng, WANG Jinguo, QIAO Fei, LIU Ruitong, CHEN Zhou. Dynamic characterization of heat transfer processes in low-permeability media using ERT during thermal tracer tests [J]. Earth Science Frontiers, 2026, 33(1): 523-533. |
| [5] | ZHOU Feiran, YIN Ziyue, SUN Xiaomin, SONG Jian, YANG Yun, WU Jianfeng. Integrating numerical simulation and machine learning for identification of groundwater potential zone and its governing factors in the Minqin Basin, Northwest China [J]. Earth Science Frontiers, 2026, 33(1): 511-522. |
| [6] | SHU Wei, JIANG Jianguo, WU Jichun. Physics-informed neural networks with hard constraints for hydraulic conductivity field inversion [J]. Earth Science Frontiers, 2026, 33(1): 500-510. |
| [7] | LIU Suyi, HAN Ning, HUANG Zhiyong, ZHENG Longqun, ZHANG Chong, GONG Huili, PAN Yun. Analyses of groundwater storage changes in the Eastern Tibetan Plateau based on gravimetric satellites and baseflow separation [J]. Earth Science Frontiers, 2026, 33(1): 470-482. |
| [8] | HUANG Linxian, XU Zhenghe, ZHI Chuanshun, LI Shuang, LIU Zhizheng, XING Liting, ZHU Henghua, WANG Xiaowei, BI Wenwen, HU Xiaonong. Research on groundwater level prediction of northern karst spring of China based on LSTM-Attention neural network [J]. Earth Science Frontiers, 2026, 33(1): 419-431. |
| [9] | QIAO Xiaojuan, LUO Chengke, CHAI Xinyu, YU Wenjin. Prediction of fracture distribution in karst area based on machine learning method: Taking Fangshan area in Beijing as a case study [J]. Earth Science Frontiers, 2026, 33(1): 405-418. |
| [10] | PU Junbing. Carbon cycling in the karst groundwater system [J]. Earth Science Frontiers, 2026, 33(1): 369-383. |
| [11] | GUO Huaming, GAO Zhipeng, HU Yalu, XING Shiping, LI Yao, JIANG Xiaowei, PENG Jianbing. Groundwater research in the Tibetan Plateau: Current understanding and key knowledge gaps [J]. Earth Science Frontiers, 2026, 33(1): 328-341. |
| [12] | XU Lin, MA Haichun, WANG Jingping, ZHANG Qing, HUANG Yihang, QIAN Jiazhong, WANG Wanlin. Advances in groundwater nonlinear seepage in fractured media under conditions of high in-situ stress and temperature [J]. Earth Science Frontiers, 2026, 33(1): 313-327. |
| [13] | XU Tianfu, LI Siyuan, JIANG Zhenjiao. Advances in characterization techniques of deep geothermal reservoir fracture structures by integrating microseismic and hydrological data [J]. Earth Science Frontiers, 2026, 33(1): 269-282. |
| [14] | ZHAO Yongsheng. Evolution and state assessment of groundwater contamination plumes [J]. Earth Science Frontiers, 2026, 33(1): 152-162. |
| [15] | OUYANG Kaigao, YAN Hongbin, JIANG Xiaowei, LI Na, ZHANG Shaoyou, NIU Ran, YANG Xi, TANG Xulin, CHI Huaqing, WAN Li. Study on the blocking effect of the loess cover layer on water-salt transport in the Yungang Grottoes [J]. Earth Science Frontiers, 2026, 33(1): 135-142. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||