

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 269-282.DOI: 10.13745/j.esf.sf.2025.10.3
Previous Articles Next Articles
XU Tianfu(
), LI Siyuan, JIANG Zhenjiao*(
)
Received:2025-08-02
Revised:2025-09-09
Online:2026-01-25
Published:2025-11-10
CLC Number:
XU Tianfu, LI Siyuan, JIANG Zhenjiao. Advances in characterization techniques of deep geothermal reservoir fracture structures by integrating microseismic and hydrological data[J]. Earth Science Frontiers, 2026, 33(1): 269-282.
Fig.1 Schematic diagram of the characterization method for artificial fracture networks generated by low-permeability reservoir stimulation or underground engineering activities, integrating microseismic and hydrological data
Fig.2 Joint inversion algorithm for microseismic and hydrological data based on the equivalent continuous medium model and the discrete fracture network model
| 主要方法 | 优势 | 劣势 | |
|---|---|---|---|
| 等效连 续介质 | 参数降维条件下的水文数据反演 | 井周渗透率估值精度高;计算效率高 | 远井渗透率约束能力差,渗透率过度平滑 |
| 微地震与水文数据顺序反演 | 渗透率估值精度的空间差异小;计算效率高 | 精度受微地震定位误差影响大;原生裂隙发育或基质渗透性强的地层不适用 | |
| 微地震与水文数据联合反演 | 渗透率估值的精度高、稳定性强 | 计算效率低 | |
| 离散裂 隙介质 | 参数降维条件下的水文数据反演 | 目前尚未应用 | 三维裂隙结构降维处理方法尚不完善 |
| 微地震与水文数据顺序反演 | 三维裂隙网络几何结构精细刻画;计算效率高 | 在强渗透基质条件下的应用效果尚未验证;受微地震定位误差的影响大 | |
| 微地震与水文数据联合反演 | 目前尚未应用 | 裂隙介质水-热-力学耦合模型计算效率低;微地震事件正向预测精度差 | |
Table 1 The advantages and disadvantages of different fracture network characterization methods integrating microseismic and hydrological data
| 主要方法 | 优势 | 劣势 | |
|---|---|---|---|
| 等效连 续介质 | 参数降维条件下的水文数据反演 | 井周渗透率估值精度高;计算效率高 | 远井渗透率约束能力差,渗透率过度平滑 |
| 微地震与水文数据顺序反演 | 渗透率估值精度的空间差异小;计算效率高 | 精度受微地震定位误差影响大;原生裂隙发育或基质渗透性强的地层不适用 | |
| 微地震与水文数据联合反演 | 渗透率估值的精度高、稳定性强 | 计算效率低 | |
| 离散裂 隙介质 | 参数降维条件下的水文数据反演 | 目前尚未应用 | 三维裂隙结构降维处理方法尚不完善 |
| 微地震与水文数据顺序反演 | 三维裂隙网络几何结构精细刻画;计算效率高 | 在强渗透基质条件下的应用效果尚未验证;受微地震定位误差的影响大 | |
| 微地震与水文数据联合反演 | 目前尚未应用 | 裂隙介质水-热-力学耦合模型计算效率低;微地震事件正向预测精度差 | |
Fig.4 Prediction of tracer concentration breakthrough curves using permeability values inferred from different inversion methods. Modified after [44].
Fig.5 Comparison between the actual permeability (a) and the permeability distributions inferred from (b) hydrological data inversion following parameter dimensionality reduction, (c) the joint inversion of microseismic and hydrological data, and (d) the coupled inversion of microseismic and hydrological data. Modified after [44].
Fig.6 The effect of tracer concentration fit after the convergence of the fracture network through sequential inversion of microseismic and hydrological data. Modified after [45].
Fig.7 Three-dimensional fracture network and spatial distribution of fracture probability based on (a) microseismic data, and (b) sequential inversion of microseismic and hydrological data. Modified after [45].
Fig.9 Schematic diagrams illustrating the calculation of the heat exchange between fractures and the rock matrix using (a) the fully-coupled method and (b) the reference temperature-based method
| [1] | DE LA VAISSIÈRE R, MOREL J, NOIRET A, et al. Excavation-induced fractures network surrounding tunnel: properties and evolution under loading[C]//Proceedings of the 5th Conference on Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. Montpellier, France: Geological Society, 2014: Special Publication 400. |
| [2] | JALALI M, BRAUCHLER R, SOMOGYVARI M, et al. High-resolution characterization of excavation-induced fracture network using continuous and discrete inversion schemes[J]. Water Resources Research, 2023, 59(10): e2022WR033962. |
| [3] | SHEN B, BARTON N. Rock fracturing mechanisms around underground openings[J]. Geomechanics and Engineering, 2018, 16(1): 35-47. |
| [4] |
ZOU L, SELROOS J O, POTERI A, et al. Parameterization of a channel network model for groundwater flow in crystalline rock using geological and hydraulic test data[J]. Engineering Geology, 2023, 317: 107060.
DOI URL |
| [5] |
WANG Y, YUAN Y, GUO B, et al. Numerical simulation of hydro-shearing stimulation in the enhanced geothermal system at the Utah FORGE site[J]. Engineering Geology, 2024, 343: 107823.
DOI URL |
| [6] | FISHER NI, LEWIS T, BJJ E. Statistical analysis of spherical data[M]. Cambridge: Cambridge University Press, 1987. |
| [7] |
PARK Y J, DE DREUZY J R, LEE K K, et al. Transport and intersection mixing in random fracture networks with power law length distributions[J]. Water Resources Research, 2001, 37(10): 2493-2501.
DOI URL |
| [8] | WU H, FU P, HAWKINS A J, et al. Predicting thermal performance of an enhanced geothermal system from tracer tests in a data assimilation framework[J]. Water Resources Research, 2021, 57(12): e2021WR030987. |
| [9] |
HOOKER J N, GALE J F W, GOMEZ L A, et al. Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado[J]. Journal of Structural Geology, 2009, 31(7): 707-718.
DOI URL |
| [10] |
MOEIN M J A, VALLEY B, EVANS K F. Scaling of fracture patterns in three deep boreholes and implications for constraining fractal discrete fracture network models[J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1723-1743.
DOI |
| [11] |
HOFRICHTER J, WINKLER G. Statistical analysis for the hydrogeological evaluation of the fracture networks in hard rocks[J]. Environmental Geology, 2006, 49(6): 821-827.
DOI URL |
| [12] | DARCEL C, BOUR O, DAVY P. Stereological analysis of fractal fracture networks[J]. Journal of Geophysical Research-Solid Earth, 2003, 108(B9): 2451. |
| [13] | OUTTERS N. A generic study of discrete fracture network transport properties using FracMan/MAFIC[R]. Stockholm:Swedish Nuclear Fuel and Waste Management Co., 2003: SKB R-04- 52. |
| [14] | 曹志成, 陈秋, 崔俊艳, 等. 基于扩展有限元的现场尺度水力裂缝扩展机制模拟研究[J]. 钻探工程, 2024, 51(5): 85-92. |
| [15] |
FANG J, ZHOU F, TANG Z. Discrete fracture network modelling in a naturally fractured carbonate reservoir in the Jingbei Oilfield, China[J]. Energies, 2017, 10(2): 183.
DOI URL |
| [16] | YOON J S, ZANG A, STEPHANSSON O, et al. Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock[C]//Proceedings of the ISRM European Rock Mechanics Symposium, part 1 of 2:EUROCK 2017. Ostrava,Czech Republic: Elsevier B.V., 2017: 962-966. |
| [17] |
GAO X, LI T, ZHANG Y, et al. A review of simulation nodels of heat extraction for a geothermal reservoir in an enhanced geothermal system[J]. Energies, 2022, 15(19): 7148.
DOI URL |
| [18] |
GALINDO TORRES S A, MUNOZ CASTANO J D. Simulation of the hydraulic fracture process in two dimensions using a discrete element method[J]. Physical Review E, 2007, 75(6): 066109.
DOI URL |
| [19] | LI S, ZHANG D. Three-dimensional thermoporoelastic modeling of hydrofracturing and fluid circulation in hot dry rock[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(2): e2022JB025673. |
| [20] | 杨丽. 微地震裂缝监测技术在中原油田的应用[J]. 内蒙古石油化工, 2020, 46(4): 91-92. |
| [21] | FINNILA A, DAMJANAC B, PODGORNEY R. Development of a discrete fracture network model for Utah FORGE using microseismic data collected during stimulation of well 16A(78)-32[C]//48th Workshop on Geothermal Reservoir Engineering, Volume 2 of 3. Stanford, CA, USA: Stanford Geothermal Program, 2023: SGP-TR-224. |
| [22] |
ALGHALANDIS Y F, DOWD P A, XU C. The RANSAC method for generating fracture networks from micro-seismic event data[J]. Mathematical Geosciences, 2013, 45(2): 207-224.
DOI URL |
| [23] |
YU J, BYUN J, SEOL S J. Imaging discrete fracture networks using the location and moment tensors of microseismic events[J]. Exploration Geophysics, 2021, 52(1): 42-53.
DOI URL |
| [24] |
MATAS J, CHUM O. Randomized RANSAC with T_(d,d) test[J]. Image and Vision Computing, 2004, 22(10): 837-842.
DOI URL |
| [25] | HU J L, KANG Z H, YUAN L L. Automatic fracture identification using ant tracking in Tahe Oilfield[J]. Advanced Materials Research, 2014(962/963/964/965): 556-559. |
| [26] | ALQASSAB M, YU W, SEPEHRNOORI K, et al. Estimating the size and orientation of hydraulic fractures using microseismic events[C]//SPE/AAPG/SEG. SPE/AAPG/SEG Unconventional Resources Technology Conference. Austin:AAPG, 2020: D013S004R003. |
| [27] | CORNETTE B M, TELKER C, DE LA PENA A. Refining discrete fracture networks with surface microseismic mechanism inversion and mechanism-driven event location[C]// SPE. SPE Hydraulic Fracturing Technology Conference. The Woodlands, TX: SPE, 2012: SPE-151964-MS. |
| [28] | RINGEL L M, JALALI M, BAYER P. Stochastic inversion of three-dimensional discrete fracture network structure with hydraulic tomography[J]. Water Resources Research, 2021, 57(12): e2021WR030401. |
| [29] |
SOMOGYVÁRI M, JALALI M, PARRAS S J, et al. Synthetic fracture network characterization with transdimensional inversion[J]. Water Resources Research, 2017, 53(6): 5104-5123.
DOI URL |
| [30] |
RINGEL L M, SOMOGYVÁRI M, JALALI M, et al. Comparison of hydraulic and tracer tomography for discrete fracture network inversion[J]. Geosciences, 2019, 9(6): 274.
DOI URL |
| [31] | BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1483-1498. |
| [32] |
JIANG Z, ZHANG S, TURNADGE C, et al. Combining autoencoder neural network and Bayesian inversion to estimate heterogeneous permeability distributions in enhanced geothermal reservoir: model development and verification[J]. Geothermics, 2021, 97: 102262.
DOI URL |
| [33] |
HINTON G. E, SALAKHUTDINOV, et al. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
DOI PMID |
| [34] |
KULLBACK S, LEIBLER R A. On information and sufficiency[J]. Annals of Mathematical Statistics, 1951, 22(1): 79-86.
DOI URL |
| [35] |
EMERICK A A, REYNOLDS A C. Ensemble smoother with multiple data assimilation[J]. Computers & Geosciences, 2013, 55: 3-15.
DOI URL |
| [36] |
SADEGH M, VRUGT J A. Approximate Bayesian computation using Markov Chain Monte Carlo simulation: DREAM(ABC)[J]. Water Resources Research, 2014, 50(8): 6767-6787.
DOI URL |
| [37] |
EVENSEN G. Analysis of iterative ensemble smoothers for solving inverse problems[J]. Computational Geosciences, 2018, 22(3): 885-908.
DOI |
| [38] |
GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4): 711-732.
DOI URL |
| [39] |
SHAPIRO S A, AUDIGANE P, ROYER J J. Large-scale in situ permeability tensor of rocks from induced microseismicity[J]. Geophysical Journal International, 1999, 137(1): 207-213.
DOI URL |
| [40] |
SHAPIRO S A, ROTHERT E, RATH V, et al. Characterization of fluid transport properties of reservoirs using induced microseismicity[J]. Geophysics, 2002, 67(1): 212-220.
DOI URL |
| [41] | SILVERMAN B W. Density estimation for statistics and data analysis[M]. New York: Routledge, 2018. |
| [42] |
LI S, XU T, CHEN Z, et al. Efficient fracture network characterization in enhanced geothermal reservoirs by the integration of microseismic and borehole logs data[J]. Geothermics, 2023, 114: 102791.
DOI URL |
| [43] | SAMBRIDGE M, BODIN T, GALLAGHER K, et al. Transdimensional inference in the geosciences[J]. Philosophical Transactions of the Royal Society: Mathematical Physical and Engineering Sciences, 2013, 371(1984): 20110547. |
| [44] | 陈敬宜. 基于示踪试验与微地震数据的人工热储层渗透率反演方法与应用研究[D]. 长春: 吉林大学, 2023. |
| [45] | LI S, JIANG Z, RINGEL L M, et al. Three-dimensional imaging of induced fracture network by joint microseismicity and tracer test data inversion: field application and validation[J]. Engineering Geology (in revision), 2025. |
| [46] |
DENG Y, KANG X, MA H, et al. Characterization of discrete fracture networks with deep-learning based hydrogeophysical inversion[J]. Journal of Hydrology, 2024, 631: 130819.
DOI URL |
| [47] |
CHEN C, DENG Y, MA H, et al. Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction[J]. Energy, 2024, 302: 131713.
DOI URL |
| [48] |
CHEN G, LUO X, JIAO J J, et al. Fracture network characterization with deep generative model based stochastic inversion[J]. Energy, 2023, 273: 127302.
DOI URL |
| [49] |
HUA C, JIANG Z, LI J, et al. Tracer-test-based dimensionality reduction model for characterizing fracture network and predicting flow and transport in fracture aquifer[J]. Journal of Hydrology, 2024, 630: 130773.
DOI URL |
| [50] | LI L, LEE S H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[J]. Spe Reservoir Evaluation & Engineering, 2008, 11(4): 750-758. |
| [51] |
FUMAGALLI A, PASQUALE L, ZONCA S, et al. An upscaling procedure for fractured reservoirs with embedded grids[J]. Water Resources Research, 2016, 52(8): 6506-6525.
DOI URL |
| [52] |
HYMAN J D, KARRA S, MAKEDONSKA N, et al. DFNWORKS: a discrete fracture network framework for modeling subsurface flow and transport[J]. Computers & Geosciences, 2015, 84: 10-19.
DOI URL |
| [53] |
LIANG X, XU T, CHEN J, et al. A deep-learning based model for fracture network characterization constrained by induced micro-seismicity and tracer test data in enhanced geothermal system[J]. Renewable Energy, 2023, 216: 119046.
DOI URL |
| [54] |
JIANG J. Simulating multiphase flow in fractured media with graph neural networks[J]. Physics of Fluids, 2024, 36(2): 023115.
DOI URL |
| [1] | ZHAO Yongsheng, WANG Jinguo, QIAO Fei, LIU Ruitong, CHEN Zhou. Dynamic characterization of heat transfer processes in low-permeability media using ERT during thermal tracer tests [J]. Earth Science Frontiers, 2026, 33(1): 523-533. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||