

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 523-533.DOI: 10.13745/j.esf.sf.2025.10.11
ZHAO Yongsheng(
), WANG Jinguo*(
), QIAO Fei, LIU Ruitong, CHEN Zhou
Received:2025-07-13
Revised:2025-09-10
Online:2026-01-25
Published:2025-11-10
CLC Number:
ZHAO Yongsheng, WANG Jinguo, QIAO Fei, LIU Ruitong, CHEN Zhou. Dynamic characterization of heat transfer processes in low-permeability media using ERT during thermal tracer tests[J]. Earth Science Frontiers, 2026, 33(1): 523-533.
| 参数 | 单位 | 数值 |
|---|---|---|
| 渗透系数 | m/s | 5.0×10-6 |
| 饱和含水量 | m3/m3 | 0.38 |
| 残余含水量 | m3/m3 | 0.35 |
| 土体颗粒密度 | kg/m3 | 2 580 |
| 堆积密度 | kg/m3 | 1.650 |
| 多孔介质比热容 | J/(kg·K) | 500 |
| 液相体积热容 | J/(m3·K) | 4.2×106 |
| 固体导热性 | W/(m·K) | 3.50 |
| 液相导热性 | W/(m·K) | 0.954 |
| 有效扩散系数 | m2/s | 1×10-9 |
Table 1 Parameters setup for the forward model
| 参数 | 单位 | 数值 |
|---|---|---|
| 渗透系数 | m/s | 5.0×10-6 |
| 饱和含水量 | m3/m3 | 0.38 |
| 残余含水量 | m3/m3 | 0.35 |
| 土体颗粒密度 | kg/m3 | 2 580 |
| 堆积密度 | kg/m3 | 1.650 |
| 多孔介质比热容 | J/(kg·K) | 500 |
| 液相体积热容 | J/(m3·K) | 4.2×106 |
| 固体导热性 | W/(m·K) | 3.50 |
| 液相导热性 | W/(m·K) | 0.954 |
| 有效扩散系数 | m2/s | 1×10-9 |
| [1] |
ISTOK J D, FIELD J A, SCHROTH M H, et al. Single-well “push-pull” partitioning tracer test for NAPL detection in the subsurface[J]. Environmental Science & Technology, 2002, 36(12): 2708-2716.
DOI URL |
| [2] |
BARTH G R, ILLANGASEKARE T H, RAJARAM H. The effect of entrapped nonaqueous phase liquids on tracer transport in heterogeneous porous media: laboratory experiments at the intermediate scale[J]. Journal of Contaminant Hydrology, 2003, 67(1/2/3/4): 247-268.
DOI URL |
| [3] |
ANDERSON M P. Heat as a ground water tracer[J]. Groundwater, 2005, 43(6): 951-968.
PMID |
| [4] | 卢富运, 余方潜, 陈杨, 等. 盐热联合示踪表征薄层水流剖面流速分布[J]. 农业工程学报, 2023, 39(23): 85-93. |
| [5] | DIAW E H B, LEHMANN F, ACKERER P. Modélisation du transport d’un soluté réactif en milieux poreux non saturés[J]. Comptes Rendus de L’Académie Des Sciences - Series IIA - Earth and Planetary Science, 2001, 333(2): 129-132. |
| [6] |
HERMANS T, WILDEMEERSCH S, JAMIN P, et al. Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[J]. Geothermics, 2015, 53: 14-26.
DOI URL |
| [7] | 郭琼泽, 施小清, 王慧婷, 等. 井间分溶示踪估计重非水相污染物残留量的影响因素数值分析[J]. 水文地质工程地质, 2019, 46(6): 165-172. |
| [8] |
MENG F S, WANG J G, ZHAO Y S, et al. Quantification of soil water content by machine learning using enhanced high-resolution ERT[J]. Journal of Hydrology, 2024, 643: 131994.
DOI URL |
| [9] | 柳建新, 曾加佳, 谢静, 等. 黏质砂土地球物理与水文化学特性综合动态测量系统[J]. 地球物理学报, 2025, 68(7): 2754-2768. |
| [10] |
LESPARRE N, ROBERT T, NGUYEN F, et al. 4D electrical resistivity tomography (ERT) for aquifer thermal energy storage monitoring[J]. Geothermics, 2019, 77: 368-382.
DOI URL |
| [11] |
HERMANS T, NGUYEN F, ROBERT T, et al. Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[J]. Energies, 2014, 7(8): 5083-5118.
DOI URL |
| [12] | HERMANS T, VANDENBOHEDE A, LEBBE L, et al. A shallow geothermal experiment in a sandy aquifer monitored using electric resistivity tomography[J]. Geophysics, 2012, 77(1): B11-B21. |
| [13] |
CHRÉTIEN M, LATASTE J F, FABRE R, et al. Electrical resistivity tomography to understand clay behavior during seasonal water content variations[J]. Engineering Geology, 2014, 169: 112-123.
DOI URL |
| [14] |
FOWLER D E, MOYSEY S M J. Estimation of aquifer transport parameters from resistivity monitoring data within a coupled inversion framework[J]. Journal of Hydrology, 2011, 409(1/2): 545-554.
DOI URL |
| [15] | SAKAR C, SCHWARTZ N, MORENO Z. Physics-informed neural networks trained with time-lapse geo-electrical tomograms to estimate water saturation, permeability and petrophysical relations at heterogeneous soils[J]. Water Resources Research, 2024, 60(8): e2024WR037672. |
| [16] | 杨晨, 潘剑伟, 钱伦, 等. 盐渍红黏土电阻率影响因素的试验分析[J]. 环境工程学报, 2025, 19(2): 437-445. |
| [17] |
PATNODE H W, WYLLIE M R J. The presence of conductive solids in reservoir rocks as a factor in electric log interpretation[J]. Journal of Petroleum Technology, 1950, 2(2): 47-52.
DOI URL |
| [18] | QI Y Z, WU Y X. Electrical conductivity of clayey rocks and soils: a non-linear model[J]. Geophysical Research Letters, 2022, 49(10): e2021GL097408. |
| [19] | 刘文辉, 乔翠平, 索奎, 等. 综合物探方法在锌污染场地探测中的应用[J]. 华北水利水电大学学报(自然科学版), 2022, 43(2): 77-83. |
| [20] |
李文忠, 孙卫民. 分布式高密度电法装置类型选择及工程勘查应用[J]. 长江科学院院报, 2019, 36(10): 161-164.
DOI |
| [21] | 赵荣春, 吕玉增, 张智, 等. 基于2.5d有限元的高密度电法不同装置勘探效果研究[J]. 煤田地质与勘探, 2024, 52(4): 128-136. |
| [22] |
ROY A, APPARAO A. Depth of investigation in direct current methods[J]. Geophysics, 1971, 36(5): 943-959.
DOI URL |
| [23] | 马志飞, 刘鸿福, 叶章, 等. 高密度电法不同装置的勘探效果对比[J]. 物探装备, 2009, 19(1): 52-55, 67. |
| [24] | 郑冰, 李柳德. 高密度电法不同装置的探测效果对比[J]. 工程地球物理学报, 2015, 12(1): 33-39. |
| [25] | 冯世进, 陈佳卓, 高梦雯, 等. 软土地区在产企业污染监测及预警方法研究:基于时移高密度电法的应用[J]. 岩土力学, 2025, 46(4): 1323-1334. |
| [26] |
DE GROOT-HEDLIN C, CONSTABLE S. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data[J]. Geophysics, 1990, 55(12): 1613-1624.
DOI URL |
| [27] | 曹恩伟, 叶鹏, 刘璐琦, 等. ERT技术及其在环境污染调查中的应用进展[J]. 化工环保, 2025, 45(1): 11-18. |
| [28] | 董江鑫, 王飞. 地质雷达和高密度电法联合探测底板含水性的应用[J]. 煤炭科学技术, 2022, 50(5): 222-231. |
| [29] | 徐宝平. 高密度电法和瞬变电磁法在铀尾矿库三维地质调查中的应用研究[D]. 抚州: 东华理工大学, 2023. |
| [30] |
SUN H, WANG Y Q, ZHAO Y L, et al. Assessing the value of electrical resistivity derived soil water content: insights from a case study in the critical zone of the Chinese Loess Plateau[J]. Journal of Hydrology, 2020, 589: 125132.
DOI URL |
| [31] |
ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62.
DOI URL |
| [32] | 景茂恒, 卢文浩, 彭翔, 等. 饱和水土壤电阻率温度特性及对直流接地极温升的影响[J]. 智慧电力, 2022, 50(12): 19-25, 33. |
| [33] | 徐兴倩, 蔡波, 屈新, 等. 土体电阻率模型研究现状综述[J]. 地球物理学进展, 2022, 37(5): 2205-2217. |
| [34] |
CULTRERA M, BOAGA J, DI SIPIO E, et al. Modelling an induced thermal plume with data from electrical resistivity tomography and distributed temperature sensing: a case study in northeast Italy[J]. Hydrogeology Journal, 2018, 26(3): 837-851.
DOI URL |
| [35] |
CHO O H, BURNS S E. Review of Archie’s equation through theoretical derivation and experimental study on uncoated and hematite coated soils[J]. Journal of Applied Geophysics, 2014, 105: 225-234.
DOI URL |
| [36] |
FRIEDMAN S P. Soil properties influencing apparent electrical conductivity: a review[J]. Computers and Electronics in Agriculture, 2005, 46(1/2/3): 45-70.
DOI URL |
| [37] |
WAGNER V, LI T, BAYER P, et al. Thermal tracer testing in a sedimentary aquifer: field experiment (Lauswiesen, Germany) and numerical simulation[J]. Hydrogeology Journal, 2014, 22(1): 175-187.
DOI URL |
| [1] | PU Junbing. Carbon cycling in the karst groundwater system [J]. Earth Science Frontiers, 2026, 33(1): 369-383. |
| [2] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
| [3] | SHANG Ji, BIAN Jian-Min, LI Zhao-Yang, ZHANG Nan, LIANG Shuang, BING Zhi-Wu. [J]. Earth Science Frontiers, 2014, 21(4): 30-36. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||