

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 419-431.DOI: 10.13745/j.esf.sf.2025.10.1
Previous Articles Next Articles
HUANG Linxian1(
), XU Zhenghe1, ZHI Chuanshun1, LI Shuang2, LIU Zhizheng2, XING Liting1, ZHU Henghua3, WANG Xiaowei3, BI Wenwen4, HU Xiaonong1,*(
)
Received:2025-06-20
Revised:2025-10-10
Online:2026-01-25
Published:2025-11-10
CLC Number:
HUANG Linxian, XU Zhenghe, ZHI Chuanshun, LI Shuang, LIU Zhizheng, XING Liting, ZHU Henghua, WANG Xiaowei, BI Wenwen, HU Xiaonong. Research on groundwater level prediction of northern karst spring of China based on LSTM-Attention neural network[J]. Earth Science Frontiers, 2026, 33(1): 419-431.
| [1] | 管清花, 李福林, 陈学群, 等. 济南趵突泉泉域泉群生态基流量研究[J]. 中国农村水利水电, 2021(4): 75-80, 91. |
| [2] |
邢立亭, 周娟, 宋广增, 等. 济南四大泉群泉水补给来源混合比探讨[J]. 地学前缘, 2018, 25(3): 260-272.
DOI |
| [3] | 袁学圣, 邢立亭, 赵振华, 等. 济南四大泉群流量衰减过程及其指示意义[J]. 干旱区资源与环境, 2022, 36(7): 126-132. |
| [4] | 孙虹洁, 赵振华, 黄林显, 等. 多变量LSTM神经网络模型在地下水位预测中的应用[J]. 人民黄河, 2022, 44(8): 69-75. |
| [5] |
WUNSCH A, LIESCH T, CINKUS G, et al. Karst spring discharge modeling based on deep learning using spatially distributed input data[J]. Hydrology and Earth System Sciences, 2022, 26(9): 2405-2430.
DOI URL |
| [6] |
周长松, 邹胜章, 冯启言, 等. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50.
DOI |
| [7] |
陈发家, 肖琼, 胡祥云, 等. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459.
DOI |
| [8] | 张郑贤, 刘艺, 张锋贤. 基于时间序列模型的济南趵突泉地下水位预测[J]. 中国水利水电科学研究院学报, 2019, 17(1): 51-59. |
| [9] | 姜宝良, 陈宁宁, 李小建, 等. 河南某大型裂隙岩溶水源地地下水位动态分析[J]. 水文地质工程地质, 2021, 48(2): 37-43. |
| [10] | 肖竞, 万军伟, 成建梅, 等. MODFLOW-CFPv2模型在岩溶隧道突涌水及对地下水环境影响中的应用:以云南鹤庆锰矿沟岩溶水系统为例[J]. 地质科技通报, 2024, 43(3): 301-310. |
| [11] | 李志超, 姜宝良, 潘登, 等. 灰色理论在新乡百泉泉水流量动态分析中的应用[J]. 水文地质工程地质, 2023, 50(2): 34-43. |
| [12] |
RAHBAR A, MIRARABI A, NAKHAEI M, et al. A comparative analysis of data-driven models (SVR, ANFIS, and ANNs) for daily karst spring discharge prediction[J]. Water Resources Management, 2022, 36(2): 589-609.
DOI |
| [13] | 许亮, 郭高轩. 典型北方山前岩溶泉历史流量序列重建研究[J]. 水文, 2023, 43(3): 88-92. |
| [14] | 齐欢. 济南市趵突泉与白泉地下水位相关性研究[J]. 水文, 2020, 40(4): 79-84, 32. |
| [15] |
LI J, LU W, LUO J. Groundwater contamination sources identification based on the long-short term memory network[J]. Journal of Hydrology, 2021, 601: 126670.
DOI URL |
| [16] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI PMID |
| [17] |
WU X, WANG H Y, SHI P, et al. Long short-term memory model-a deep learning approach for medical data with irregularity in cancer prediction with tumor markers[J]. Computers in Biology and Medicine, 2022, 144: 105362.
DOI URL |
| [18] |
WUNSCH A, LIESCH T, BRODA S. Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX)[J]. Hydrology and Earth System Sciences, 2021, 25(3): 1671-1687.
DOI URL |
| [19] | 于苗, 邢立亭, 吴吉春, 等. 基于时间序列分形的济南岩溶大泉动态研究[J]. 地质学报, 2020, 94(8): 2509-2519. |
| [20] | 孙斌, 彭玉明. 济南泉域边界条件、水循环特征及水环境问题[J]. 中国岩溶, 2014, 33(3): 272-279. |
| [21] | 侯新宇, 邢立亭, 孙蓓蓓, 等. 济南市岩溶水系统分级及市区与东西郊的水力联系[J]. 济南大学学报(自然科学版), 2014(28):300-305. |
| [22] |
ZHAO K, WULDER M A, HU T, et al. Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm[J]. Remote sensing of Environment, 2019, 232: 111181.
DOI URL |
| [23] | 迟光耀, 邢立亭, 侯新宇, 等. 基于小波分析与Mann-Kendall法的岩溶大泉动态研究[J]. 中国岩溶, 2018, 37(4):515-526. |
| [24] |
MA S, DING W, ZHENG Y, et al. Edge-cloud collaboration-driven predictive planning based on LSTM-attention for wastewater treatment[J]. Computers & Industrial Engineering, 2024, 195: 110425.
DOI URL |
| [25] |
YANG Y, HAN L, QIU C, et al. A short-term wave energy forecasting model using two-layer decomposition and LSTM-attention[J]. Ocean Engineering, 2024, 299: 117279.
DOI URL |
| [26] | 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(增刊1): 1-6. |
| [27] |
SHEWALKAR A, NYAVANANDI D, LUDWIG S A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU[J]. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9(4): 235-245.
DOI URL |
| [28] |
SHEN G, TAN Q, ZHANG H, et al. Deep learning with gated recurrent unit networks for financial sequence predictions[J]. Procedia Computer Science, 2018, 131: 895-903.
DOI URL |
| [29] |
LI W, WU H, ZHU N, et al. Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU)[J]. Information Processing in Agriculture, 2021, 8(1): 185-193.
DOI URL |
| [1] | SHU Wei, JIANG Jianguo, WU Jichun. Physics-informed neural networks with hard constraints for hydraulic conductivity field inversion [J]. Earth Science Frontiers, 2026, 33(1): 500-510. |
| [2] | YU Furong, LI Rui, LI Zhiping, WU Lin, LIU Zhongpei. Distribution prediction of natural low-quality groundwater in the plains of Henan Province based on machine learning [J]. Earth Science Frontiers, 2026, 33(1): 63-79. |
| [3] | SHI Zheming, WANG Guangcai, YAN Rui, Qi Zhiyu. Earthquake hydrogeology: Water rock interaction from a disaster per-spective [J]. Earth Science Frontiers, 2026, 33(1): 80-94. |
| [4] | XU Lin, MA Haichun, WANG Jingping, ZHANG Qing, HUANG Yihang, QIAN Jiazhong, WANG Wanlin. Advances in groundwater nonlinear seepage in fractured media under conditions of high in-situ stress and temperature [J]. Earth Science Frontiers, 2026, 33(1): 313-327. |
| [5] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
| [6] | LIU Yong, ZHANG Qi, QIAN Jiazhong, WU Dun, ZHANG Wenyong. Simulation of bimolecular reactive solute transport in porous media via image analysis [J]. Earth Science Frontiers, 2022, 29(3): 248-255. |
| [7] | CHENG Donghui, LI Hui, WANG Jun, LI Shuang, HUANG Mengnan, MA Chenglong, RAO Ze. The relationship between groundwater displacement rate, air-entrapped saturation, and quasi-saturated hydraulic conductivity in quasi-saturated porous media [J]. Earth Science Frontiers, 2022, 29(3): 256-262. |
| [8] | LIU Yanjun, MA Teng, DU Yao, LIU Rui. Compaction of clay aquitard: Principle, technology and hydrogeological significanc [J]. Earth Science Frontiers, 2021, 28(5): 59-67. |
| [9] | SUN Zhaoyue, ZHENG Xilai, ZHENG Tianyuan, LUAN Yongxia, XIN Jia. Influencing factors and performance of enhanced denitrification layer in the vadose zone [J]. Earth Science Frontiers, 2021, 28(5): 136-145. |
| [10] | HUANG Yonghui, PANG Zhonghe, CHENG Yuanzhi, KONG Yanlong, WANG Jiyang. The development and outlook of the deep aquifer thermal energy storage (deep-ATES) [J]. Earth Science Frontiers, 2020, 27(1): 17-24. |
| [11] | KANG Hongzhi,CHEN Liang,GUO Qizhong,LIAN Jijian,HOU Jie. An overview of quantification of groundwater recharge in sponge city construction [J]. Earth Science Frontiers, 2019, 26(6): 58-65. |
| [12] | GAO Zhipeng,GUO Huaming,QU Jihong. Numerical simulation of nitrogen transport in river-groundwater system in the Weihe River Basin. [J]. Earth Science Frontiers, 2018, 25(3): 273-284. |
| [13] | . [J]. Earth Science Frontiers, 2017, 24(2): 265-273. |
| [14] | . [J]. Earth Science Frontiers, 2014, 21(4): 91-99. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||