Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 136-145.DOI: 10.13745/j.esf.sf.2021.2.6
Previous Articles Next Articles
SUN Zhaoyue1,2,3(), ZHENG Xilai1, ZHENG Tianyuan1,*(), LUAN Yongxia4, XIN Jia1
Received:
2020-08-26
Revised:
2020-12-18
Online:
2021-09-25
Published:
2021-10-29
Contact:
ZHENG Tianyuan
CLC Number:
SUN Zhaoyue, ZHENG Xilai, ZHENG Tianyuan, LUAN Yongxia, XIN Jia. Influencing factors and performance of enhanced denitrification layer in the vadose zone[J]. Earth Science Frontiers, 2021, 28(5): 136-145.
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
温度A/℃ | 硝态氮浓度 B/(mg·L-1) | 含水量C (WHC)/% | 硝态氮 去除率Y/% | ||
1 | 10 | 100 | 80 | 24.00 | |
2 | 30 | 100 | 80 | 61.42 | |
3 | 10 | 300 | 80 | 27.1 | |
4 | 30 | 300 | 80 | 43.01 | |
5 | 10 | 200 | 60 | 28.02 | |
6 | 30 | 200 | 60 | 35.00 | |
7 | 10 | 200 | 100 | 30.43 | |
8 | 30 | 200 | 100 | 100.00 | |
9 | 20 | 100 | 60 | 30.74 | |
10 | 20 | 300 | 60 | 32.20 | |
11 | 20 | 100 | 100 | 40.72 | |
12 | 20 | 300 | 100 | 33.30 | |
13 | 20 | 200 | 80 | 33.45 | |
14 | 20 | 200 | 80 | 33.44 | |
15 | 20 | 200 | 80 | 33.81 | |
16 | 20 | 200 | 80 | 33.80 | |
17 | 20 | 200 | 80 | 36.01 |
Table 1 Box-Behnken design experiments and response values
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
温度A/℃ | 硝态氮浓度 B/(mg·L-1) | 含水量C (WHC)/% | 硝态氮 去除率Y/% | ||
1 | 10 | 100 | 80 | 24.00 | |
2 | 30 | 100 | 80 | 61.42 | |
3 | 10 | 300 | 80 | 27.1 | |
4 | 30 | 300 | 80 | 43.01 | |
5 | 10 | 200 | 60 | 28.02 | |
6 | 30 | 200 | 60 | 35.00 | |
7 | 10 | 200 | 100 | 30.43 | |
8 | 30 | 200 | 100 | 100.00 | |
9 | 20 | 100 | 60 | 30.74 | |
10 | 20 | 300 | 60 | 32.20 | |
11 | 20 | 100 | 100 | 40.72 | |
12 | 20 | 300 | 100 | 33.30 | |
13 | 20 | 200 | 80 | 33.45 | |
14 | 20 | 200 | 80 | 33.44 | |
15 | 20 | 200 | 80 | 33.81 | |
16 | 20 | 200 | 80 | 33.80 | |
17 | 20 | 200 | 80 | 36.01 |
Fig.2 Response surface plots showing the effects of interactions between nitrate-nitrogen concentration and temperature (a), moisture and temperature (b) or moisture and nitrate-nitrogen concentration (c) on the nitrate-nitrogen removal efficiency
项目 | 平方和 | 自由度 | 平均方差 | F值 | p值 |
---|---|---|---|---|---|
模型 | 4 766.76 | 9 | 529.64 | 13.83 | 0.001 1 |
温度A | 1 796.70 | 1 | 1 796.70 | 46.93 | 0.000 2 |
硝态氮浓度B | 46.46 | 1 | 46.46 | 1.21 | 0.307 0 |
含水量C | 552.95 | 1 | 552.95 | 14.44 | 0.006 7 |
DAB | 138.30 | 1 | 138.30 | 3.61 | 0.099 1 |
EAC | 1 390.17 | 1 | 1 390.17 | 36.31 | 0.000 5 |
FBC | 19.71 | 1 | 19.71 | 0.51 | 0.496 2 |
A2 | 482.04 | 1 | 482.04 | 12.59 | 0.009 4 |
B2 | 173.42 | 1 | 173.42 | 4.53 | 0.070 8 |
C2 | 181.18 | 1 | 181.18 | 4.73 | 0.066 1 |
Table 2 Variance analysis of nitrate nitrogen removal efficiency
项目 | 平方和 | 自由度 | 平均方差 | F值 | p值 |
---|---|---|---|---|---|
模型 | 4 766.76 | 9 | 529.64 | 13.83 | 0.001 1 |
温度A | 1 796.70 | 1 | 1 796.70 | 46.93 | 0.000 2 |
硝态氮浓度B | 46.46 | 1 | 46.46 | 1.21 | 0.307 0 |
含水量C | 552.95 | 1 | 552.95 | 14.44 | 0.006 7 |
DAB | 138.30 | 1 | 138.30 | 3.61 | 0.099 1 |
EAC | 1 390.17 | 1 | 1 390.17 | 36.31 | 0.000 5 |
FBC | 19.71 | 1 | 19.71 | 0.51 | 0.496 2 |
A2 | 482.04 | 1 | 482.04 | 12.59 | 0.009 4 |
B2 | 173.42 | 1 | 173.42 | 4.53 | 0.070 8 |
C2 | 181.18 | 1 | 181.18 | 4.73 | 0.066 1 |
Fig.3 Changes of nitrate-nitrogen concentration (a), nitrite-nitrogen concentration (b), pH value (c) and DOC leaching flux (d) in the effluent of denitrification layer
样品名称 | OTUs | Shannon | Simpson | Chao1 | ACE | Good’s coverage |
---|---|---|---|---|---|---|
脱氮层 | 953 | 6.941 | 0.984 | 946.485 | 992.522 | 0.992 |
土壤对照组 | 1 413 | 7.101 | 0.938 | 1 411.484 | 1 414.006 | 0.992 |
Table 3 Analytical results of microbial community diversity in the denitrification layer and soil control group
样品名称 | OTUs | Shannon | Simpson | Chao1 | ACE | Good’s coverage |
---|---|---|---|---|---|---|
脱氮层 | 953 | 6.941 | 0.984 | 946.485 | 992.522 | 0.992 |
土壤对照组 | 1 413 | 7.101 | 0.938 | 1 411.484 | 1 414.006 | 0.992 |
[1] |
RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16):4215-4232.
DOI URL |
[2] |
WANG X M, WANG J L. Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition[J]. International Journal of Environmental Science and Technology, 2012, 9(1):113-118.
DOI URL |
[3] |
DELLA ROCCA C, BELGIORNO V, MERIÇ S. Overview of in situ applicable nitrate removal processes[J]. Desalination, 2007, 204(1/2/3):46-62.
DOI URL |
[4] |
CHEN S M, WANG F H, ZHANG Y M, et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology, 2018, 20(3):980-992.
DOI URL |
[5] |
CAMERON S G, SCHIPPER L A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecological Engineering, 2010, 36(11):1588-1595.
DOI URL |
[6] | 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3):987-994. |
[7] |
HU R T, ZHENG X L, XIN J, et al. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source[J]. Bioresource Technology, 2017, 244:313-319.
DOI URL |
[8] |
HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246:832-839.
DOI URL |
[9] | 马雨阳, 纪鸿飞, 孙昭玥, 等. 碱预处理对固体碳源生物可利用性及其强化生物脱氮效能的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(6):95-103. |
[10] |
HA T K T, MAEDA M, FUJIWARA T, et al. Effects of soil type and nitrate concentration on denitrification products (N2O and N2) under flooded conditions in laboratory microcosms[J]. Soil Science and Plant Nutrition, 2015, 61(6):999-1004.
DOI URL |
[11] |
WAN R, ZHENG X, CHEN Y G, et al. Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater[J]. Applied Microbiology and Biotechnology, 2015, 99(6):2839-2847.
DOI URL |
[12] |
ŠIMEK M, JÍŠOVÁ L, HOPKINS D W . What is the so-called optimum pH for denitrification in soil?[J]. Soil Biology and Biochemistry, 2002, 34(9):1227-1234.
DOI URL |
[13] |
SUN Z Y, ZHENG T Y, XIN J, et al. Effects of alkali-treated agricultural residues on nitrate removal and N2O reduction of denitrification in unsaturated soil[J]. Journal of Environmental Management, 2018, 214:276-282.
DOI URL |
[14] | 夏璐. 人工回灌含水层微生物堵塞机理与控制技术研究[D]. 青岛: 中国海洋大学, 2015. |
[15] |
CHU L B, WANG J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9):1310-1316.
DOI URL |
[16] | ZHANG S N, LIU F, HUANG Z R, et al. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures?[J]. Bioresource Technology, 2020, 301:122744. |
[17] | DAMARAJU S, SINGH U K, SREEKANTH D, et al. Denitrification in biofilm configured horizontal flow woodchip bioreactor: effect of hydraulic retention time and biomass growth[J]. Ecohydrology & Hydrobiology, 2015, 15(1):39-48. |
[18] | 付昆明, 曹相生, 孟雪征, 等. 污水反硝化过程中亚硝酸盐的积累规律[J]. 环境科学, 2011, 32(6):1660-1664. |
[19] | 马娟, 宋相蕊, 李璐. 碳源对反硝化过程NO2积累及出水pH值的影响[J]. 中国环境科学, 2014, 34(10):2556-2561. |
[20] |
RUST C M, AELION C M, FLORA J R V . Control of pH during denitrification in subsurface sediment microcosms using encapsulated phosphate buffer[J]. Water Research, 2000, 34(5):1447-1454.
DOI URL |
[21] | 姜应和, 李超. 树皮填料补充碳源人工湿地脱氮初步试验研究[J]. 环境科学, 2011, 32(1):158-164. |
[22] |
SCHIPPER L A, VOJVODI-VUKOVI- M. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall[J]. Water Research, 2001, 35(14):3473-3477.
DOI URL |
[23] |
XU D, XIAO E R, XU P, et al. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal[J]. Bioresource Technology, 2017, 228:39-46.
DOI URL |
[24] |
HARTER J, WEIGOLD P, EL-HADIDI M, et al. Soil biochar amendment shapes the composition of N2O-reducing microbial communities[J]. Science of the Total Environment, 2016, 562:379-390.
DOI URL |
[25] |
SHEN Z Q, ZHOU Y X, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015, 175:239-244.
DOI URL |
[26] |
LEE S H, KONDAVEETI S, MIN B, et al. Enrichment of Clostridia during the operation of an external-powered bio-electrochemical denitrification system[J]. Process Biochemistry, 2013, 48(2):306-311.
DOI URL |
[27] |
XUE D, HUANG X D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa)[J]. World Journal of Microbiology and Biotechnology, 2014, 30(2):389-397.
DOI URL |
[28] |
FENG L J, CHEN K, HAN D D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017, 224:236-245.
DOI URL |
[29] |
RAVACHOL J, BORNE R, MEYNIAL-SALLES I, et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum[J]. Biotechnology for Biofuels, 2015, 8:114.
DOI URL |
[30] |
LUO J Y, HUANG W X, ZHU Y, et al. Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation[J]. Science of the Total Environment, 2020, 705:135878.
DOI URL |
[31] |
XU P, NI Z F, ZONG M H, et al. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design[J]. International Journal of Biological Macromolecules, 2020, 150:9-15.
DOI URL |
[32] |
RUNGKITWATANANUKUL P, NOMAI S, HIRAKATA Y, et al. Microbial community analysis using MiSeq sequencing in a novel configuration fluidized bed reactor for effective denitrification[J]. Bioresource Technology, 2016, 221:677-681.
DOI URL |
[33] |
ZIELI-SKA M, RUSANOWSKA P, JARZ-BEK J, et al. Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants[J]. Environmental Technology, 2016, 37(18):2358-2367.
DOI URL |
[34] |
ISHII S, JOIKAI K, OTSUKA S, et al. Denitrification and nitrate-dependent Fe(II) oxidation in various pseudogulbenkiania strains[J]. Microbes and Environments, 2016, 31(3):293-298.
DOI URL |
[35] | FENG L J, XU J, XU X Y, et al. Enhanced biological nitrogen removal via dissolved oxygen partitioning and step feeding in a simulated river bioreactor for contaminated source water remediation[J]. International Biodeterioration & Biodegradation, 2012, 71:72-79. |
[36] |
SU J F, SHI J X, MA F. Aerobic denitrification and biomineralization by a novel heterotrophic bacterium, Acinetobacter sp. H36[J]. Marine Pollution Bulletin, 2017, 116(1/2):209-215.
DOI URL |
[37] |
SHI Y L, LIU X R, ZHANG Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil[J]. Science of the Total Environment, 2019, 686:199-211.
DOI URL |
[1] | ZHANG Yuye, HE Jiangtao, DENG Lu, ZOU Hua, ZHANG Jingang, YANG Meiping. Effects of lomefloxacin and norfloxacin on the biological water denitrification process—an experimental study [J]. Earth Science Frontiers, 2022, 29(5): 497-507. |
[2] | XU Zhaomeng, LIU Sumei. Benthic foraminifera in marine hypoxic environment: A review of recent research advances [J]. Earth Science Frontiers, 2022, 29(5): 59-72. |
[3] | LIU Chenglin, ZHANG Yu, YANG Shenghao, LI Zongxing, TIAN Jixian, PENG Bo, MA Yinsheng, YANG Yuanyuan, KONG Hua. Marine frontier basin petroleum resources assessment: A case study of the Carboniferous of the Delingha Depression, Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(1): 295-307. |
[4] | SHU Gong-Chao, Keyu Liu, YANG Xiang-Hua, SHU Yu, TUN Jing, LI Min. The sequence stratigraphic architecture of continental lake basin and its significance on lithofacies prediction: Taking Huizhou Sag in Zhujiangkou Basin as an example. [J]. Earth Science Frontiers, 2012, 19(1): 32-39. |
[5] | JIA Hua-Ji, YANG Zhong-Fang, TU Chao, HOU Jing-Xie, BAI Rong-Jie, CUI Yu-Jun. Soil carbon source/sink caused by landuse change in the last decades of the last century in Northeast China. [J]. Earth Science Frontiers, 2011, 18(6): 56-63. |
[6] | GUO Hua-Meng CHEN Sai LIN Yan. Arsenicresistant denitrificator isolated from anaerobic activated sludge and its impact on the mobility of ferrihydriteadsorbed arsenic. [J]. Earth Science Frontiers, 2008, 15(5): 317-323. |
[7] | CENG Yi-Jian MO Li SU Zhong-Bei Hirotaka Saito WANG Xu-Sheng CAO Wen-Bing. The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis. [J]. Earth Science Frontiers, 2008, 15(5): 329-343. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||