Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 136-145.DOI: 10.13745/j.esf.sf.2021.2.6
Previous Articles Next Articles
SUN Zhaoyue1,2,3(), ZHENG Xilai1, ZHENG Tianyuan1,*(
), LUAN Yongxia4, XIN Jia1
Received:
2020-08-26
Revised:
2020-12-18
Online:
2021-09-25
Published:
2021-10-29
Contact:
ZHENG Tianyuan
CLC Number:
SUN Zhaoyue, ZHENG Xilai, ZHENG Tianyuan, LUAN Yongxia, XIN Jia. Influencing factors and performance of enhanced denitrification layer in the vadose zone[J]. Earth Science Frontiers, 2021, 28(5): 136-145.
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
温度A/℃ | 硝态氮浓度 B/(mg·L-1) | 含水量C (WHC)/% | 硝态氮 去除率Y/% | ||
1 | 10 | 100 | 80 | 24.00 | |
2 | 30 | 100 | 80 | 61.42 | |
3 | 10 | 300 | 80 | 27.1 | |
4 | 30 | 300 | 80 | 43.01 | |
5 | 10 | 200 | 60 | 28.02 | |
6 | 30 | 200 | 60 | 35.00 | |
7 | 10 | 200 | 100 | 30.43 | |
8 | 30 | 200 | 100 | 100.00 | |
9 | 20 | 100 | 60 | 30.74 | |
10 | 20 | 300 | 60 | 32.20 | |
11 | 20 | 100 | 100 | 40.72 | |
12 | 20 | 300 | 100 | 33.30 | |
13 | 20 | 200 | 80 | 33.45 | |
14 | 20 | 200 | 80 | 33.44 | |
15 | 20 | 200 | 80 | 33.81 | |
16 | 20 | 200 | 80 | 33.80 | |
17 | 20 | 200 | 80 | 36.01 |
Table 1 Box-Behnken design experiments and response values
试验 设计 | 影响因素 | 响应值 | |||
---|---|---|---|---|---|
温度A/℃ | 硝态氮浓度 B/(mg·L-1) | 含水量C (WHC)/% | 硝态氮 去除率Y/% | ||
1 | 10 | 100 | 80 | 24.00 | |
2 | 30 | 100 | 80 | 61.42 | |
3 | 10 | 300 | 80 | 27.1 | |
4 | 30 | 300 | 80 | 43.01 | |
5 | 10 | 200 | 60 | 28.02 | |
6 | 30 | 200 | 60 | 35.00 | |
7 | 10 | 200 | 100 | 30.43 | |
8 | 30 | 200 | 100 | 100.00 | |
9 | 20 | 100 | 60 | 30.74 | |
10 | 20 | 300 | 60 | 32.20 | |
11 | 20 | 100 | 100 | 40.72 | |
12 | 20 | 300 | 100 | 33.30 | |
13 | 20 | 200 | 80 | 33.45 | |
14 | 20 | 200 | 80 | 33.44 | |
15 | 20 | 200 | 80 | 33.81 | |
16 | 20 | 200 | 80 | 33.80 | |
17 | 20 | 200 | 80 | 36.01 |
Fig.2 Response surface plots showing the effects of interactions between nitrate-nitrogen concentration and temperature (a), moisture and temperature (b) or moisture and nitrate-nitrogen concentration (c) on the nitrate-nitrogen removal efficiency
项目 | 平方和 | 自由度 | 平均方差 | F值 | p值 |
---|---|---|---|---|---|
模型 | 4 766.76 | 9 | 529.64 | 13.83 | 0.001 1 |
温度A | 1 796.70 | 1 | 1 796.70 | 46.93 | 0.000 2 |
硝态氮浓度B | 46.46 | 1 | 46.46 | 1.21 | 0.307 0 |
含水量C | 552.95 | 1 | 552.95 | 14.44 | 0.006 7 |
DAB | 138.30 | 1 | 138.30 | 3.61 | 0.099 1 |
EAC | 1 390.17 | 1 | 1 390.17 | 36.31 | 0.000 5 |
FBC | 19.71 | 1 | 19.71 | 0.51 | 0.496 2 |
A2 | 482.04 | 1 | 482.04 | 12.59 | 0.009 4 |
B2 | 173.42 | 1 | 173.42 | 4.53 | 0.070 8 |
C2 | 181.18 | 1 | 181.18 | 4.73 | 0.066 1 |
Table 2 Variance analysis of nitrate nitrogen removal efficiency
项目 | 平方和 | 自由度 | 平均方差 | F值 | p值 |
---|---|---|---|---|---|
模型 | 4 766.76 | 9 | 529.64 | 13.83 | 0.001 1 |
温度A | 1 796.70 | 1 | 1 796.70 | 46.93 | 0.000 2 |
硝态氮浓度B | 46.46 | 1 | 46.46 | 1.21 | 0.307 0 |
含水量C | 552.95 | 1 | 552.95 | 14.44 | 0.006 7 |
DAB | 138.30 | 1 | 138.30 | 3.61 | 0.099 1 |
EAC | 1 390.17 | 1 | 1 390.17 | 36.31 | 0.000 5 |
FBC | 19.71 | 1 | 19.71 | 0.51 | 0.496 2 |
A2 | 482.04 | 1 | 482.04 | 12.59 | 0.009 4 |
B2 | 173.42 | 1 | 173.42 | 4.53 | 0.070 8 |
C2 | 181.18 | 1 | 181.18 | 4.73 | 0.066 1 |
Fig.3 Changes of nitrate-nitrogen concentration (a), nitrite-nitrogen concentration (b), pH value (c) and DOC leaching flux (d) in the effluent of denitrification layer
样品名称 | OTUs | Shannon | Simpson | Chao1 | ACE | Good’s coverage |
---|---|---|---|---|---|---|
脱氮层 | 953 | 6.941 | 0.984 | 946.485 | 992.522 | 0.992 |
土壤对照组 | 1 413 | 7.101 | 0.938 | 1 411.484 | 1 414.006 | 0.992 |
Table 3 Analytical results of microbial community diversity in the denitrification layer and soil control group
样品名称 | OTUs | Shannon | Simpson | Chao1 | ACE | Good’s coverage |
---|---|---|---|---|---|---|
脱氮层 | 953 | 6.941 | 0.984 | 946.485 | 992.522 | 0.992 |
土壤对照组 | 1 413 | 7.101 | 0.938 | 1 411.484 | 1 414.006 | 0.992 |
[1] |
RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16):4215-4232.
DOI URL |
[2] |
WANG X M, WANG J L. Denitrification of nitrate-contaminated groundwater using biodegradable snack ware as carbon source under low-temperature condition[J]. International Journal of Environmental Science and Technology, 2012, 9(1):113-118.
DOI URL |
[3] |
DELLA ROCCA C, BELGIORNO V, MERIÇ S. Overview of in situ applicable nitrate removal processes[J]. Desalination, 2007, 204(1/2/3):46-62.
DOI URL |
[4] |
CHEN S M, WANG F H, ZHANG Y M, et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology, 2018, 20(3):980-992.
DOI URL |
[5] |
CAMERON S G, SCHIPPER L A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds[J]. Ecological Engineering, 2010, 36(11):1588-1595.
DOI URL |
[6] | 赵文莉, 郝瑞霞, 李斌, 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014, 35(3):987-994. |
[7] |
HU R T, ZHENG X L, XIN J, et al. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source[J]. Bioresource Technology, 2017, 244:313-319.
DOI URL |
[8] |
HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246:832-839.
DOI URL |
[9] | 马雨阳, 纪鸿飞, 孙昭玥, 等. 碱预处理对固体碳源生物可利用性及其强化生物脱氮效能的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(6):95-103. |
[10] |
HA T K T, MAEDA M, FUJIWARA T, et al. Effects of soil type and nitrate concentration on denitrification products (N2O and N2) under flooded conditions in laboratory microcosms[J]. Soil Science and Plant Nutrition, 2015, 61(6):999-1004.
DOI URL |
[11] |
WAN R, ZHENG X, CHEN Y G, et al. Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater[J]. Applied Microbiology and Biotechnology, 2015, 99(6):2839-2847.
DOI URL |
[12] |
ŠIMEK M, JÍŠOVÁ L, HOPKINS D W . What is the so-called optimum pH for denitrification in soil?[J]. Soil Biology and Biochemistry, 2002, 34(9):1227-1234.
DOI URL |
[13] |
SUN Z Y, ZHENG T Y, XIN J, et al. Effects of alkali-treated agricultural residues on nitrate removal and N2O reduction of denitrification in unsaturated soil[J]. Journal of Environmental Management, 2018, 214:276-282.
DOI URL |
[14] | 夏璐. 人工回灌含水层微生物堵塞机理与控制技术研究[D]. 青岛: 中国海洋大学, 2015. |
[15] |
CHU L B, WANG J L. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9):1310-1316.
DOI URL |
[16] | ZHANG S N, LIU F, HUANG Z R, et al. Are vegetated drainage ditches effective for nitrogen removal under cold temperatures?[J]. Bioresource Technology, 2020, 301:122744. |
[17] | DAMARAJU S, SINGH U K, SREEKANTH D, et al. Denitrification in biofilm configured horizontal flow woodchip bioreactor: effect of hydraulic retention time and biomass growth[J]. Ecohydrology & Hydrobiology, 2015, 15(1):39-48. |
[18] | 付昆明, 曹相生, 孟雪征, 等. 污水反硝化过程中亚硝酸盐的积累规律[J]. 环境科学, 2011, 32(6):1660-1664. |
[19] | 马娟, 宋相蕊, 李璐. 碳源对反硝化过程NO2积累及出水pH值的影响[J]. 中国环境科学, 2014, 34(10):2556-2561. |
[20] |
RUST C M, AELION C M, FLORA J R V . Control of pH during denitrification in subsurface sediment microcosms using encapsulated phosphate buffer[J]. Water Research, 2000, 34(5):1447-1454.
DOI URL |
[21] | 姜应和, 李超. 树皮填料补充碳源人工湿地脱氮初步试验研究[J]. 环境科学, 2011, 32(1):158-164. |
[22] |
SCHIPPER L A, VOJVODI-VUKOVI- M. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall[J]. Water Research, 2001, 35(14):3473-3477.
DOI URL |
[23] |
XU D, XIAO E R, XU P, et al. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal[J]. Bioresource Technology, 2017, 228:39-46.
DOI URL |
[24] |
HARTER J, WEIGOLD P, EL-HADIDI M, et al. Soil biochar amendment shapes the composition of N2O-reducing microbial communities[J]. Science of the Total Environment, 2016, 562:379-390.
DOI URL |
[25] |
SHEN Z Q, ZHOU Y X, LIU J, et al. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland[J]. Bioresource Technology, 2015, 175:239-244.
DOI URL |
[26] |
LEE S H, KONDAVEETI S, MIN B, et al. Enrichment of Clostridia during the operation of an external-powered bio-electrochemical denitrification system[J]. Process Biochemistry, 2013, 48(2):306-311.
DOI URL |
[27] |
XUE D, HUANG X D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa)[J]. World Journal of Microbiology and Biotechnology, 2014, 30(2):389-397.
DOI URL |
[28] |
FENG L J, CHEN K, HAN D D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017, 224:236-245.
DOI URL |
[29] |
RAVACHOL J, BORNE R, MEYNIAL-SALLES I, et al. Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum[J]. Biotechnology for Biofuels, 2015, 8:114.
DOI URL |
[30] |
LUO J Y, HUANG W X, ZHU Y, et al. Influences of different iron forms activated peroxydisulfate on volatile fatty acids production during waste activated sludge anaerobic fermentation[J]. Science of the Total Environment, 2020, 705:135878.
DOI URL |
[31] |
XU P, NI Z F, ZONG M H, et al. Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design[J]. International Journal of Biological Macromolecules, 2020, 150:9-15.
DOI URL |
[32] |
RUNGKITWATANANUKUL P, NOMAI S, HIRAKATA Y, et al. Microbial community analysis using MiSeq sequencing in a novel configuration fluidized bed reactor for effective denitrification[J]. Bioresource Technology, 2016, 221:677-681.
DOI URL |
[33] |
ZIELI-SKA M, RUSANOWSKA P, JARZ-BEK J, et al. Community dynamics of denitrifying bacteria in full-scale wastewater treatment plants[J]. Environmental Technology, 2016, 37(18):2358-2367.
DOI URL |
[34] |
ISHII S, JOIKAI K, OTSUKA S, et al. Denitrification and nitrate-dependent Fe(II) oxidation in various pseudogulbenkiania strains[J]. Microbes and Environments, 2016, 31(3):293-298.
DOI URL |
[35] | FENG L J, XU J, XU X Y, et al. Enhanced biological nitrogen removal via dissolved oxygen partitioning and step feeding in a simulated river bioreactor for contaminated source water remediation[J]. International Biodeterioration & Biodegradation, 2012, 71:72-79. |
[36] |
SU J F, SHI J X, MA F. Aerobic denitrification and biomineralization by a novel heterotrophic bacterium, Acinetobacter sp. H36[J]. Marine Pollution Bulletin, 2017, 116(1/2):209-215.
DOI URL |
[37] |
SHI Y L, LIU X R, ZHANG Q W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil[J]. Science of the Total Environment, 2019, 686:199-211.
DOI URL |
[1] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[2] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[3] | XU Zhaomeng, LIU Sumei. Benthic foraminifera in marine hypoxic environment: A review of recent research advances [J]. Earth Science Frontiers, 2022, 29(5): 59-72. |
[4] | ZHANG Yuye, HE Jiangtao, DENG Lu, ZOU Hua, ZHANG Jingang, YANG Meiping. Effects of lomefloxacin and norfloxacin on the biological water denitrification process—an experimental study [J]. Earth Science Frontiers, 2022, 29(5): 497-507. |
[5] | LIU Chenglin, ZHANG Yu, YANG Shenghao, LI Zongxing, TIAN Jixian, PENG Bo, MA Yinsheng, YANG Yuanyuan, KONG Hua. Marine frontier basin petroleum resources assessment: A case study of the Carboniferous of the Delingha Depression, Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(1): 295-307. |
[6] | SHU Gong-Chao, Keyu Liu, YANG Xiang-Hua, SHU Yu, TUN Jing, LI Min. The sequence stratigraphic architecture of continental lake basin and its significance on lithofacies prediction: Taking Huizhou Sag in Zhujiangkou Basin as an example. [J]. Earth Science Frontiers, 2012, 19(1): 32-39. |
[7] | JIA Hua-Ji, YANG Zhong-Fang, TU Chao, HOU Jing-Xie, BAI Rong-Jie, CUI Yu-Jun. Soil carbon source/sink caused by landuse change in the last decades of the last century in Northeast China. [J]. Earth Science Frontiers, 2011, 18(6): 56-63. |
[8] | CENG Yi-Jian MO Li SU Zhong-Bei Hirotaka Saito WANG Xu-Sheng CAO Wen-Bing. The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis. [J]. Earth Science Frontiers, 2008, 15(5): 329-343. |
[9] | GUO Hua-Meng CHEN Sai LIN Yan. Arsenicresistant denitrificator isolated from anaerobic activated sludge and its impact on the mobility of ferrihydriteadsorbed arsenic. [J]. Earth Science Frontiers, 2008, 15(5): 317-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||