

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 354-368.DOI: 10.13745/j.esf.sf.2025.10.32
Previous Articles Next Articles
XU Guangquan1,2(
), YANG Tingting1,2,*(
), WANG Chuanbing2,3, CHENG Haiyan2,3, ZHU Changhuai2,3, ZHOU Jisheng2,3, HE Shifang2,3
Received:2025-06-20
Revised:2025-09-05
Online:2026-01-25
Published:2025-11-10
CLC Number:
XU Guangquan, YANG Tingting, WANG Chuanbing, CHENG Haiyan, ZHU Changhuai, ZHOU Jisheng, HE Shifang. Development characteristics and formation mechanism of Ordovician paleokarst in the Huainan Coalfield[J]. Earth Science Frontiers, 2026, 33(1): 354-368.
| 样品 编号 | 测试 样品 | 古岩溶 类型 | δ13CV-PDB/‰ | δ18OV-PDB/‰ | 样品 编号 | 测试 样品 | 古岩溶 类型 | δ13CV-PDB/‰ | δ18OV-PDB/‰ |
|---|---|---|---|---|---|---|---|---|---|
| M1 | CM | 同生角砾 | -3.43 | -5.84 | F8 | CFs | KCC | -6.09 | -13.13 |
| M2 | CM | 同生角砾 | -3.00 | -6.10 | F9 | CFs | KCC | -6.63 | -12.43 |
| M3 | CM | 同生角砾灰岩 | -0.73 | -5.08 | F10 | CFs | 岩溶角砾 | -0.66 | -9.73 |
| M4 | CM | 角砾灰岩 | -0.84 | -6.52 | F11 | CFs | 小溶洞发育 | -0.84 | -10.18 |
| M5 | CM | 溶洞 | -4.62 | -10.19 | F11 | CFs | 小溶洞发育 | -0.84 | -10.18 |
| M6 | CM | 基岩 | -0.65 | -6.03 | F13 | CFs | 裂缝 | -5.85 | -6.95 |
| M7 | CM | 角砾 | -0.68 | -8.00 | F14 | CFs | 溶洞 | -1.48 | -10.07 |
| F1 | CFs | 构造带孔洞 | -5.51 | -13.44 | F15 | CFs | 孔洞 | 0.49 | -10.79 |
| F2 | CFs | 构造带孔洞 | -7.84 | -12.25 | F16 | CFs | 溶洞 | -5.95 | -9.12 |
| F3 | CFs | 构造带裂缝 | -7.36 | -13.33 | F17 | CFs | 小溶洞发育 | 0.92 | -10.15 |
| F4 | CFs | 构造带孔洞 | -7.91 | -13.57 | 最大值 | 0.92 | -5.08 | ||
| F5 | CFs | 构造带裂缝 | -5.66 | -13.97 | 最小值 | -7.91 | -13.97 | ||
| F6 | CFs | 构造带孔洞 | -5.25 | -11.76 | 平均值 | -3.77 | -10.00 | ||
| F7 | CFs | KCC | -6.74 | -13.31 |
Table 1 Carbon and oxygen isotope test results of paleokarst samples of Ordovician in Huainan Coalfield
| 样品 编号 | 测试 样品 | 古岩溶 类型 | δ13CV-PDB/‰ | δ18OV-PDB/‰ | 样品 编号 | 测试 样品 | 古岩溶 类型 | δ13CV-PDB/‰ | δ18OV-PDB/‰ |
|---|---|---|---|---|---|---|---|---|---|
| M1 | CM | 同生角砾 | -3.43 | -5.84 | F8 | CFs | KCC | -6.09 | -13.13 |
| M2 | CM | 同生角砾 | -3.00 | -6.10 | F9 | CFs | KCC | -6.63 | -12.43 |
| M3 | CM | 同生角砾灰岩 | -0.73 | -5.08 | F10 | CFs | 岩溶角砾 | -0.66 | -9.73 |
| M4 | CM | 角砾灰岩 | -0.84 | -6.52 | F11 | CFs | 小溶洞发育 | -0.84 | -10.18 |
| M5 | CM | 溶洞 | -4.62 | -10.19 | F11 | CFs | 小溶洞发育 | -0.84 | -10.18 |
| M6 | CM | 基岩 | -0.65 | -6.03 | F13 | CFs | 裂缝 | -5.85 | -6.95 |
| M7 | CM | 角砾 | -0.68 | -8.00 | F14 | CFs | 溶洞 | -1.48 | -10.07 |
| F1 | CFs | 构造带孔洞 | -5.51 | -13.44 | F15 | CFs | 孔洞 | 0.49 | -10.79 |
| F2 | CFs | 构造带孔洞 | -7.84 | -12.25 | F16 | CFs | 溶洞 | -5.95 | -9.12 |
| F3 | CFs | 构造带裂缝 | -7.36 | -13.33 | F17 | CFs | 小溶洞发育 | 0.92 | -10.15 |
| F4 | CFs | 构造带孔洞 | -7.91 | -13.57 | 最大值 | 0.92 | -5.08 | ||
| F5 | CFs | 构造带裂缝 | -5.66 | -13.97 | 最小值 | -7.91 | -13.97 | ||
| F6 | CFs | 构造带孔洞 | -5.25 | -11.76 | 平均值 | -3.77 | -10.00 | ||
| F7 | CFs | KCC | -6.74 | -13.31 |
| 编号 | 岩性 | 地层 | 主要化学成分含量wB/% | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CaO | MgO | SiO2 | Na2O | K2O | Al2O3 | Fe2O3 | MnO | TiO2 | P2O5 | CO2 | |||
| M8 | 灰岩 | O1x | 54.95 | 0.30 | 0.20 | 0.33 | 0.22 | 0.32 | 0.06 | 0.01 | 0.01 | 0.07 | 43.53 |
| M9 | 泥质灰岩 | O1x | 50.71 | 1.3 | 0.23 | 0.42 | 0.31 | 0.26 | 0.16 | 0.01 | 0.01 | 0.06 | 46.53 |
| M10 | 白云质灰岩 | O1x | 41.05 | 12.60 | 0.18 | 0.38 | 0.20 | 0.27 | 0.27 | 0.01 | 0.02 | 0.07 | 44.95 |
| M11 | 白云岩 | O1m | 31.38 | 20.27 | 1.07 | 0.01 | 0.04 | 0.48 | 0.31 | 0.01 | 0.02 | 0.01 | 46.40 |
| M12 | 灰质白云岩 | O1m | 34.63 | 18.06 | 0.16 | 0.40 | 0.13 | 0.22 | 0.24 | 0.01 | 0.01 | 0.08 | 46.06 |
Table 2 Main chemical composition and content of Ordovician carbonate rocks in Huainan area
| 编号 | 岩性 | 地层 | 主要化学成分含量wB/% | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CaO | MgO | SiO2 | Na2O | K2O | Al2O3 | Fe2O3 | MnO | TiO2 | P2O5 | CO2 | |||
| M8 | 灰岩 | O1x | 54.95 | 0.30 | 0.20 | 0.33 | 0.22 | 0.32 | 0.06 | 0.01 | 0.01 | 0.07 | 43.53 |
| M9 | 泥质灰岩 | O1x | 50.71 | 1.3 | 0.23 | 0.42 | 0.31 | 0.26 | 0.16 | 0.01 | 0.01 | 0.06 | 46.53 |
| M10 | 白云质灰岩 | O1x | 41.05 | 12.60 | 0.18 | 0.38 | 0.20 | 0.27 | 0.27 | 0.01 | 0.02 | 0.07 | 44.95 |
| M11 | 白云岩 | O1m | 31.38 | 20.27 | 1.07 | 0.01 | 0.04 | 0.48 | 0.31 | 0.01 | 0.02 | 0.01 | 46.40 |
| M12 | 灰质白云岩 | O1m | 34.63 | 18.06 | 0.16 | 0.40 | 0.13 | 0.22 | 0.24 | 0.01 | 0.01 | 0.08 | 46.06 |
| [1] | 潘文庆, 刘永福, DICKSON J A D, 等. 塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J]. 沉积学报, 2009, 27(5): 983-994. |
| [2] | 朱光有, 张水昌, 王欢欢, 等. 塔里木盆地北部深层风化壳储层的形成与分布[J]. 岩石学报, 2009, 25(10): 2384-2398. |
| [3] |
ZHANG B M, LIU J J. Classification and characteristics of karst reservoirs in China and related theories[J]. Petroleum Exploration and Development, 2009, 36(1): 12-29.
DOI URL |
| [4] |
FU Q. Characterization and discrimination of paleokarst breccias and pseudobreccias in carbonate rocks: insight from Ordovician strata in the northern Tarim Basin, China[J]. Sedimentary Geology, 2019, 382: 61-74.
DOI URL |
| [5] | 何金有, 贾承造, 邬光辉, 等. 新疆阿克苏地区震旦系风化壳古岩溶特征及其发育模式[J]. 岩石学报, 2010, 26(8): 2513-2518. |
| [6] | 尹尚先, 徐斌, 刘德民, 等. 我国华北煤田岩溶陷落柱预测研究[J]. 煤炭科学技术, 2016, 44(1): 172-177. |
| [7] | 许光泉, 张海涛, 周继生, 等. 华北煤田岩溶陷落柱及其突水研究综述及展望[J]. 中国岩溶, 2022, 41(2): 259-275. |
| [8] |
SUN W, SONG J, YANG W, et al. Distribution of carbonate rocks and variation analysis of karst water resources in China[J]. Carbonates and Evaporites, 2020, 35(4): 121.
DOI |
| [9] |
YU T, LIU H, LIU B, et al. Restoration of karst paleogeomorphology and its significance in petroleum geology: using the top of the Middle Triassic Leikoupo Formation in the northwestern Sichuan Basin as an example[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109638.
DOI URL |
| [10] |
ZHOU Z, WANG X, YANG X, et al. Multi-factor evaluation of deep karst dolomite reservoir based on paleogeomorphological reconstruction, a case study from the 4th member of the Denying Formation in the central Sichuan Basin, China[J]. Frontiers in Earth Science, 2022, 10: 930269.
DOI URL |
| [11] | 梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199-219. |
| [12] | 虎维岳. 华北东部深部岩溶及煤矿岩溶水害特征[J]. 煤田地质与勘探, 2010, 38(2): 23-27. |
| [13] | 王梦玉, 章至洁. 北方煤矿床充水与岩溶水系统[J]. 煤炭学报, 1991(4): 1-13. |
| [14] |
崔永谦, 汪建国, 田建章, 等. 华北地台中北部寒武系—奥陶系白云岩储层特征及主控因素[J]. 石油学报, 2018, 39(8): 890-901.
DOI |
| [15] | 张兵, 郑荣才, 王绪本, 等. 四川盆地东部黄龙组古岩溶特征与储集层分布[J]. 石油勘探与开发, 2011, 38(3): 257-267. |
| [16] |
DURINGER P, BACON A M, SAYAVONGKHAMDY T, et al. Karst development, breccias history, and mammalian assemblages in Southeast Asia: a brief review[J]. Comptes Rendus Palevol, 2012, 11(2/3):133-157.
DOI URL |
| [17] | 王宝清, 王凤琴, 魏新善, 等. 鄂尔多斯盆地东部太原组古岩溶特征[J]. 地质学报, 2006(5): 700-704,782. |
| [18] | 张军涛, 金晓辉, 李淑筠, 等. 鄂尔多斯盆地奥陶系马五段孔隙充填物类型与成因[J]. 石油与天然气地质, 2016, 37(5): 684-690. |
| [19] |
魏新善, 任军峰, 赵俊兴, 等. 鄂尔多斯盆地东部奥陶系风化壳古地貌特征嬗变及地质意义[J]. 石油学报, 2017, 38(9): 999-1009.
DOI |
| [20] | 胡修权, 施泽进, 田亚铭, 等. 川东南地区茅口组岩溶古地貌恢复及特征[J]. 地质通报, 2014, 33(6): 874-882. |
| [21] | 甘林堂. 地面钻井抽采被保护层采动区卸压瓦斯技术研究[J]. 煤炭科学技术, 2019, 47(11): 110-115. |
| [22] |
ZHANG H, XU G, ZHAN H, et al. Formation mechanisms of paleokarst and karst collapse columns of the Middle Cambrian-Lower Ordovician carbonates in Huainan Coalfield, northern China[J]. Journal of Hydrology, 2021, 601: 126634.
DOI URL |
| [23] |
LIANG Y, GAO X, ZHAO C, et al. Review: characterization, evolution, and environmental issues of karst water systems in northern China[J]. Hydrogeology Journal, 2018, 26(5): 1371-1385.
DOI |
| [24] | 甘林堂. 淮南矿区A组煤底板灰岩水防治及潘二矿突水事故原因分析[J]. 煤矿安全, 2018, 49(7): 171-174,180. |
| [25] |
ZHANG H, XU G, CHEN X, et al. Hydrogeochemical evolution of multilayer aquifers in a massive coalfield[J]. Environmental Earth Sciences, 2019, 78(24): 675.
DOI |
| [26] |
YANG T, XU G, CHEN K, et al. Characteristics and evolution of karst collapse columns in the Huainan Coalfield[J]. Science of the Total Environment, 2023, 900: 165841.
DOI URL |
| [27] |
ZHANG H, XU G, LIU M, et al. Formation environments and mechanisms of multistage paleokarst of Ordovician carbonates in Southern North China Basin[J]. Scientific Reports, 2021, 11(1): 819.
DOI PMID |
| [28] | 李定龙, 杨为民, 汪才会, 等. 皖北奥陶系古岩溶分期、分类及岩溶岩特征[J]. 淮南工业学院学报, 1999(1): 7-13. |
| [29] | 黎志豪, 许光泉, 高加林, 等. 淮南地区构造特征及其对岩溶作用的影响[J]. 煤田地质与勘探, 2018, 46(3): 121-126. |
| [30] | 程广琪, 刘登宪, 傅先杰, 等. 淮南煤田北西向断裂与岩溶陷落柱关系研究[J]. 煤炭科学技术, 2013, 41(10): 108-111. |
| [31] | 李小明, 朱丽, 李永军, 等. 淮南矿区岩溶发育特征及其富水规律[J]. 华北科技学院学报, 2010, 7(1): 8-11,22. |
| [32] | 许光泉, 何玉鹏, 张海涛, 等. 淮南潘集矿区奥陶系角砾岩发育特征及成因[J]. 安徽理工大学学报(自然科学版), 2023, 43(1): 15-25. |
| [33] | 丁同福, 汪敏华, 赵俊峰. 华北型淮南煤田大构造成因分析及构造控水研究[J]. 煤田地质与勘探, 2020, 48(4): 102-108. |
| [34] |
杨婷婷, 许光泉, 何玉鹏, 等. 安徽淮南舜耕山奥陶系古溶洞发育特征及成因[J]. 古地理学报, 2024, 26(3): 620-631.
DOI |
| [35] | 刘再华, DREYBRODT W, 李华举. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学:中国地质大学学报, 2006(3): 411-416. |
| [36] | 田景春, 时国, 陈辉, 等. 南华北地区奥陶系古喀斯特特征及其储层前景[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 598-604. |
| [37] |
XIAO D, TAN X, ZHANG D, et al. Discovery of syngenetic and eogenetic karsts in the Middle Ordovician gypsum-bearing dolomites of the eastern Ordos Basin (central China) and their heterogeneous impact on reservoir quality[J]. Marine and Petroleum Geology, 2019, 99: 190-207.
DOI URL |
| [38] | 陈世悦. 华北石炭二叠纪海平面变化对聚煤作用的控制[J]. 煤田地质与勘探, 2000(5): 8-11. |
| [39] | HACKER B R, WALLIS S R, RATSCHBACHER L, et al. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen[J]. Tectonics, 2006, 25(5): 2005TC001937. |
| [40] | 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑:地球科学), 1996(3): 193-200. |
| [41] |
ZHU G, JIANG D, ZHANG B, et al. Destruction of the eastern North China Craton in a backarc setting: evidence from crustal deformation kinematics[J]. Gondwana Research, 2012, 22(1): 86-103.
DOI URL |
| [42] |
LIU L H, MA Y S, LIU B, et al. Hydrothermal dissolution of Ordovician carbonates rocks and its dissolution mechanism in Tarim Basin, China[J]. Carbonates and Evaporites, 2017, 32(4): 525-537.
DOI URL |
| [43] |
XIONG Y, TAN X, ZHONG S, et al. Dynamic paleokarst geochemistry within 130 Myr in the Middle Ordovician Shanganning carbonate platform, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 591: 110879.
DOI URL |
| [44] |
ZHANG Y, ZHANG S, HUANG B, et al. Fluid inclusion, isotopic, and elemental geochemistry studies of cave-filling calcite in the Lower-Middle Ordovician Yingshan Formation of Tahe Oilfield, NW China: implication for karstification in non-exposed limestone[J]. Frontiers in Earth Science, 2022, 10: 842386.
DOI URL |
| [45] |
KEITH M L, WEBER J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
DOI URL |
| [46] | 邵龙义, 窦建伟, 张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学, 1996(6): 575-581. |
| [47] | 陆彦邦, 李勇, 王栋, 等. 两淮地区奥陶系沉积相及相模式[J]. 安徽地质, 1994(3): 48-56. |
| [48] | 张泓, 沈光隆, 何宗莲. 华北板块晚古生代古气候变化对聚煤作用的控制[J]. 地质学报, 1999(2): 131-139. |
| [49] | 申博恒, 沈树忠, 吴琼, 等. 华北板块石炭纪-二叠纪地层时间框架[J]. 中国科学:地球科学, 2022, 52(7): 1181-1212. |
| [50] |
HAN C, LIN C, LU X, et al. Petrological and geochemical constraints on fluid types and formation mechanisms of the Ordovician carbonate reservoirs in Tahe Oilfield, Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 106-120.
DOI URL |
| [1] | PU Junbing. Carbon cycling in the karst groundwater system [J]. Earth Science Frontiers, 2026, 33(1): 369-383. |
| [2] | JIANG Zhongcheng, LUO Weiqun, WU Zeyan, ZHANG Cheng, ZOU Shengzhang. Research progress and prospect of karst eco-hydrology in China [J]. Earth Science Frontiers, 2026, 33(1): 342-353. |
| [3] | WU Zeyan, LI Qiang, ZHANG Cheng, JIANG Zhongcheng, LUO Weiqun, HU Zhaoxin, TU Chun. The Impact and Mechanism of land reclamation and retirement on the coupling relationship between soil carbon and nitrogen in Karst areas [J]. Earth Science Frontiers, 2025, 32(5): 524-533. |
| [4] | YANG Debin, GAO Jiyuan, ZHANG Heng, CAI Zhongxian, LÜ Yanping, ZHANG Juan, WANG Yan. Types, development characteristics and formation conditions of large paleokarst conduits in the Ordovician, Tahe Oilfield, Tarim Basin [J]. Earth Science Frontiers, 2025, 32(4): 483-496. |
| [5] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
| [6] | YANG Huaju, LI Canfeng, YANG Kehao, ZHANG Xilu, WANG Chuanyu, WANG Xingrong, HE Xu, PENG Xuefeng, ZHANG Liankai. Biomass and distribution characteristics of dominant shrubs under varying degrees of rocky desertification in the karst region of southern Yunnan [J]. Earth Science Frontiers, 2024, 31(5): 440-448. |
| [7] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
| [8] | YU Shi, PU Junbing, LIU Fan, YANG Hui. Effect of vegetation on carbon sequestration in karst systems-a critical review [J]. Earth Science Frontiers, 2023, 30(4): 418-428. |
| [9] | CHEN Xuan, LIU Wanghan, BAO Dian, ZHANG Liping, CHEN Lixiong, YANG Min, ZHANG Juan, LI Yingju, LI Guangye, JIA Yufeng. Ordovician palaeokarst caves in the Tahe oilfield: Burial age of cave fills and its implication for hydrocarbon reservoirs [J]. Earth Science Frontiers, 2023, 30(4): 65-75. |
| [10] | ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review [J]. Earth Science Frontiers, 2022, 29(3): 37-50. |
| [11] | DING Hu, LIU Cong-Jiang, LANG Bin-Chao, LIU Wen-Jing. Variations of dissolved carbon and δ13CDIC of surface water during rainfall events in a typical karst peak clusterdepression catchment, SW China. [J]. Earth Science Frontiers, 2011, 18(6): 182-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||