Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 342-352.DOI: 10.13745/j.esf.sf.2025.4.16
Previous Articles Next Articles
ZHANG Yafeng1,2(), SHI Zeming1,*(
), MIAO Guowen2,*(
), XU Guang2, JIN Ge1, MA Fengjuan2, JI Bingyan3, YAO Zhen2, MA Ying2
Received:
2025-02-28
Revised:
2025-04-18
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
ZHANG Yafeng, SHI Zeming, MIAO Guowen, XU Guang, JIN Ge, MA Fengjuan, JI Bingyan, YAO Zhen, MA Ying. Optimal selection of soil zinc, selenium and germanium enrichment target areas and evaluation of their health potential on the northeastern edge of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 2025, 32(4): 342-352.
参数与元素 | 分析方法 | 检出限/(mg·kg-1) | 准确度ΔlgC | RSD/% | 报出率/% |
---|---|---|---|---|---|
pH | ISE | 0.1 | 0.002 | 3.52 | 100 |
Zn含量 | XRF | 1 | 0.002 | 1.27 | 100 |
Se含量 | AFS | 0.01 | 0.008 | 4.35 | 100 |
Ge含量 | AFS | 0.1 | -0.029 | 4.25 | 100 |
Table 1 Quality control of analysis method
参数与元素 | 分析方法 | 检出限/(mg·kg-1) | 准确度ΔlgC | RSD/% | 报出率/% |
---|---|---|---|---|---|
pH | ISE | 0.1 | 0.002 | 3.52 | 100 |
Zn含量 | XRF | 1 | 0.002 | 1.27 | 100 |
Se含量 | AFS | 0.01 | 0.008 | 4.35 | 100 |
Ge含量 | AFS | 0.1 | -0.029 | 4.25 | 100 |
等级 | 富集程度 | 地累积指数 | 等级 | 富集程度 | 地累积指数 |
---|---|---|---|---|---|
Ⅰ | 无 | ≤0 | Ⅴ | 高-重度 | >3~4 |
Ⅱ | 轻-中度 | >0~1 | Ⅵ | 重-极度 | >4~5 |
Ⅲ | 中度 | >1~2 | Ⅶ | 极度 | >5 |
Ⅳ | 中-高度 | >2~3 |
Table 2 Grading of the accumulation index
等级 | 富集程度 | 地累积指数 | 等级 | 富集程度 | 地累积指数 |
---|---|---|---|---|---|
Ⅰ | 无 | ≤0 | Ⅴ | 高-重度 | >3~4 |
Ⅱ | 轻-中度 | >0~1 | Ⅵ | 重-极度 | >4~5 |
Ⅲ | 中度 | >1~2 | Ⅶ | 极度 | >5 |
Ⅳ | 中-高度 | >2~3 |
等级 | Zn含量/ (mg·kg-1) | Se含量/ (mg·kg-1) | Ge含量/ (mg·kg-1) | 等级 | Zn含量/ (mg·kg-1) | Se含量/ (mg·kg-1) | Ge含量/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
Ⅰ(丰富) | >84 | >0.4 | >1.5 | Ⅳ(较缺乏) | 50~62 | 0.1~0.2 | 1.2~1.3 |
Ⅱ(较丰富) | >71~84 | >0.3~0.4 | >1.4~1.5 | Ⅴ(缺乏) | ≤50 | ≤0.1 | ≤1.2 |
Ⅲ(中等) | >62~71 | >0.2~0.3 | >1.3~1.4 | 上限值(超标) | 300 |
Table 3 Classification criteria and health significance of soil Zn, Se and Ge
等级 | Zn含量/ (mg·kg-1) | Se含量/ (mg·kg-1) | Ge含量/ (mg·kg-1) | 等级 | Zn含量/ (mg·kg-1) | Se含量/ (mg·kg-1) | Ge含量/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
Ⅰ(丰富) | >84 | >0.4 | >1.5 | Ⅳ(较缺乏) | 50~62 | 0.1~0.2 | 1.2~1.3 |
Ⅱ(较丰富) | >71~84 | >0.3~0.4 | >1.4~1.5 | Ⅴ(缺乏) | ≤50 | ≤0.1 | ≤1.2 |
Ⅲ(中等) | >62~71 | >0.2~0.3 | >1.3~1.4 | 上限值(超标) | 300 |
等级 | 潜在健康指数 | 综合健康指数 | 健康等级 | 等级 | 潜在健康指数 | 综合健康指数 | 健康等级 |
---|---|---|---|---|---|---|---|
Ⅰ | ≤10 | ≤70 | 低 | Ⅳ | >40~80 | >280~560 | 很高 |
Ⅱ | >10~20 | >70~140 | 中 | Ⅴ | >80 | >560 | 极高 |
Ⅲ | >20~40 | >140~280 | 高 |
Table 4 Health significance of latent health index grading and characterization
等级 | 潜在健康指数 | 综合健康指数 | 健康等级 | 等级 | 潜在健康指数 | 综合健康指数 | 健康等级 |
---|---|---|---|---|---|---|---|
Ⅰ | ≤10 | ≤70 | 低 | Ⅳ | >40~80 | >280~560 | 很高 |
Ⅱ | >10~20 | >70~140 | 中 | Ⅴ | >80 | >560 | 极高 |
Ⅲ | >20~40 | >140~280 | 高 |
元素 | 最大值/(mg·kg-1) | 最小值/(mg·kg-1) | 平均值/(mg·kg-1) | 背景值/(mg·kg-1) | 变异系数/% | 中国土壤背景值/(mg·kg-1) |
---|---|---|---|---|---|---|
Zn | 345 | 16 | 72±14 | 72±12 | 15 | 67 |
Se | 2.31 | 0.02 | 0.20±0.10 | 0.19±0.06 | 50 | 0.22 |
Ge | 2.6 | 0.5 | 1.2±0.2 | 1.2±0.2 | 20 | 1.4 |
Table 5 Characteristic values of soil Zn, Se and Ge contents
元素 | 最大值/(mg·kg-1) | 最小值/(mg·kg-1) | 平均值/(mg·kg-1) | 背景值/(mg·kg-1) | 变异系数/% | 中国土壤背景值/(mg·kg-1) |
---|---|---|---|---|---|---|
Zn | 345 | 16 | 72±14 | 72±12 | 15 | 67 |
Se | 2.31 | 0.02 | 0.20±0.10 | 0.19±0.06 | 50 | 0.22 |
Ge | 2.6 | 0.5 | 1.2±0.2 | 1.2±0.2 | 20 | 1.4 |
等级 | Zn | Se | Ge | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样点/个 | 面积/km2 | 比例/% | 样点/个 | 面积/km2 | 比例/% | 样点/个 | 面积/km2 | 比例/% | |||
Ⅰ(丰富) | 1 490 | 5 960 | 18.0 | 196 | 784 | 2.4 | 220 | 880 | 2.7 | ||
Ⅱ(较丰富) | 2 717 | 10 868 | 32.8 | 425 | 1 700 | 5.1 | 486 | 1 944 | 5.9 | ||
Ⅲ(中等) | 2 457 | 9 828 | 29.7 | 2 721 | 10 884 | 32.9 | 1 261 | 5 044 | 15.2 | ||
Ⅳ(较缺乏) | 1 224 | 4 896 | 14.8 | 4 472 | 17 888 | 54.1 | 2 178 | 8 712 | 26.3 | ||
Ⅴ(缺乏) | 385 | 1 540 | 4.7 | 459 | 1 836 | 5.5 | 4 128 | 16 512 | 49.9 |
Table 6 Classification statistics of soil Zn, Se and Ge in the study area
等级 | Zn | Se | Ge | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样点/个 | 面积/km2 | 比例/% | 样点/个 | 面积/km2 | 比例/% | 样点/个 | 面积/km2 | 比例/% | |||
Ⅰ(丰富) | 1 490 | 5 960 | 18.0 | 196 | 784 | 2.4 | 220 | 880 | 2.7 | ||
Ⅱ(较丰富) | 2 717 | 10 868 | 32.8 | 425 | 1 700 | 5.1 | 486 | 1 944 | 5.9 | ||
Ⅲ(中等) | 2 457 | 9 828 | 29.7 | 2 721 | 10 884 | 32.9 | 1 261 | 5 044 | 15.2 | ||
Ⅳ(较缺乏) | 1 224 | 4 896 | 14.8 | 4 472 | 17 888 | 54.1 | 2 178 | 8 712 | 26.3 | ||
Ⅴ(缺乏) | 385 | 1 540 | 4.7 | 459 | 1 836 | 5.5 | 4 128 | 16 512 | 49.9 |
[1] | 施词. 安徽省怀宁县黄墩地区土壤地球化学特征及特色土壤资源利用[J]. 资源信息与工程, 2024, 39(5): 74-77. |
[2] | 刘志坚, 张琇, 董元华, 等. 宁夏卫宁平原土壤锌地球化学特征与富锌小麦种植区预测[J]. 中国地质, 2024, 51(4): 1319-1330. |
[3] | 胡焰, 韩光宇, 王健. 微量元素锌与人体健康初探[J]. 当代医学, 2011, 17(31): 152-153. |
[4] | SHARMA A, PATNI B, SHANKHDHAR D, et al. Zinc: an indispensable micronutrient[J]. Physiology and Molecular Biology of Plants, 2013, 19(1): 11-20. |
[5] | ROSE M, BAXTER M, BRERETON N, et al. Dietary exposure to metals and other elements in the 2006 UK total diet study and some trends over the last 30 years[J]. Food Additives & Contaminants: Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2010, 27(10): 1380-1404. |
[6] | KNEZ M, STANGOULIS J C R. Dietary Zn deficiency, the current situation and potential solutions[J]. Nutrition Research Reviews, 2023, 36(2):199-215. |
[7] | MUELLER G. Schwermetalle in den sedimenten des rheinsveräenderungen seit 1971[J]. Umschau in Wissenschaft und Technik, 1979, 79(24): 778-783. |
[8] |
FRIEDMANN ANGELI J P, CONRAD M. Selenium and GPX4, a vital symbiosis[J]. Free Radical Biology and Medicine, 2018, 127: 153-159.
DOI PMID |
[9] | 孙楠, 王惠纳, 张薇, 等. 硒的来源、富集及富硒食物资源研究进展[J]. 食品科学, 2024, 45(7): 299-309. |
[10] | NING Y, HU M, CHEN S, et al. Investigation of selenium nutritional status and dietary pattern among children in Kashin-Beck disease endemic areas in Shaanxi Province, China using duplicate portion sampling method[J]. Environment International, 2022, 164: 107255. |
[11] | ROSENBERG E. Germanium: environmental occurrence, importance and speciation[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 29-57. |
[12] | POLYAKOV A V, ALEKSEEVA T V. Ability of garlic (Allium Sativum L.) to accumulate germanium under natural and experimental conditions[J]. Russian Journal of Bioorganic Chemistry, 2024, 50(7): 2904-2909. |
[13] | 赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4): 642-651. |
[14] | NAKAMURA T, SHIMADA Y, TAKEDA T, et al. Organogermanium compound,Ge-132,forms complexes with adrenaline,ATP and other physiological cis-diol compounds[J]. Future Medicinal Chemistry, 2015, 7(10): 1233-1246. |
[15] | 赵小红, 何慧, 贾蕾, 等. 植物生物强化硒与锌: 膳食补充剂的新探索[J]. 食品科技, 2022, 47(5): 95-101. |
[16] | KRYSTEK P, RITSEMA R. Analytical product study of germanium containing medicine by different ICP-MS applications[J]. Journal of Trace Elements in Medicine and Biology, 2004, 18(1): 9-16. |
[17] | LI S P, XIE W L, CAI H H, et al. Hydroxyl radical scavenging mechanism of human erythrocytes by quercetin-germanium(Ⅳ) complex[J]. European Journal of Pharmaceutical Sciences, 2012, 47(1): 28-34. |
[18] | 孔祥瑞. 锗的研究进展[J]. 生理科学进展, 1996, 27(2): 173-175. |
[19] |
LV Q, LIANG X, NONG K, et al. Advances in research on the toxicological effects of selenium[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(5): 715-726.
DOI PMID |
[20] | 梁帅, 戴慧敏, 刘国栋, 等. 黑龙江双阳河流域土壤-作物-人体系统中硒元素及生态环境与人体健康评价[J]. 中国地质, 2022, 49(4): 1064-1074. |
[21] | 徐磊, 赵萌生, 陈伟志, 等. 西南红层山间盆地典型农耕区土壤-作物系统锌铜有益元素生物有效性及影响因素[J/OL]. 中国地质, (2023-05-24)[2025-01-05]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230523.1538.004.html. |
[22] | 孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6): 1646-1667. |
[23] | 张亚峰, 姬丙艳, 沈骁, 等. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476. |
[24] | 武桂春, 纪占胜, LASH G G, 等. 青藏高原及其周边三叠纪综合地层、生物群与古地理演化[J]. 中国科学: 地球科学, 2024, 54(4): 1171-1210. |
[25] | 刘庆宇, 马瑛, 程莉, 等. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108. |
[26] | MÜELLER G. Schwermetalle in den sedimenten des rheins-veräenderungen seit 1971[J]. Umschau in Wissenschaft und Technik, 1979, 79(24): 778-783. |
[27] | 胡杰, 赵心语, 王婷婷, 等. 太原市汾河河岸带土壤重金属分布特征、评价与来源解析[J]. 环境科学, 2022, 43(5): 2500-2509. |
[28] | 魏洪斌, 罗明, 向垒, 等. 金属矿区周边农田土壤与农作物重金属健康风险评估[J]. 环境科学, 2024, 45(4): 2461-2472. |
[29] | 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究: 写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. |
[30] |
SHI Y, XU X, LI Q, et al. Integrated regional ecological risk assessment of multiple metals in the soils: a case in the region around the Bohai Sea and the Yellow Sea[J]. Environmental Pollution, 2018, 242: 288-297.
DOI PMID |
[31] | 中华人民共和国国土资源部. 天然富硒土地划定与标识: DZ/T 0380—2021[S]. 北京: 地质出版社, 2021. |
[32] | BORGO L, SILVEIRA RABĖLO F H, ROSSI M L, et al. Effect of selenium and soil pH on cadmium phytoextraction by Urochloa decumbens grown in Oxisol[J]. Journal of Hazardous Materials, 2023, 447: 130771. |
[33] | 陈继平, 任蕊, 王晖, 等. 关中塿土地区土壤pH变化对硒形态及有效性的影响[J]. 西北地质, 2020, 53(1): 254-260. |
[34] | 国家标准化管理委员会. 土壤硒含量等级: GB/T 44971—2024[S]. 北京: 中国标准出版社, 2025. |
[35] | 中华人民共和国国土资源部. 土地质量地球化学评价规范: DZ/T 0296—2016[S]. 北京: 地质出版社, 2016. |
[36] | 生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行): DZ/T 15618—2018[S]. 北京: 中国标准出版社, 2018. |
[37] | HȦKANSON L. An ecological risk index for aquatic pollution control-a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. |
[38] | 陈林, 马琨, 马建军, 等. 宁夏引黄灌区农田土壤重金属生态风险评价及来源解析[J]. 环境科学, 2023, 44(1): 356-366. |
[39] | 夏子书, 白一茹, 王幼奇, 等. 基于PMF模型的宁南山区小流域土壤重金属空间分布及来源解析[J]. 环境科学, 2022, 43(1): 432-441. |
[40] | 李锋, 刘思源, 李艳, 等. 工业发达城市土壤重金属时空变异与源解析[J]. 环境科学, 2019, 40(2): 934-944. |
[41] |
马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39(6): 1233-1241.
DOI |
[42] |
HARA T, YOSHIGAI E, OHASHI T, et al. Zinc transporters as potential therapeutic targets: an updated review[J]. Journal of Pharmacological Sciences, 2022, 148(2): 221-228.
DOI PMID |
[43] |
CHASAPIS C T, LOUTSIDOU A C, SPILIOPOULOU C A, et al. Zinc and human health: an update[J]. Archives of Toxicology, 2012, 86(4): 521-534.
DOI PMID |
[44] | WAN Y, JIANG B, WEI D, et al. Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110418. |
[45] | 董秋瑶, 赖书雅, 宋超, 等. 南阳盆地东部山区土壤锗分布特征及其影响因素分析[J]. 环境科学, 2022, 43(6): 3278-3287. |
[46] | 洪涛, 孔祥胜. 云南省广南县富锗土壤地球化学特征及成因分析[J]. 矿产与地质, 2021, 35(2): 290-295. |
[47] | 范博伦. 土壤锗赋存形态及植物可利用性研究[D]. 北京: 中国地质大学(北京), 2021. |
[48] | 杜婧. 安康典型富硒区环境中硒、 锌分布特征及基于硒生物可给性的人体健康风险评价[D]. 咸阳: 西北农林科技大学, 2024. |
[49] |
王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423.
DOI |
[50] | 刘传斌, 余乐安, 刘斌, 等. 基于数据标准化的专家群组评分聚合方法比较[J/OL]. 系统工程理论与实践, (2025-02-24)[2025-02-27]. https://kns.cnki.net/kcms/detail/11.2267.N.20250224.1429.010.html. |
[51] | KAKOUROS E, KHARAKA Y K, OBERDORFER J A. Leaching rates and forms of selenium in cores from an agricultural area in middle Green River basin, UTAH, USA[J]. Earth Science Frontiers, 2006, 13(1): 86-97. |
[1] | LIU Jiuchen, LIU Dawen, GAI Nan, LU Guohui, JIA Wenbin, LIU Siwen, GUAN Ziqian, TANG Qifeng. Geochemical characteristics of Cadmium and their impact on population health in the typical black rock series high geochemical background area, northwestern Zhejiang Province, China [J]. Earth Science Frontiers, 2025, 32(4): 331-341. |
[2] | WU Ke, YAN Xiangyu, YANG Donghong. Petrogenesis of the Early Cretaceous Jiguanshan granite porphyry in the Liaodong Peninsula: Constraints from geochemistry and single mineral U-Pb-Hf-Nd isotopes [J]. Earth Science Frontiers, 2025, 32(4): 388-404. |
[3] | ZHU Ziguang, ZHU Guangyou, LI Xi. The enrichment mechanism of U element in black shale and its significant influence on the performance of organic matter oil and gas production [J]. Earth Science Frontiers, 2025, 32(2): 290-310. |
[4] | YANG Yi, ZHONG Yin, WANG Shanquan, WANG Hongyan, LIAO Hengyi, WANG Xin. The role of halogens in Earth’s habitability evolution: The origin of organohalogens and the evolution of organohalide-respiring microorganisms over geological time scales [J]. Earth Science Frontiers, 2025, 32(3): 156-167. |
[5] | XU Yudi, LIU Chengshuai, GAO Ting, LIU Yu, YIN Runsheng, SUN Lu. The paleoenvironmental evolution since 0.78 Ma in Caohai, Guizhou: evidence from XRF core scanning [J]. Earth Science Frontiers, 2025, 32(3): 168-182. |
[6] | YANG Jinling, DONG Yue, FENG Wenlan, ZHANG Haozhe, ZHANG Ganlin. Proton production and consumption in red soil critical zone and their environmental effects: A review [J]. Earth Science Frontiers, 2025, 32(3): 231-247. |
[7] | WANG Xueqiu. Big Science program on CHEMICAL EARTH: Global distribution and cycle of key elements [J]. Earth Science Frontiers, 2025, 32(1): 1-10. |
[8] | ZHAO Yuhao, YANG Zhiming, ZHU Yiping, Kumul CONRAD, DU Denghu, Mosusu NATHAN, WANG Tiangang, JIANG Hantao, YAO Zhongyou. Geochemical characteristics and metallogenic potential of nickel in Papua New Guinea [J]. Earth Science Frontiers, 2025, 32(1): 183-193. |
[9] | XU Ming, XI Wanwan, ZHAO Yuhao, Conrad KUMUL, WU Datian, Nathan MOSUSU, WANG Tiangang, ZHU Yiping, YAO Zhongyou. Geochemical characteristics and metallogenic prediction of gold in Papua New Guinea [J]. Earth Science Frontiers, 2025, 32(1): 194-204. |
[10] | HU Qinghai, WANG Xueqiu, ZHANG Bimin, CHI Qinghua, WANG Qiang, SUN Binbin, ZHOU Jian, WANG Wei, Igor ESPINOZA VERDE, Alex AGURTO CORNEJO, Joel OTERO AGUILAR, PAN Wei, LIU Hanliang, TIAN Mi, WU Hui. Geochemical spatial distribution of copper and mineral prospectivity prediction in Peru [J]. Earth Science Frontiers, 2025, 32(1): 205-218. |
[11] | LIU Jun’an, ZHU Yiping, JIANG Hantao, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, GUO Weimin, YAO Chunyan, WANG Tiangang, ZHANG Ming, YAO Zhongyou. Geochemical characteristics and quality evaluation of soils in the Mantaro Basin, central Peru [J]. Earth Science Frontiers, 2025, 32(1): 219-235. |
[12] | LIU Hanliang, WANG Xueqiu, NIE Lanshi, CHI Qinghua, WANG Wei, SHOJIN Davaa, ENKHTAIVAN Altanbagana, ZHOU Jian, DU Yude. Geochemical distribution of gold in the China-Mongolia boundary region and its implications for gold prospecting [J]. Earth Science Frontiers, 2025, 32(1): 244-256. |
[13] | CHEN Yongqing, ZHENG Aoyue, FEI Jinna, ZHAO Jie, ZHAO Pengda. Application of 2D-EMD/PCA in gold and key metals prospecting in Jiaodong [J]. Earth Science Frontiers, 2025, 32(1): 266-282. |
[14] | ZHENG Aoyue, FEI Jinna, CHEN Yongqing, NING Yanyun, CAO Yilin, ZHAO Pengda. Quantitative delineation and evaluation of Sn-W and Pb-Zn polymetallic prospecting target areas in the Tengchong Block by SVD and PCA [J]. Earth Science Frontiers, 2025, 32(1): 283-301. |
[15] | LIU Xiaohui, LIU Yimin, DING Lin, GUO Xiaoyu, HUANG Xingfu, LI Huilin, GAO Rui. Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco [J]. Earth Science Frontiers, 2025, 32(1): 343-366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||