Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 155-164.DOI: 10.13745/j.esf.sf.2025.4.77
Previous Articles Next Articles
LI Bowen1,2(), WANG Yongzhi1,3,*(
), DING Zhengjiang4,5, WANG Bin4,5, WEN Shibo3, DONG Yuhao1, JI Zheng3
Received:
2025-01-24
Revised:
2025-04-20
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
LI Bowen, WANG Yongzhi, DING Zhengjiang, WANG Bin, WEN Shibo, DONG Yuhao, JI Zheng. Intelligent search technology for Jiaodong gold deposits based on large models and GraphRAG[J]. Earth Science Frontiers, 2025, 32(4): 155-164.
山东六队提供准确答案 | GraphRAG+大模型 | ChatGPT-4o通用模型 | DeepSeek | 豆包 |
---|---|---|---|---|
破碎带蚀变岩型 | 破碎带蚀变岩型 | 脉状金矿 | 破碎带蚀变岩型 | 破碎带蚀变岩型金矿 |
石英脉型 | 金石英脉型 | 层状金矿 | 层间滑动角砾岩型 | |
硫化物石英脉型 | 硫化物石英脉型 | 接触带金矿 | 火山岩型 | |
网脉型 | 破碎带石英网脉带型 | 浸染型金矿 | 石英脉型 | |
盆缘断裂角砾岩型 | 盆缘断裂角砾岩型 | |||
蚀变砾岩型 | 蚀变砾岩型 | |||
层间滑脱拆离带型 | 层间滑动构造带型 | |||
黄铁矿碳酸盐脉型 |
Table 1 Comparative analysis table (Data current through March 10, 2025)
山东六队提供准确答案 | GraphRAG+大模型 | ChatGPT-4o通用模型 | DeepSeek | 豆包 |
---|---|---|---|---|
破碎带蚀变岩型 | 破碎带蚀变岩型 | 脉状金矿 | 破碎带蚀变岩型 | 破碎带蚀变岩型金矿 |
石英脉型 | 金石英脉型 | 层状金矿 | 层间滑动角砾岩型 | |
硫化物石英脉型 | 硫化物石英脉型 | 接触带金矿 | 火山岩型 | |
网脉型 | 破碎带石英网脉带型 | 浸染型金矿 | 石英脉型 | |
盆缘断裂角砾岩型 | 盆缘断裂角砾岩型 | |||
蚀变砾岩型 | 蚀变砾岩型 | |||
层间滑脱拆离带型 | 层间滑动构造带型 | |||
黄铁矿碳酸盐脉型 |
评判指标 | RAG | GraphRAG |
---|---|---|
忠实度 | 0.94 | 0.96 |
语义相似度 | 0.87 | 0.89 |
上下文精度 | 0.86 | 0.96 |
上下文召回率 | 0.97 | 0.94 |
Table 2 RAGAS evaluation analysis
评判指标 | RAG | GraphRAG |
---|---|---|
忠实度 | 0.94 | 0.96 |
语义相似度 | 0.87 | 0.89 |
上下文精度 | 0.86 | 0.96 |
上下文召回率 | 0.97 | 0.94 |
[1] |
周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6.
DOI |
[2] |
王成彬, 王明果, 王博, 等. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36.
DOI |
[3] | ZHANG Y, WEI C, WU S, et al. Geogpt: understanding and processing geospatial tasks through an autonomous gpt[J]. arXiv preprint, 2023. DOI: arXiv:2307.07930. |
[4] | 马凯. 地质大数据表示与关联关键技术研究[D]. 武汉: 中国地质大学(武汉), 2018. |
[5] | WANG B, MA K, WU L, et al. Visual analytics and information extraction of geological content for text-based mineral exploration reports[J]. Ore Geology Reviews, 2022, 144: 104818. |
[6] | 朱小龙. 地质文本中油气藏特征提取及成藏知识图谱构建研究[D]. 武汉: 中国地质大学(武汉), 2021. |
[7] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[8] | 冯雅杰, 王永志, 丁正江, 等. 胶西北金矿成矿模式及找矿技术方法演变[J]. 地学前缘, 2025, 32(4): 165-181. |
[9] | 王永志, 金樑, 朱月琴, 等. 基于大数据技术的地学文档关键词提取算法研发[J]. 地球物理学进展, 2018, 33(3): 1274-1281. |
[10] | 邱芹军, 田苗, 吴麒瑞, 等. 基于多源异构数据的地质知识图谱构建与应用[J/OL]. 地学前缘, 2024, 31: 1-17[2025-05-22]. https://doi.org/10.13745/j.esf.sf.2024.11.69. |
[11] | CHEN J, LIN H, HAN X, et al. Benchmarking large language models in retrieval-augmented generation[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(16): 17754-17762. |
[12] | SIRIWARDHANA S, WEERASEKERA R, WEN E, et al. Improving the domain adaptation of retrieval augmented generation (RAG) models for open domain question answering[J]. Transactions of the Association for Computational Linguistics, 2023, 11: 1-17. |
[13] |
文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J]. 数据分析与知识发现, 2024, 8(6): 16-29.
DOI |
[14] | EDGE D, TRINH H, CHENG N, et al. From local to global: A graph rag approach to query-focused summarization[J]. arXiv preprint, 2024. DOI: arXiv:2404.16130. |
[15] |
MARKUS J. BUEHLERCA1. Generative retrieval-augmented ontologic graph and multiagent strategies for interpretive large language model-based materials design[J]. ACS Engineering Au, 2024, 4(2): 241-277.
DOI PMID |
[16] | PATRICK L, ETHAN P, ALEKSANDRA P, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. Neural Information Processing Systems, 2020, 33: 9459-9474. |
[17] | KHADIR A C, ALIANE H, GUESSOUM A. Ontology learning: grand tour and challenges[J]. Computer Science Review, 2021, 39: 100339. |
[18] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI |
[19] |
TORO S, ANAGNOSTOPOULOS A V, BELLO S M, et al. Dynamic retrieval augmented generation of ontologies using artificial intelligence (DRAGON-AI)[J]. Journal of Biomedical Semantics, 2024, 15(1): 19.
DOI PMID |
[20] |
叶育鑫, 刘家文, 曾婉馨, 等. 基于本体指导的矿产预测知识图谱构建研究[J]. 地学前缘, 2024, 31(4): 16-25.
DOI |
[21] | HU X M, MA X G, MA C, et al. The geoscience knowledge system, ontology and knowledge graph for data-driven discovery: preface[J]. Geoscience Frontiers, 2023, 14(5): 332-333. |
[22] |
王岩, 王登红, 王成辉, 等. 基于地质大数据的中国金矿时空分布规律定量研究[J]. 地学前缘, 2024, 31(4): 438-455.
DOI |
[23] | 刘向东, 丁正江, 邱昆峰, 等. 胶东台上—水旺庄巨型金矿床矿体空间分布规律及深部找矿预测[J/OL]. 地学前缘, 2024, 31: 1-19[2024-12-31]. https://doi.org/10.13745/j.esf.sf.2024.12.52. |
[24] | 王斌, 周明岭, 丁正江, 等. 胶西北蚀变岩型金矿构造控矿机制与三维深部定位预测[J]. 地学前缘, 2025, 32(4): 140-154. |
[25] |
张前龙, 周永章, 郭兰萱, 等. 找矿知识图谱的智能化应用: 以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15.
DOI |
[26] | DING Y J, FAN W Q, NING L B, et al. A survey on RAG meets LLMs: towards retrieval-augmented large language models[J]. arXiv preprint, 2024. DOI: arXiv:2405.06211v3. |
[27] | WANG J, ZENG J, SHENG J. Enhancing and accelerating image-text retrieval with knowledge graphs and FAISS[C]// 2024 IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). IEEE, 2024: 1-6. |
[28] | GUPTA S, RANJAN R, SINGH S N. A comprehensive survey of Retrieval-Augmented Generation (RAG): evolution, current landscape and future directions[J]. arXiv preprint, 2024. DOI: arXiv:2410.12837. |
[29] | FANG F T, BAI Y L, NI S W, et al. Enhancing noise robustness of retrieval-augmented language models with adaptive adversarial training[J]. arXiv preprint, 2024. DOI: arXiv:2405.20978. |
[30] | DONG Y, WANG S, ZHENG H, et al. Advanced RAG models with graph structures: optimizing complex knowledge reasoning and text generation[C]// 2024 5th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC). IEEE, 2024: 626-630. |
[31] | HAN H Y, WANG Y, SHOMER H, et al. Retrieval-augmented generation with graphs (graphrag)[J]. arXiv preprint, 2024. DOI: arXiv:2501.00309. |
[32] | 韦一金, 任有强, 赵慧, 等. 基于GraphRAG的中国马铃薯新品种知识图谱构建[J]. 植物遗传资源学报, 2025, 26(6), 1229-1242. |
[33] | WU J D, ZHU J Y, QI Y L, et al. Medical graph rag: towards safe medical large language model via graph retrieval-augmented generation[J]. arXiv preprint, 2024. DOI: arXiv:2408.04187. |
[34] | PENG BC, ZHU Y, LIU Y C, et al. Graph retrieval-augmented generation: a survey[J]. arXiv preprint, 2024. DOI: arXiv:2408.08921v2. |
[35] | ZHANG Q, CHEN S, BEI Y, et al. A Survey of graph retrieval-augmented generation for customized large language models[J]. arXiv preprint, 2025. DOI: arXiv:2501.13958. |
[36] | QIU Q J, TIAN M, MA K, et al. A question answering system based on mineral exploration ontology generation: a deep learning methodology[J]. Ore Geology Reviews, 2023, 153: 105294. |
[37] | 宋明春, 李三忠, 伊丕厚, 等. 中国胶东焦家式金矿类型及其成矿理论[J]. 吉林大学学报(地球科学版), 2014, 44(1): 87-104. |
[38] | 宋明春. 胶东金矿深部找矿主要成果和关键理论技术进展[J]. 地质通报, 2015, 34(9): 1758-1771. |
[39] | SARMAH B, MEHTA D, HALL B, et al. Hybridrag: integrating knowledge graphs and vector retrieval augmented generation for efficient information extraction[C]// Proceedings of the 5th ACM International Conference on AI in Finance. Brooklyn: New York University, 2024: 608-616. |
[40] | ES S, JAMES J, ESPINOSA A L, et al. RAGAS: automated evaluation of retrieval augmented generation[C]// Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics:System Demonstrations. Malta: Association for Computational Linguistics, 2024: 150-158. |
[1] | WANG Yongzhi, WEN Shibo, LI Bowen, CHEN Xingyu, DONG Yuhao, TIAN Jiangtao, WANG Bin, Muhammed Atif BILAL, JI Zheng, SUN Fengyue. Construction technology of super-agents for intelligent mineral resources prediction driven by large model [J]. Earth Science Frontiers, 2025, 32(4): 38-45. |
[2] | DONG Yuhao, WANG Yongzhi, TIAN Jiangtao, WANG Cheng, WEN Shibo, LI Bowen. Research progress on porphyry copper deposit prediction based on knowledge graphs [J]. Earth Science Frontiers, 2025, 32(4): 280-290. |
[3] | FENG Tingting, CAI Shirou, ZHANG Zhenjie. Mining elements of carbonatite-type rare earth deposits based on knowledge map [J]. Earth Science Frontiers, 2025, 32(4): 262-279. |
[4] | ZHANG Zhiting, PENG Shuai, QUE Xiang, CHEN Qiyu. Few-shot geological relationship extraction based on prompt and metric learning [J]. Earth Science Frontiers, 2025, 32(4): 250-261. |
[5] | WANG Bin, ZHOU Mingling, DING Zhengjiang, ZHANG Qibin, LIU Xiangdong, LÜ Junyang, ZHOU Xiaoping. Tectonic controls and 3D deep exploration targeting of altered rock-type gold deposits in the northwestern Jiaodong Peninsula, China [J]. Earth Science Frontiers, 2025, 32(4): 140-154. |
[6] | CHENG Qiuming. A new paradigm for mineral resource prediction based on human intelligence-artificial intelligence Integration [J]. Earth Science Frontiers, 2025, 32(4): 1-19. |
[7] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
[8] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[9] | JI Xiaohui, DONG Yuhang, YANG Zhongji, YANG Mei, HE Mingyue, WANG Yuzhu. Mineral question-answering system in Chinese based on multi-hop reasoning in knowledge graphs [J]. Earth Science Frontiers, 2024, 31(4): 37-46. |
[10] | WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting [J]. Earth Science Frontiers, 2024, 31(4): 26-36. |
[11] | YE Yuxin, LIU Jiawen, ZENG Wanxin, YE Shuisheng. Ontology-guided knowledge graph construction for mineral prediction [J]. Earth Science Frontiers, 2024, 31(4): 16-25. |
[12] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[13] | ZHOU Yongzhang, ZHANG Qianlong, HUANG Yongjian, YANG Wei, XIAO Fan, JI Junjie, HAN Feng, TANG Lei, OUYANG Chong, SHEN Wenjie. Constructing knowledge graph for the porphyry copper deposit in the Qingzhou-Hangzhou Bay area: Insight into knowledge graph based mineral resource prediction and evaluation [J]. Earth Science Frontiers, 2021, 28(3): 67-75. |
[14] | MAO Xiancheng,WANG Mijun,LIU Zhankun,CHEN Jin,DENG Hao. Quantitative analysis of ore-controlling factors based on exploration data of the Dayingezhuang gold deposit in the Jiaodong Peninsula [J]. Earth Science Frontiers, 2019, 26(4): 84-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||