Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 415-435.DOI: 10.13745/j.esf.sf.2024.5.29
Previous Articles Next Articles
ZHANG Mengwei1,2(), GAO Liang1,2,*(
), ZHAO Yue1,2, PEI Junling3, YANG Zhenyu4, GUO Xiaoqian1,2, HU Xinwei1,2
Received:
2024-02-28
Revised:
2024-04-22
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
ZHANG Mengwei, GAO Liang, ZHAO Yue, PEI Junling, YANG Zhenyu, GUO Xiaoqian, HU Xinwei. The interaction between the opening of the Drake Passage and global paleoceanographic-paleoclimatic change[J]. Earth Science Frontiers, 2024, 31(6): 415-435.
Fig.1 (a) The locations of the Tasmanian Gateway, the Drake Passage, and the Antarctic Circumpolar Current. (b) a topographic map of the Drake Passage, the northern Antarctic Peninsula, and southern South America. b modified after [12].
Fig.2 Simplified geological map of (a) the Antarctic Peninsula and (b) the South Shetland Islands. (c) the outcrop of Cerro Negro Formation from the Byers Peninsula on Livingston Island. (d) the outcrop of Coppermine Formation from the coppermine peninsula on Robert Island.(e) The Miocene basaltic dyke intruded into the Miocene sediments of Cape Melville. b modified after [13,19,28⇓-30].
Fig.3 (a) Paleomagnetic data from the northern Antarctic Peninsula—South Shetland Islands. (b) the rate and angle of convergence between the Phoenix Plate and the Antarctic Peninsula. (c) the age of the magmatism and lithospheric uplift on the northern Antarctic Peninsula—South Shetland Islands. b modified from [55]; c modified after [30,56⇓⇓⇓-60];the Apparent Polar Wander Paths (APWP) of the East Antarctica refer to [61].
Fig.4 (a, b) Plate rotation process of the southernmost part of the South America during the Cretaceous. (c) Simplified geological map of the southernmost part of the South America. a, b modified after [24]; c modified after [71].
Fig.5 (a) Variations in the rate and angle of plate convergence between South America and other plates (modified after [55,84⇓⇓⇓⇓⇓-90]),the critical geological events occurred in the Magallanes-Austral basin (modified after [84⇓⇓-87]), the variation of sedimentary facies (modified after [85,88⇓-90]). (b) The La/Ta values and the ages of the magmatism in southern part of South America (modified after [93]). ANT—MAG/SCO: Antarctic Plate—Magallanes Plate/Scotia Plate; FAR—MAG: Farallon Plate—Magallanes Plate; PHO—MAG: Phoenix Plate—Magallanes Plate; PHO—SAM: Phoenix Plate—South American Plate.
Fig.6 (a) Cenozoic atmospheric CO2. (b) Cenozoic global benthic foraminifer benthic δ18O. (c) Cenozoic global benthic foraminifer benthic δ13C. (d) The opening of different basins in the Drake Passage constrained by plate tectonics and paleooceangaphic data.(e) Benthic foraminiferal dissolved oxygen index records. (f) Difference in the oxygen isotopic composition of individual ocean basins and the Pacific Basin. (g) εNd(t) from fossil fish teeth vs. age for ODP Site 689. a modified after [6]; b modified after [173];c modified after [173]; d modified after [101,103,115⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-127]; e modified after [178]; f modified after [156]; g modified after [147-148].
Fig.7 Paleoproductivity variations between the southern ocean and the equatorial ocean during the Eocene-Miocene. a modified after [143,146,174]; b modified after [175]; c modified after [176]; d modified after [177].
[1] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[2] |
胡钊彬, 尉建功, 谢志远, 等. 国际大洋钻探全球海平面变化研究进展[J]. 地学前缘, 2022, 29(4): 10-24.
DOI |
[3] | KENNETT J P. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. |
[4] | DECONTO R M, POLLARD D, WILSON P A, et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2008, 455(7213): 652-656. |
[5] | ANAGNOSTOU E, JOHN E H, EDGAR K M, et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate[J]. Nature, 2016, 533(7603): 380-384. |
[6] | RAE J W B, ZHANG Y G, LIU X Q, et al. Atmospheric CO2 over the past 66 million years from marine archives[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 609-641. |
[7] |
BIJL P K, BENDLE J A P, BOHATY S M, et al. Eocene cooling linked to early flow across the Tasmanian Gateway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9645-9650.
DOI PMID |
[8] | ROYER J Y, ROLLET N. Plate-tectonic setting of the Tasmanian region[J]. Australian Journal of Earth Sciences, 1997, 44(5): 543-560. |
[9] | CANDE S C, STOCK J M. Cenozoic reconstructions of the Australia-New Zealand-south Pacific sector of Antarctica[M]//EXON N F, KENNETT J P, MALONE M J, eds. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 2004: 5-17. |
[10] | LAWVER L A, GAHAGAN L M. Evolution of Cenozoic seaways in the circum-Antarctic region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198(1/2): 11-37. |
[11] | EXON N F, KENNETT J P, MALONE M J. Leg 189 synthesis: cretaceous-Holocene history of the Tasmanian gateway[M]//EXON N F, KENNETT J P, MALONE M J. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, Ocean Drilling Program, 2004 : 1-38. |
[12] | CARTER A, CURTIS M, SCHWANETHAL J. Cenozoic tectonic history of the South Georgia microcontinent and potential as a barrier to Pacific-Atlantic through flow[J]. Geology, 2014, 42(4): 299-302. |
[13] | VAUGHAN A P M, STOREY B C. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula[J]. Journal of the Geological Society, 2000, 157(6): 1243-1256. |
[14] | VAUGHAN A P M, PANKHURST R J, FANNING C M. A mid-Cretaceous age for the Palmer Land event, Antarctic Peninsula: implications for terrane accretion timing and Gondwana palaeolatitudes[J]. Journal of the Geological Society, 2002, 159(2): 113-116. |
[15] | HOLDSWORTH B K, NELL P A R. Mesozoic radiolarian faunas from the Antarctic Peninsula: age, tectonic and palaeoceanographic significance[J]. Journal of the Geological Society, 1992, 149(6): 1003-1020. |
[16] | FERRACCIOLI F, JONES P C, VAUGHAN A P M, et al. New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle[J]. Geophysical Research Letters, 2006, 33(5): L05310. |
[17] | HATHWAY B. Continental rift to back-arc basin: Jurassic-Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula[J]. Journal of the Geological Society, 2000, 157(2): 417-432. |
[18] | RILEY T R, LEAT P T, PANKHURST R J, et al. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and patagonia by crustal melting[J]. Journal of Petrology, 2001, 42(6): 1043-1065. |
[19] | BURTON-JOHNSON A, RILEY T R. Autochthonous v. accreted terrane development of continental margins: a revised in situ tectonic history of the Antarctic Peninsula[J]. Journal of the Geological Society, 2015, 172(6): 822-835. |
[20] | SUÁREZ M. Plate-tectonic model for southern Antarctic Peninsula and its relation to southern Andes[J]. Geology, 1976, 4(4): 211-214. |
[21] | LEAT P T, SCARROW J H, MILLAR I L. On the Antarctic Peninsula batholith[J]. Geological Magazine, 1995, 132(4): 399-412. |
[22] | RILEY T R, FLOWERDEW M J, HUNTER M A, et al. Middle Jurassic rhyolite volcanism of eastern Graham Land, Antarctic Peninsula: age correlations and stratigraphic relationships[J]. Geological Magazine, 2010, 147(4): 581-595. |
[23] | HAASE K M, BEIER C, FRETZDORFF S, et al. Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation[J]. Contributions to Mineralogy and Petrology, 2012, 163(6): 1103-1119. |
[24] | GAO L, PEI J L, ZHAO Y, et al. New Paleomagnetic Constraints on the Cretaceous Tectonic Framework of the Antarctic Peninsula[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2021JB022503. |
[25] | ZHENG G G, LIU X C, LIU S W, et al. Late Mesozoic-early Cenozoic intermediate-acid intrusive rocks from the Gerlache Strait area, Antarctic Peninsula: zircon U-Pb geochronology, petrogenesis and tectonic implications[J]. Lithos, 2018, 312: 204-222. |
[26] | CHEN C J, ZHANG S H, ZHAO Y, et al. Genetic relations between enclaves and their host granitoids from Doumer Island, northern Antarctic Peninsula: evidence from mineral chemistry, Sr-Nd and Li isotopes[J]. Lithos, 2021, 398: 106235. |
[27] | ZHENG G G, LIU X C, PEI J L, et al. Early Palaeogene mafic-intermediate dykes, Robert Island, West Antarctica: petrogenesis, zircon U-Pb geochronology, and tectonic significance[J]. Geological Journal, 2022, 57(6): 2209-2220. |
[28] | HATHWAY B, DUANE A M, CANTRILL D J, et al. 40Ar/39Ar geochronology and palynology of the Cerro Negro Formation, South Shetland Islands, Antarctica: a new radiometric tie for Cretaceous terrestrial biostratigraphy in the Southern Hemisphere[J]. Australian Journal of Earth Sciences, 1999, 46(4): 593-606. |
[29] | 高亮. 西南极中—新生代古地磁与板块重建研究进展[J]. 地质力学学报, 2021, 27(5): 835-854. |
[30] | GAO L, ZHAO Y, YANG Z Y, et al. Plate rotation of the Northern Antarctic Peninsula since the Late Cretaceous: implications for the tectonic evolution of the Scotia Searegion[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(2): e2022JB026110. |
[31] | WILLAN R C R, KELLEY S P. Mafic dike swarms in the South Shetland Islands volcanic arc: unravelling multiepisodic magmatism related to subduction and continental rifting[J]. Journal of Geophysical Research-Solid Earth, 1999, 104(B10): 23051-23068. |
[32] | LEAT P T, RILEY T R. Chapter 3.1a. Antarctic Peninsula and South Shetland Islands: volcanology[J]. Geological Society, London, Memoir, 2021, 55(1): 185-212. |
[33] | 韦利杰, 陈虹, 朱桂繁, 等. 西南极南设得兰群岛1∶250 000数字地质图数据库[J]. 中国地质, 2021, 48(增刊2): 78-89. |
[34] | GRUNOW A M. New paleomagnetic data from the Antarctic Peninsula and their tectonic implications[J]. Journal of Geophysical Research. Part B: Solid Earth, 1993, 98(B8): 13815-13833. |
[35] | GAO L, ZHAO Y, YANG Z Y, et al. New paleomagnetic and 40Ar/39Ar geochronological results for the South Shetland Islands, West Antarctica, and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1): 4-30. |
[36] | 刘小汉, 郑祥身. 西南极乔治王岛菲尔德斯半岛火山岩地质初步研究[J]. 南极研究, 1988(1): 25-35, 65-66. |
[37] | 李兆鼐, 郑祥身, 刘小汉, 等. 西南极乔治王岛菲尔德斯半岛火山岩[M]. 北京: 科学出版社, 1992. |
[38] | 高亮, 赵越, 杨振宇, 等. 西南极乔治王岛白垩纪末—中新世火山—沉积地层研究新进展[J]. 矿物岩石地球化学通报, 2015, 34(6): 1080. |
[39] | 郑光高, 刘晓春, 赵越, 等. 西南极岩浆作用及构造演化[J]. 地质力学学报, 2021, 27(5): 821-834. |
[40] | 王春阳, 丁巍伟, 董崇志, 等. 南极半岛西侧不活动陆缘陆架区新生代构造变形特征及沉积演化[J]. 地学前缘, 2017, 24(5): 218-229. |
[41] | 裴军令, 赵越, 周在征, 等. 南极新生代海陆格局变迁对全球气候变化的影响[J]. 地质力学学报, 2021, 27(5): 867-879. |
[42] | 韦利杰. 西南极乔治王岛新生代古生物特征及古环境探讨[J]. 地质力学学报, 2021, 27(5): 855-866. |
[43] | 李兆鼐, 刘小汉. 南极乔治王岛菲尔德斯半岛长城站地区火山岩系的地质特征[J]. 地质论评, 1987, 33(5): 475-478. |
[44] | 冯宁生, 金庆民, 王力波, 等. 菲尔德斯半岛南部新生界火山岩系古地磁及地质意义[J]. 资源调查与环境, 1989(2): 15-25. |
[45] | 沈炎彬. 南极乔治王岛菲尔德斯半岛晚白垩世火山岩地层的古生物证据[J]. 南极研究, 1989, 1(3): 27-33. |
[46] | 沈炎彬. 南极乔治王岛菲尔德斯半岛地层古生物研究新见[J]. 古生物学报, 1990, 29(2): 129-139, 257. |
[47] | 沈炎彬. 南极乔治王岛菲尔德斯半岛几个地层划分命名问题之商榷[J]. 南极研究, 1992, 4(2): 18-26. |
[48] | SHEN Y B. Subdivision and correlation of Eocene fossil hill formation from King George Island, West Antarctica[J]. Korean Journal of Polar Research, 1999, 10(4): 91-95. |
[49] | 李兆鼐, 郑祥身, 刘小汉, 等. 南极乔治王岛菲尔德斯半岛和纳尔逊岛斯坦斯伯赖半岛地质图[M]. 北京: 地质出版社, 1996. |
[50] | 郑祥身, 刘小汉, 杨瑞英. 西南极长城站地区第三系火山岩岩石学特征[J]. 岩石学报, 1988, 4(1): 34-47. |
[51] | 朱铭, 鄂莫岚, 刘小汉, 等. 西南极乔治王岛菲尔德斯半岛火山岩同位素年代及地层对比[J]. 南极研究, 1991, 3(2): 126-135. |
[52] | WANG F, ZHENG X S, LEE J I K, et al. An 40Ar/39Ar geochronology on a mid-Eocene igneous event on the Barton and Weaver peninsulas: implications for the dynamic setting of the Antarctic Peninsula[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12), Q12006. |
[53] | MCCARRON J J, LARTER R D. Late Cretaceous to early Tertiary subduction history of the Antarctic Peninsula[J]. Journal of the Geological Society, 1998, 155(2): 255-268. |
[54] | AN M J, WIENS D A, ZHAO Y, et al. Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8720-8742. |
[55] | EAGLES G, SCOTT B G C. Plate convergence west of Patagonia and the Antarctic Peninsula since 61 Ma[J]. Global and Planetary Change, 2014, 123(Part B): 189-198. |
[56] | GRUNOW A M, DALZIEL I W D, HARRISON T M, et al. Structural geology and geochronology of subduction complexes along the margin of Gondwanaland: new data from the Antarctic Peninsula and southernmost Andes[J]. Geological Society of America Bulletin, 1992, 104(11): 1497-1514. |
[57] | SELL I, POUPEAU G, GONZÁLEZ-CASADO J M, et al. A fission track thermochronological study of King George and Livingston islands, South Shetland islands (West Antarctica)[J]. Antarctic Science, 2004, 16(2): 191-197. |
[58] | BRIX M R, FAUNDEZ V, HERVÉ F, et al. Thermochronologic constraints on the tectonic evolution of the western Antarctic Peninsula in late Mesozoic and Cenozoic times[J]. Antarctica: A Keystone in a Changing World-Online Proceedings of the 10th ISAES, USGS Open-File Report, 2007, 101(1): 1047. |
[59] | GUENTHNER W R, BARBEAU D L Jr, REINERS P W, et al. Slab window migration and terrane accretion preserved by low-temperature thermochronology of a magmatic arc, northern Antarctic Peninsula[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03001. |
[60] | BARBEAU D L Jr. Exhumational history of the margins of Drake Passage from thermochronology and sediment provenance[M]//ANDERSON J B, WELLNER J S. Tectonic, climatic, and cryospheric evolution of the Antarctic Peninsula. Washington, DC: American Geophysical Union, 2013: 35-49. |
[61] | TORSVIK T H, VAN DER VOO R, PREEDEN U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012, 114(3/4): 325-368. |
[62] | SMELLIE J L. Lithostratigraphy of Miocene-Recent, alkaline volcanic fields in the Antarctic Peninsula and eastern Ellsworth Land[J]. Antarctic Science, 1999, 11(3): 362-378. |
[63] | HOLE M J. Chapter 4. Miocene-recent post-subduction alkaline magmatism along the Antarctic Peninsula II. Petrology[M]//SMELLIE J L, PANTER K S, GEYER A. Volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up. London: Geological Society, 2018: 327-344. |
[64] | STOREY B C, BROWN R W, CARTER A, et al. Fission-track evidence for the thermotectonic evolution of a Mesozoic-Cenozoic fore-arc, Antarctica[J]. Journal of the Geological Society, 1996, 153(1): 65-82. |
[65] | 郑永飞. 地幔是否对花岗岩的形成有贡献?[J]. 地球科学, 2022, 47(10): 3765. |
[66] | BAJOLET F, GALEANO J, FUNICIELLO F, et al. Continental delamination: insights from laboratory models[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q02009-Q02030. |
[67] | GUILLOT M G. Magmatic Evolution of the southernmost Andes and its relation with subduction processes[M]//GHIGLIONE M C. Springer Earth System Sciences. Cham: Springer International Publishing, 2016: 37-74. |
[68] | STERN C R, de WIT M J. Rocas Verdes ophiolites, southernmost South America: remnants of progressive stages of development of oceanic-type crust in a continental margin back-arc basin[J]. Geological Society, London, Special Publications, 2003, 218(1): 665-683. |
[69] | KOHN M J, SPEAR F S, HARRISON T M, et al. 40Ar/39Ar geochronology and P-T-t paths from the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile[J]. Journal of Metamorphic Geology, 1995, 13(2): 251-270. |
[70] | TORRES CARBONELL P J, OLIVERO E B, DIMIERI L V. Structure and evolution of the Fuegian Andes foreland thrust-fold belt, Tierra del Fuego, Argentina: paleogeographic implications[J]. Journal of South American Earth Sciences, 2008, 25(4): 417-439. |
[71] | POBLETE F, ARRIAGADA C, ROPERCH P, et al. Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula[J]. Earth and Planetary Science Letters, 2011, 302(3/4): 299-313. |
[72] | LIKERMAN J, BURLANDO J F, CRISTALLINI E O, et al. Along-strike structural variations in the southern Patagonian Andes: insights from physical modeling[J]. Tectonophysics, 2013, 590: 106-120. |
[73] | GHIGLIONE M C, NAVARRETE-RODRÍGUEZ A T, GONZÁLEZ-GUILLOT M, et al. The opening of the Magellan Strait and its geodynamic implications[J]. Terra Nova, 2013, 25(1): 13-20. |
[74] | DALZIEL I W D. Back-arc extension in the southern Andes: a review and critical reappraisal[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1981, 300(1454): 319-335. |
[75] | CALDERÓN M, FILDANI A, HERVÉ F, et al. Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes[J]. Journal of the Geological Society, 2007, 164(5): 1011-1022. |
[76] | WILSON T J. Transition from back-arc to foreland basin development in the southernmost Andes: stratigraphic record from the ultima esperanza district, Chile[J]. Geological Society of America Bulletin, 1991, 103(1): 98-111. |
[77] | KLEPEIS K, BETKA P, CLARKE G, et al. Continental underthrusting and obduction during the Cretaceous closure of the Rocas Verdes rift basin, Cordillera Darwin, Patagonian Andes[J]. Tectonics, 2010, 29(3): TC3014. |
[78] | HERVÉ F, NELSON E, KAWASHITA K, et al. New isotopic ages and the timing of orogenic events in the Cordillera Darwin, southernmost Chilean Andes[J]. Earth and Planetary Science Letters, 1981, 55(2): 257-265. |
[79] | BIDDLE K T, ULIANA M A, MITCHUM JR R M, et al. The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America[J]. Foreland Basins, 1986: 41-61. |
[80] | BRUHN R L. Rock structures formed during back-arc basin deformation in the Andes of Tierra del Fuego[J]. Geological Society of America Bulletin, 1979, 90(11): 998-1012. |
[81] | MALONEY K T, CLARKE G L, KLEPEIS K A, et al. Crustal growth during back-arc closure: Cretaceous exhumation history of Cordillera Darwin, southern Patagonia[J]. Journal of Metamorphic Geology, 2011, 29(6): 649-672. |
[82] | VAN DE LAGEMAAT S H A, SWART M L A, VAES B, et al. Subduction initiation in the Scotia Sea region and opening of the Drake Passage: when and why?[J]. Earth-Science Reviews, 2021, 215: 103551. |
[83] | POBLETE F, ROPERCH P, ARRIAGADA C, et al. Late Cretaceous-early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia-Antarctic Peninsula system[J]. Tectonophysics, 2016, 668: 15-34. |
[84] | GHIGLIONE M C, YAGUPSKY D, GHIDELLA M, et al. Continental stretching preceding the opening of the Drake Passage: evidence from Tierra del Fuego[J]. Geology, 2008, 36(8): 643-646. |
[85] | THOMSON S N, HERVÉ F, STÖCKHERT B. Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes[J]. Tectonics, 2001, 20(5): 693-711. |
[86] | GHIGLIONE M C, RAMOS V A. Progression of deformation and sedimentation in the southernmost Andes[J]. Tectonophysics, 2005, 405(1/2/3/4): 25-46. |
[87] | GOMBOSI D J, BARBEAU JR D L, GARVER J I. New thermochronometric constraints on the rapid Palaeogene exhumation of the Cordillera Darwin complex and related thrust sheets in the Fuegian Andes[J]. Terra Nova, 2009, 21(6): 507-515. |
[88] | GRIFFIN M. Eocene bivalves from the río turbio formation, southwestern Patagonia (Argentina)[J]. Journal of Paleontology, 1991, 65(1): 119-146. |
[89] | MALUMIÁN N, CARAMÉS A. Upper Campanian-Paleogene from the río turbio coal measures in southern Argentina: micropaleontology and the Paleocene/Eocene boundary[J]. Journal of South American Earth Sciences, 1997, 10(2): 189-201. |
[90] | PARRAS A, CASADIO S, FELDMANN R, et al. Age and paleogeography of the marine transgression at the Paleogene-Neogene boundary in Patagonia, southern Argentina[C]. Denver, Colorado: Denver Annual Meeting, Geological Society of America Abstracts with programs, 2004. |
[91] | LAGABRIELLE Y, GODDÉRIS Y, DONNADIEU Y, et al. The tectonic history of Drake Passage and its possible impacts on global climate[J]. Earth and Planetary Science Letters, 2009, 279(3/4): 197-211. |
[92] | HERVÉ F, PANKHURST R J, FANNING C M, et al. The South Patagonian batholith: 150 my of granite magmatism on a plate margin[J]. Lithos, 2007, 97(3/4): 373-394. |
[93] | VANDERLEEST R A, FOSDICK J C, LEONARD J S, et al. Detrital record of the late Oligocene early Miocene mafic volcanic arc in the southern Patagonian Andes (-51° S) from single-clast geochronology and trace element geochemistry[J]. Journal of Geodynamics, 2020, 138: 101751. |
[94] | MALUMIÁN N, PANZA J L, PARISI C. Hoja geológica 5172-III Yacimiento Río Turbio, Provincia de Santa Cruz, 1∶250000[J]. Servicio Geológico Minero Argentino, Boletín, 2000, 247: 180. |
[95] | RAMOS V A. Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes[J]. Tectonophysics, 2005, 399(1/2/3/4): 73-86. |
[96] | MENICHETTI M, LODOLO E, TASSONE A. Structural geology of the Fuegian Andes and Magallanes fold-and-thrust Belt-Tierra Del Fuego Island[J]. Geologica Acta, 2008, 6(1): 19-42. |
[97] | PARDO-CASAS F, MOLNAR P. Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time[J]. Tectonics, 1987, 6(3): 233-248. |
[98] | GHIGLIONE M C, QUINTEROS J, YAGUPSKY D, et al. Structure and tectonic history of the foreland basins of southernmost South America[J]. Journal of South American Earth Sciences, 2010, 29(2): 262-277. |
[99] | EAGLES G, JOKAT W. Tectonic reconstructions for paleobathymetry in Drake Passage[J]. Tectonophysics, 2014, 611: 28-50. |
[100] | BARKER P F, BURRELL J. The opening of Drake Passage[J]. Marine Geology, 1977, 25(1/2/3): 15-34. |
[101] | HILL I A, BARKER P F. Evidence for Miocene back-arc spreading in the central Scotia Sea[J]. Geophysical Journal International, 1980, 63(2): 427-440. |
[102] | BARKER P F. Tectonic framework of the East Scotia Sea[M]//TAYLOR B. Backarc basins. Boston: Springer, 1995: 281-314. |
[103] | BARKER P F. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation[J]. Earth-Science Reviews, 2001, 55(1/2): 1-39. |
[104] | LARTER R D, VANNESTE L E, MORRIS P, et al. Structure and tectonic evolution of the South Sandwich arc[J]. Geological Society, London, Special Publications, 2003, 219(1): 255-284. |
[105] | EAGLES G, LIVERMORE R A, FAIRHEAD J D, et al. Tectonic evolution of the west Scotia Sea[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B2): B06101. |
[106] | LIVERMORE R, NANKIVELL A, EAGLES G, et al. Paleogene opening of Drake Passage[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 459-470. |
[107] | LODOLO E, DONDA F, TASSONE A. Western Scotia Sea margins: improved constraints on the opening of the Drake Passage[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B6): B06101. |
[108] | EAGLES G. The age and origin of the central Scotia Sea[J]. Geophysical Journal International, 2010, 183(2): 587-600. |
[109] | VUAN A, LODOLO E, PANZA G F, et al. Crustal structure beneath Discovery Bank in the Scotia Sea from group velocity tomography and seismic reflection data[J]. Antarctic Science, 2005, 17(1): 97-106. |
[110] | LODOLO E, CIVILE D, VUAN A, et al. The Scotia-Antarctica plate boundary from 35° W to 45° W.[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 200-215. |
[111] | RILEY T R, CARTER A, BURTON-JOHNSON A, et al. Crustal block origins of the South Scotia Ridge[J]. Terra Nova, 2022, 34(6): 495-502. |
[112] | TANNER P W G, PANKHURST R J, HYDEN G. Radiometric evidence for the age of the subduction complex in the South Orkney and South Shetland Islands, West Antarctica[J]. Journal of the Geological Society, 1982, 139(6): 683-690. |
[113] | PANDEY A, PARSON L, MILTON A. Geochemistry of the Davis and aurora banks: possible implications on evolution of the North Scotia ridge[J]. Marine Geology, 2010, 268(1/2/3/4): 106-114. |
[114] | RILEY T R, CARTER A, LEAT P T, et al. Geochronology and geochemistry of the northern Scotia Sea: a revised interpretation of the North and West Scotia ridge junction[J]. Earth and Planetary Science Letters, 2019, 518: 136-147. |
[115] | EAGLES G, LIVERMORE R A, MORRIS P. Small basins in the Scotia Sea: the Eocene Drake Passage gateway[J]. Earth and Planetary Science Letters, 2006, 242(3/4): 343-353. |
[116] | BARKER P F, LAWVER L A, LARTER R D. Heat-flow determinations of basement age in small oceanic basins of the southern central Scotia Sea[J]. Geological Society, London, Special Publications, 2013, 381(1): 139-150. |
[117] | SCHREIDER A A, GALINDO-ZALDIVAR J, MALDONADO A, et al. Age of the floors of the Protector and Dove Basins (Scotia Sea)[J]. Oceanology, 2018, 58(3): 447-458. |
[118] | GALINDO-ZALDÍVAR J, BOHOYO F, MALDONADO A, et al. Propagating rift during the opening of a small oceanic basin: the protector basin (Scotia arc, Antarctica)[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 398-412. |
[119] | GALINDO-ZALDÍVAR J, PUGA E, BOHOYO F, et al. Reprint of “Magmatism, structure and age of Dove Basin (Antarctica): a key to understanding South Scotia Arc development”[J]. Global and Planetary Change, 2014, 123(Special I): 249-268. |
[120] | SCHREIDER A A, GALINDO-ZALDIVAR J, MALDONADO A, et al. Age of the Scan Basin (Scotia Sea)[J]. Oceanology, 2017, 57(2): 328-336. |
[121] | PÉREZ L F, LODOLO E, MALDONADO A, et al. Tectonic development, sedimentation and paleoceanography of the Scan Basin (southern Scotia Sea, Antarctica)[J]. Global and Planetary Change, 2014, 123: 344-358. |
[122] | LAWVER L A, DELLA VEDOVA B, VON HERZEN R P. Heat-flow in Jane Basin, northwest Weddell Sea[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B2): 2019-2038. |
[123] | BOHOYO F, GALINDO-ZALDÍVAR J, MALDONADO A, et al. Basin development subsequent to ridge-trench collision: the Jane Basin, Antarctica[J]. Marine Geophysical Researches, 2002, 23(5/6): 413-421. |
[124] | LAWVER L A, WILLIAMS T, SLOAN B. Seismic stratigraphy and heat flow of Powell Basin[J]. Terra Antarctica, 1994, 1(2): 309-310. |
[125] | EAGLES G, LIVERMORE R A. Opening history of Powell Basin, Antarctic Peninsula[J]. Marine Geology, 2002, 185(3/4): 195-205. |
[126] | KING E C, BARKER P F. The margins of the South Orkney microcontinent[J]. Journal of the Geological Society, 1988, 145(2): 317-331. |
[127] | COREN F, CECCONE G, LODOLO E, et al. Morphology, seismic structure and tectonic development of the Powell Basin, Antarctica[J]. Journal of the Geological Society, 1997, 154(5): 849-862. |
[128] | DALZIEL I W D, KLIGFIELD R, LOWRIE W, et al. Paleomagnetic data from the southernmost Andes and the Antarctandes[J]. Implications of Continental Drift to the Earth Sciences, 1 DH Tarling, SK Runcorn, 1973: 87-101. |
[129] | WATTS D R, WATTS G C, BRAMALL A M. Cretaceous and Early Tertiary paleomagnetic results from the Antarctic Peninsula[J]. Tectonics, 1984, 3(3): 333-346. |
[130] | NAWROCKI J, PACZYK M, WILLIAMS I S. Isotopic ages and palaeomagnetism of selected magmatic rocks from King George Island (Antarctic Peninsula)[J]. Journal of the Geological Society, 2010, 167(5): 1063-1079. |
[131] | SOMOZA R. Eocene paleomagnetic pole for South America: Northward continental motion in the Cenozoic, opening of Drake Passage and Caribbean convergence[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B3): B03104. |
[132] | BIJL P K, GUERSTEIN G R, SANMIGUEL JAIMES E A, et al. Campanian-Eocene dinoflagellate cyst biostratigraphy in the Southern Andean foreland basin: implications for Drake Passage throughflow[J]. Andean Geology, 2021, 48(2): 185-218. |
[133] | ESTEBENET M S G, GUERSTEIN G R, ALPERIN M I. Dinoflagellate cyst distribution during the middle Eocene in the Drake Passage area: paleoceanographic implications[J]. Ameghiniana, 2014, 51(6): 500-509. |
[134] | REGUERO M A, GELFO J N, LÓPEZ G M, et al. Final Gondwana breakup: the Paleogene South American native ungulates and the demise of the South America-Antarctica land connection[J]. Global and Planetary Change, 2014, 123: 400-413. |
[135] | MAO S, MOHR B A R. Middle Eocene dinocysts from Bruce Bank (Scotia Sea, Antarctica) and their paleoenvironmental and paleogeographic implications[J]. Review of Palaeobotany and Palynology, 1995, 86(3/4): 235-263. |
[136] | BROWN B, GAINA C, MÜLLER R D. Circum-Antarctic palaeobathymetry: illustrated examples from Cenozoic to recent times[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 231(1/2): 158-168. |
[137] | LAWVER L A, GAHAGAN L M, DALZIEL I W. A different look at gateways: Drake Passage and Australia/Antarctica[M]//ANDERSON J B, WELLNER J S. Tectonic, climatic, and cryospheric evolution of the Antarctic Peninsula. Special Publications. Washington, D. C.: American Geophysical Union, 2013, 63: 5-33. |
[138] | PFUHL H A, MCCAVE I N. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current[J]. Earth and Planetary Science Letters, 2005, 235(3/4): 715-728. |
[139] | ROBERTS A P, BICKNELL S J, BYATT J, et al. Magnetostratigraphic calibration of Southern Ocean diatom datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program sites 744 and 748)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 198(1/2): 145-168. |
[140] | FLORINDO F, ROBERTS A P. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica[J]. Geological Society of America Bulletin, 2005, 117(1/2): 46-66. |
[141] | WEI W, WISE S W JR. Selected Neogene calcareous nannofossil index taxa of the Southern Ocean: biochronology, biometrics and paleoceanography[M]//WISE S W Jr, WEI W. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, Ocean Drilling Program, 1992: 523-537. |
[142] | PERSICO D, VILLA G. Eocene-Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications[J]. Marine Micropaleontology, 2004, 52(1/2/3/4): 153-179. |
[143] | DIESTER-HAASS L, ZAHN R. Eocene-Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity[J]. Geology, 1996, 24(2): 163-166. |
[144] | DIESTER-HAASS L, ZAHN R. Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP sites 763 and 592[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 172(1/2): 153-170. |
[145] | LATIMER J C, FILIPPELLI G M. Eocene to Miocene terrigenous inputs and export production: geochemical evidence from ODP Leg 177, Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 182(3/4): 151-164. |
[146] | DIEKMANN B, KUHN G, GERSONDE R, et al. Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090[J]. Global and Planetary Change, 2004, 40(3/4): 295-313. |
[147] | SCHER H D, MARTIN E E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 391-405. |
[148] |
SCHER H D, MARTIN E E. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 2006, 312(5772): 428-430.
DOI PMID |
[149] | GAMBOA L A, BUFFLER R T, BARKER P F. Seismic stratigraphy and geologic history of the Rio-Grande Gap and Southern Brazil Basin[M]//Initial Reports of the Deep Sea Drilling Project 72. Washington, DC:U.S. Government Printing Office, 1983: 481-497. |
[150] | BEU A G, GRIFFIN M, MAXWELL P A. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina[J]. Tectonophysics, 1997, 281(1/2): 83-97. |
[151] | KENNETT J P, BARKER P F. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective[M]//BARKER P F, KENNETT J P. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1990: 937-960. |
[152] | TOGGWEILER J R, BJORNSSON H. Drake Passage and palaeoclimate[J]. Journal of Quaternary Science, 2000, 15(4): 319-328. |
[153] | SIJP W P, ENGLAND M H. Effect of the Drake Passage throughflow on global climate[J]. Journal of Physical Oceanography, 2004, 34(5): 1254-1266. |
[154] | ABELSON M, EREZ J. The onset of modern-like Atlantic meridional overturning circulation at the Eocene-Oligocene transition: evidence, causes, and possible implications for global cooling[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2177-2199. |
[155] | HUTCHINSON D K, COXALL H K, O'REGAN M, et al. Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition[J]. Nature Communications, 2019, 10(1): 3797. |
[156] | CRAMER B S, TOGGWEILER J R, WRIGHT J D, et al. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 2009, 24(4): PA4216. |
[157] | CROWLEY T J. North Atlantic deep water cools the Southern Hemisphere[J]. Paleoceanography, 1992, 7(4): 489-497. |
[158] | BROECKER W S. Paleocean circulation during the last deglaciation: a bipolar seesaw?[J]. Paleoceanography, 1998, 13(2): 119-121. |
[159] | BUCKLEY M W, MARSHALL J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review[J]. Reviews of Geophysics, 2016, 54(1): 5-63. |
[160] | VIA R K, THOMAS D J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic[J]. Geology, 2006, 34(6): 441-444. |
[161] | SARKAR S, BASAK C, FRANK M, et al. Late Eocene onset of the Proto-Antarctic Circumpolar Current[J]. Scientific Reports, 2019, 9(1): 10125. |
[162] | SIJP W P, ENGLAND M H, HUBER M. Effect of the deepening of the Tasman Gateway on the global ocean[J]. Paleoceanography, 2011, 26(4): PA4207. |
[163] | ZHANG Z, NISANCIOGLU K H, FLATØY F, et al. Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling[J]. Climate of the Past, 2011, 7(3): 801-813. |
[164] | TOUMOULIN A, DONNADIEU Y, LADANT J B, et al. Quantifying the effect of the Drake Passage opening on the Eocene Ocean[J]. Paleoceanography and Paleoclimatology, 2020, 35(8): e2020PA003889. |
[165] | SCHERER R P, KOC N. Late Paleogene diatom biostratigraphy and paleoenvironments of the northern Norwegian-Greenland Sea[M]//THIEDE J, MYHRE A M, FIRTH J V, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1996: 75-99. |
[166] | SUTO I. The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea[J]. Marine Micropaleontology, 2006, 58(4): 259-269. |
[167] | KAMINSKI M A, AUSTIN W. Oligocene deep-water agglutinated foraminifers at Site 985, Norwegian Basin, Southern Norwegian Sea[M]//RAYMO M E, JANSEN E, BLUM P, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1999: 169-177. |
[168] | DAVIES R, CARTWRIGHT J, PIKE J, et al. Early Oligocene initiation of North Atlantic Deep Water formation[J]. Nature, 2001, 410(6831): 917-920. |
[169] | WOLD C N. Cenozoic sediment accumulation on drifts in the Northern North Atlantic[J]. Paleoceanography, 1994, 9(6): 917-941. |
[170] | MILLER K G, TUCHOLKE B E. Development of Cenozoic abyssal circulation South of the Greenland-Scotland Ridge[M]//BOTT M H P, SAXOV S, TALWANI M, et al. Structure and development of the Greenland-Scotland ridge: new methods and concepts. Boston, MA: Springer, 1983: 549-589. |
[171] | MILLER K G, WRIGHT J D, KATZ M E, et al. Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation[M]//KOEBERL C, MONTANARI A. The Late Eocene Earth: hothouse, icehouse, and impacts. Boulder, Colorado: Geological Society of America, 2009: 169-178. |
[172] | HODEL F, GRESPAN R, DE RAFÉLIS M, et al. Drake Passage gateway opening and Antarctic Circumpolar Current onset 31 Ma ago: the message of foraminifera and reconsideration of the neodymium isotope record[J]. Chemical Geology, 2021, 570: 120171. |
[173] | WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. |
[174] | DIESTER-HAASS L, FAUL K. Paleoproductivity reconstructions for the Paleogene Southern Ocean: a direct comparison of geochemical and micropaleontological proxies[J]. Paleoceanography and Paleoclimatology, 2019, 34(1): 79-97. |
[175] | SIBERT E, NORRIS R, CUEVAS J, et al. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change[J]. Proceedings of the Royal Society B: Biological sciences, 2016, 283(1831): 20160189. |
[176] | YOU G, LI T, PAN J, et al. Change of biogenic Ba content in Pacific ferromanganese crusts since Cenozoic-A signal of paleoproductivity pulses?[C]//11th Ocean Mining and Gas Hydrates Symposium, Kona, Hawaii, USA. 2015, ISOPE-M-15-799. |
[177] | LEINEN M. Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography[J]. Geological Society of America Bulletin, 1979, 90(9_Part_II): 1310-1376. |
[178] | KAIHO K. Planktonic and benthic foraminiferal extinction events during the last 100 m. y.[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 111(1/2): 45-71. |
[179] | ELSWORTH G, GALBRAITH E, HALVERSON G, et al. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation[J]. Nature Geoscience, 2017, 10(3): 213-216. |
[180] | LEAR C H, ROSENTHAL Y, WRIGHT J D. The closing of a seaway: ocean water masses and global climate change[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 425-436. |
[181] | RENAUDIE J. Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles[J]. Biogeosciences, 2016, 13(21): 6003-6014. |
[182] | EAGLES G. Tectonic evolution of the Antarctic-Phoenix plate system since 15 Ma[J]. Earth and Planetary Science Letters, 2004, 217(1/2): 97-109. |
[183] | DALZIEL I W D, LAWVER L A, PEARCE J A, et al. A potential barrier to deep Antarctic circumpolar flow until the late Miocene?[J]. Geology, 2013, 41(9): 947-950. |
[184] | RÖGL F. Mediterranean and Paratethys: facts and hypotheses of an Oligocene to Miocene paleogeography: short overview[J]. Geologica Carpathica, 1999, 50(4): 339-349. |
[185] | GOURLAN A T, MEYNADIER L, ALLÈGRE C J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 353-364. |
[186] | KIRILLOVA V, OSBORNE A H, STÖRLING T, et al. Miocene restriction of the Pacific-North Atlantic throughflow strengthened Atlantic overturning circulation[J]. Nature Communications, 2019, 10(1): 4025. |
[187] | NISANCIOGLU K H, RAYMO M E, STONE P H. Reorganization of Miocene deep water circulation in response to the shoaling of the Central American Seaway[J]. Paleoceanography, 2003, 18(1): 1-12. |
[188] | YANG S, GALBRAITH E, PALTER J. Coupled climate impacts of the Drake Passage and the Panama Seaway[J]. Climate Dynamics, 2014, 43(1/2): 37-52. |
[189] | KARAS C, NÜRNBERG D, BAHR A, et al. Pliocene oceanic seaways and global climate[J]. Scientific Reports, 2017, 7(1): 39842. |
[190] | SMITH A G, PICKERING K T. Oceanic gateways as a critical factor to initiate icehouse Earth[J]. Journal of the Geological Society, 2003, 160(3): 337-340. |
[1] | MO Tian-Feng. Discussion on some important problems in structural geology and tectonics. [J]. Earth Science Frontiers, 20140101, 21(1): 132-149. |
[2] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[3] | LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods [J]. Earth Science Frontiers, 2022, 29(5): 285-299. |
[4] | SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies [J]. Earth Science Frontiers, 2022, 29(5): 342-354. |
[5] | LEI Ziyan, GE Qian, CHEN Dong, ZHANG Yongcong, HAN Xibin, YE Liming, BIAN Yeping, XU Dong. Provenance of sediments in the Amundsen Sea, West Antarctic since the mid-Holocene and paleoclimate reconstruction [J]. Earth Science Frontiers, 2022, 29(4): 179-190. |
[6] | YAN Maodu, ZHANG Dawen, LI Minghui. Research progress and new views on the potash deposits in the Simao and Khorat Basins [J]. Earth Science Frontiers, 2021, 28(6): 10-28. |
[7] | YANG Weiran, JIANG Chunfa, ZHANG Kang, GUO Tieying, YOU Zhendong. Applying the view of opening-closing-rotating tectonics to study how the Earth’s interior is working [J]. Earth Science Frontiers, 2020, 27(1): 204-210. |
[8] | YANG Weiran,JIANG Chunfa,ZHANG Kang,GUO Tieying. Discussions on opening-closing-rotating tectonic system and its forming mechanism and on the dynamic mechanism of plate tectonics [J]. Earth Science Frontiers, 2019, 26(1): 337-. |
[9] | Yaoling NIU,SHEN Fangyu,CHEN Yanhong,GONG Hongmei. The geologically testable hypothesis on subduction initiation and actions. [J]. Earth Science Frontiers, 2018, 25(6): 51-66. |
[10] | LEI Huarui,JIANG Zaixing,ZHOU Hongke. Analysis of paleoclimate evolution of the hyperthermal period in the early Paleogene: taking the Dongying depression as an example. [J]. Earth Science Frontiers, 2018, 25(4): 176-184. |
[11] | WAN Tianfeng. On the dynamic mechanics of global lithosphere plate tectonics. [J]. Earth Science Frontiers, 2018, 25(2): 320-335. |
[12] | LIU Shaofeng,WANG Chengshan. Reconstruction of tectonopaleogeography and dynamic topography. [J]. Earth Science Frontiers, 2016, 23(6): 61-79. |
[13] | GUAN Kaiping,TIAN Li,AN Zhihui,YE Qin,,HU Jun,TONG Jinnan. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation. [J]. Earth Science Frontiers, 2016, 23(6): 236-245. |
[14] | . Precambrian geodynamics (Ⅵ): Formation of North China Craton. [J]. Earth Science Frontiers, 2015, 22(6): 77-96. |
[15] | . Precambrian geodynamics (Ⅴ): Origin of plate tectonics. [J]. Earth Science Frontiers, 2015, 22(6): 65-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||