Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 204-214.DOI: 10.13745/j.esf.sf.2024.7.19
Previous Articles Next Articles
DAI Chuanshan1,2(), LIU Dongxi1, LI Jiashu1, LEI Haiyan1,2,*(
), CHEN Shuhuan1, CHEN Qianhan1, WANG Qilong1
Received:
2023-12-31
Revised:
2024-04-20
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
DAI Chuanshan, LIU Dongxi, LI Jiashu, LEI Haiyan, CHEN Shuhuan, CHEN Qianhan, WANG Qilong. Single-well in-situ heat extraction technology—a review and perspectives[J]. Earth Science Frontiers, 2024, 31(6): 204-214.
文献 | 井深/m | 井底温度/℃ | 热输出/kW | 延米功率/(W·m-1) | 试验地点 |
---|---|---|---|---|---|
Moritaa [ | 876.5 | 110.3 | 76 | 86 | 美国,Hawaii |
Kohla[ | 1 213 | 45 | 80 | 66 | 瑞士,Weissbad |
Kohla [ | 2 302 | 78 | 100 | 43 | 瑞士,Weggis |
Dijkshoorna [ | 2 500 | 85 | 117 | 47 | 德国,Aachen |
Wanga [ | 2 000 | 286 | 143 | 中国,西安 | |
Denga [ | 2 000 2 000 2 000 2 500 2 000 | 258 158 288 273 122 | 129 79 144 109 61 | 中国,西安 | |
卜宪标 | 2 605 | 85 | 448.49 | 172 | 中国,青岛 |
Zhan | 1 800 | 57 | 134 | 75 | 中国,雄安 |
Huan | 2 044 | 107.3 | 238 | 中国,松原 | |
L | 2 539 | 89 | 480 | 189 | 中国,西安 |
Maa [ | 2 000 | 266 | 133 | 中国,天津 | |
Huan | 3 000 | 128 | 190 | 63 | 中国,唐山 |
Yi | 1 751 | 71 | 930 | 531 | 中国,天津 |
Michaelc [ | 2 000 | 69 | 363 | 181.5 | 英国,Cornwall |
李嘉舒 | 1 400 | 68 | 450 | 320 | 中国,唐山 |
Table 1 Summary of field tests on heat extraction from a single geothermal well
文献 | 井深/m | 井底温度/℃ | 热输出/kW | 延米功率/(W·m-1) | 试验地点 |
---|---|---|---|---|---|
Moritaa [ | 876.5 | 110.3 | 76 | 86 | 美国,Hawaii |
Kohla[ | 1 213 | 45 | 80 | 66 | 瑞士,Weissbad |
Kohla [ | 2 302 | 78 | 100 | 43 | 瑞士,Weggis |
Dijkshoorna [ | 2 500 | 85 | 117 | 47 | 德国,Aachen |
Wanga [ | 2 000 | 286 | 143 | 中国,西安 | |
Denga [ | 2 000 2 000 2 000 2 500 2 000 | 258 158 288 273 122 | 129 79 144 109 61 | 中国,西安 | |
卜宪标 | 2 605 | 85 | 448.49 | 172 | 中国,青岛 |
Zhan | 1 800 | 57 | 134 | 75 | 中国,雄安 |
Huan | 2 044 | 107.3 | 238 | 中国,松原 | |
L | 2 539 | 89 | 480 | 189 | 中国,西安 |
Maa [ | 2 000 | 266 | 133 | 中国,天津 | |
Huan | 3 000 | 128 | 190 | 63 | 中国,唐山 |
Yi | 1 751 | 71 | 930 | 531 | 中国,天津 |
Michaelc [ | 2 000 | 69 | 363 | 181.5 | 英国,Cornwall |
李嘉舒 | 1 400 | 68 | 450 | 320 | 中国,唐山 |
Fig.6 Numerical simulation results on natural convection (in cavity partially filled with porous media), temperature contour and streamline using different physical models. Adapted from [47-48].
[1] | 陈焰华. 中国地热能产业发展报告[R]. 北京: 中国建筑工业出版社, 2021. |
[2] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[3] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[4] | LUND J W, FREESTON D H, BOYD T L. Direct utilization of geothermal energy 2010 worldwide review[J]. Geothermics, 2011, 40(3): 159-180. |
[5] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[6] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[7] | LIU D X, LEI H Y, LI J S, et al. Optimization of a district heating system coupled with a deep open loop geothermal well and heat pumps[J]. Renewable Energy, 2024, 223: 119991. |
[8] |
王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9.
DOI |
[9] | ALLIS R, JAMES R. Natural-convection promoter for geothermal wells[J]. Transactions-Geothermal Resources Council, 1980, 4: 409-412. |
[10] | CHENG A. President’s page: geothermal energy: current and future[J]. The Leading Edge, 2022, 41(9): 588-589. |
[11] | FREESTON D H, DUNSTALL M G. Rotorua field experiment: downhole heat exchanger performance[J]. Geothermics, 1992, 21(1/2): 305-317. |
[12] | 倪龙, 马最良. 含水层参数对同井回灌地下水源热泵的影响[J]. 天津大学学报, 2006, 39(2): 229-234. |
[13] | ALIMONTI C, SOLDO E, BOCCHETTI D, et al. The wellbore heat exchangers: a technical review[J]. Renewable Energy, 2018, 123: 353-381. |
[14] | HOLMBERG H, ACUÑA J, NÆSS E, et al. Deep borehole heat exchangers, application to ground source heat pump systems[C]//International Geothermal Association. Proceeding World Geothermal Congress. Melbourne, Australia, 2015: 15-29. |
[15] | HUANG W B, CEN J W, CHEN J W, et al. Heat extraction from hot dry rock by super-long gravity heat pipe: a field test[J]. Energy, 2022, 247: 123492. |
[16] | DAI C S, LI J S, LEI H Y. A technical review of heat extraction from a single deep geothermal well without net pumping fluids out of reservoir[C]//International Geothermal Association. Proceedings World Geothermal Congress. Beijing, China, 2023: 1470-1486. |
[17] | 北京市市场监督管理局. 中深层地热供热工程技术规范: DB 14/T 2386—2021[S]. 北京: 中国建材工业出版社, 2021. |
[18] | 陕西省住房和城乡建设厅. 中深层地热地埋管供热系统应用技术规程: DB J61/T 166—2020[S]. 北京: 中国建材工业出版社, 2020. |
[19] | 甘肃省住房和城乡建设厅. 无干扰地岩热供热系统工程技术规范: DB 62/T 3144—2018[S]. 北京: 中国建材工业出版社, 2018. |
[20] | 陕西省住房和城乡建设厅. 中深层地热井下换热供热工程技术标准: DB 13(J)/T 8429—2021[S]. 北京: 中国建材工业出版社, 2021. |
[21] | DAI C S, CHEN Y. Classification of shallow and deep geothermal energy[J]. Transactions-Geothermal Resources Council, 2008, 32: 317-320. |
[22] | CULVER G, REISTAD G M. Testing and modeling of downhole heat exchangers in shallow geothermal systems[J]. Transactions-Geothermal Resources Council, 1978, 2: 129-131. |
[23] | XIE S M, DAI C S. The application of DHE combined with heat pump for Shallow geothermal energy uses[C]// Chinese Geophysical Society. Proceedings of the 27th Annual Conference of the Chinese Geophysical Society. Hunan, China, 2011: 1742-1766. |
[24] | STEINS C, BLOOMER A, ZARROUK S J. Improving the performance of the down-hole heat exchanger at the Alpine Motel, Rotorua, New Zealand[J]. Geothermics, 2012, 44: 1-12. |
[25] |
孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752.
DOI |
[26] | 李嘉舒. 中深层地热单井循环换热系统取热特性研究[D]. 天津: 天津大学, 2023. |
[27] | MORITA K, BOLLMEIER W S, MIZOGAMI H. An experiment to prove the concept of the downhole coaxial heat exchanger (DCHE) in Hawaii[J]. Transactions-Geothermal Resources Council, 1992, 16: 9-16. |
[28] | KOHL T, SALTON M, RYBACH L. Data analysis of the deep borehole heat exchanger plant weissbad[C]// International Geothermal Association. Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2000: 3549-3564. |
[29] | KOHL T, BRENNI R, EUGSTER W. System performance of a deep borehole heat exchanger[J]. Geothermics, 2002, 31(6): 687-708. |
[30] | DIJKSHOORN L, SPEER S, PECHNIG R. Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany[J]. International Journal of Geophysics, 2013(1): 916541. |
[31] | WANG Z H, WANG F H, LIU J, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 2017, 153: 603-615. |
[32] | DENG J W, WEI Q P, LIANG M, et al. Field test on energy performance of medium-depth geothermal heat pump systems (MD-GHPs)[J]. Energy and Buildings, 2019, 184: 289-299. |
[33] | 卜宪标, 蒋坤卿. 地热单井连续和间歇供暖性能[J]. 中国科学: 技术科学, 2019, 49(12): 1514-1522. |
[34] | ZHANG Y Q, YU C, LI G S, et al. Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids[J]. Applied Thermal Engineering, 2019, 163: 114317. |
[35] | HUANG Y B, ZHANG Y J, XIE Y Y, et al. Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor[J]. Energy, 2020, 210: 118643. |
[36] | LI C, GUAN Y L, LIU J H, et al. Heat transfer performance of a deep ground heat exchanger for building heating in long-term service[J]. Renewable Energy, 2020, 166: 20-34. |
[37] |
马玖辰, 易飞羽, 张秋丽, 等. 富水型热储层深井套管式换热器传热特性研究[J]. 化工学报, 2021, 72(8): 4134-4145.
DOI |
[38] | YIN H M, SONG C F, MA L, et al. Analysis of flow and thermal breakthrough in leaky downhole coaxial open loop geothermal system[J]. Applied Thermal Engineering, 2021, 194: 117098. |
[39] | MICHALE A C, LAW R. The development and deployment of deep geothermal single well (DGSW) technology in the United Kingdom[J]. European Geologist Journal, 2017, 43: 63-68. |
[40] | BEIER R A, ACUÑA J, MOGENSEN P, et al. Transient heat transfer in a coaxial borehole heat exchanger[J]. Geothermics, 2014, 51: 470-482. |
[41] | LI J S, DAI C S, LEI H Y. The influence of thermal boundary conditions of wellbore on the heat extraction performance of deep borehole heat exchangers[J]. Geothermics, 2022, 100: 102325. |
[42] | PAN A Q, LU L, CUI P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1056-1065. |
[43] | WANG Y R, WANG Y M, YOU S J, et al. Operation optimization of the coaxial deep borehole heat exchanger coupled with ground source heat pump for building heating[J]. Applied Thermal Engineering, 2022, 213: 118656. |
[44] | WANG Y R, WANG Y M, YOU S J, et al. Mathematical modeling and periodical heat extraction analysis of deep coaxial borehole heat exchanger for space heating[J]. Energy and Buildings, 2022, 265: 112102. |
[47] | CAROTENUTO A, MASSAROTTI N, MAURO A. A new methodology for numerical simulation of geothermal down-hole heat exchangers[J]. Applied Thermal Engineering, 2012, 48: 225-236. |
[48] | DAI C S, LIU X Z, LEI H Y. Natural convection modeling in an open-ended square cavity partially filled with porous media[J]. Tansactions-Geothermal Resources Council, 2011, 35: 111-114. |
[45] | 李嘉舒, 戴传山, 雷海燕, 等. 地埋管换热器动态热负荷下地层温度场的解析解[J]. 水文地质工程地质, 2023, 50(2): 198-206. |
[46] | ESKILSON P. Thermal analysis of heat extraction boreholes[D]. Lund: University of Lund, 1987. |
[1] | WANG Wanli, DUAN Yajuan, ZHANG Wei, ZHU Xi, MA Feng, WANG Guiling. Control factors and guidelines for urban-scale shallow geothermal energy development based on control units: An example from Xiong’an [J]. Earth Science Frontiers, 2024, 31(6): 158-172. |
[2] | LÜ Lianghua, WANG Shui. Quantitative analysis of scaling tendency of karstic geothermal water coupled with CO2 degassing [J]. Earth Science Frontiers, 2024, 31(3): 402-409. |
[3] | SUN Huanquan, MAO Xiang, WU Chenbingjie, GUO Dianbin, WANG Haitao, SUN Shaochuan, ZHANG Ying, LUO Lu. Geothermal resources exploration and development technology: Current status and development directions [J]. Earth Science Frontiers, 2024, 31(1): 400-411. |
[4] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[5] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[6] | KANG Fangchao, TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China [J]. Earth Science Frontiers, 2020, 27(1): 185-193. |
[7] | KONG Yanlong, HUANG Yonghui, ZHENG Tianyuan, LU Renchao, PAN Sheng, SHAO Haibing, PANG Zhonghe. Principle and application of OpenGeoSys for geothermal energy sustainable utilization [J]. Earth Science Frontiers, 2020, 27(1): 170-177. |
[8] | PANG Zhonghe, LUO Ji, CHENG Yuanzhi, DUAN Zhongfeng, TIAN Jiao, KONG Yanlong, LI Yiman, HU Shengbiao, WANG Jiyang. Evaluation of geological conditions for the development of deep geothermal energy in China [J]. Earth Science Frontiers, 2020, 27(1): 134-151. |
[9] | HUANG Yonghui, PANG Zhonghe, CHENG Yuanzhi, KONG Yanlong, WANG Jiyang. The development and outlook of the deep aquifer thermal energy storage (deep-ATES) [J]. Earth Science Frontiers, 2020, 27(1): 17-24. |
[10] | LUO Wenxing, SUN Guoqiang, ZHOU Yang, LIU Demin, CHEN Qi. Discussion on the mechanism of deep geothermal energy transmission [J]. Earth Science Frontiers, 2020, 27(1): 10-16. |
[11] | LI De-Wei. Earth system dynamics and reducing disaster and emission by development of geothermal energy [J]. Earth Science Frontiers, 2014, 21(6): 243-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||