Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 359-376.DOI: 10.13745/j.esf.sf.2023.2.74
Previous Articles Next Articles
HE Yanbing1,2(), LEI Yongchang1,2, QIU Xinwei1,2, XIAO Zhangbo1,2, ZHENG Yangdi1,2, LIU Dongqing1,2
Received:
2022-08-24
Revised:
2023-03-14
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
HE Yanbing, LEI Yongchang, QIU Xinwei, XIAO Zhangbo, ZHENG Yangdi, LIU Dongqing. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng, Pearl River Mouth Basin[J]. Earth Science Frontiers, 2024, 31(2): 359-376.
Fig.1 Outline map of the Pearl River Mouth Basin (a), structural unit division of Lufeng Sag (b) and comprehensive column chart of Paleogene stratum (c)
Fig.8 Geochemical indexes and paleontological changes of Wenchang Formation of Wells LF13E-6, LF13E-8 and LF13E-9 in Lufeng 13 East subsag, Lufeng Sag, Pearl River Mouth Basin
Fig.12 Correlation between organic carbon (TOC) content of Wenchang Formation mudstone and paleoenvironment, paleoproductivity, and input indexes of terrigenous clastic rocks in the southern Lufeng area, Pearl River Mouth Basin
Fig.13 Variation diagram of element geochemical discrimination index and organic matter abundance in Wenchang Formation of Well LF13E-10 and Well LF15-2 in the southern Lufeng area, Pearl River Mouth Basin
[1] | 张向涛, 汪旭东, 舒誉, 等. 珠江口盆地陆丰凹陷大中型油田地质特征及形成条件[J]. 中南大学学报(自然科学版), 2017, 48(11): 2979-2989. |
[2] | 米立军, 张向涛, 汪旭东, 等. 陆丰凹陷古近系构造-沉积差异性及其对油气成藏的控制[J]. 中国海上油气, 2018, 30(5): 1-10. |
[3] | 汪旭东, 张向涛, 何敏, 等. 珠江口盆地陆丰凹陷南部文昌组储层发育特征及其控制因素[J]. 石油与天然气地质, 2017, 38(6): 1147-1155. |
[4] | 侯读杰, 王铁冠, 张一伟, 等. 中国东部第三系陆相沉积中的甲藻甾烷: 海侵指相的标志物?[J]. 地质论评. 1997, 43(5): 524-528. |
[5] | 何承全, 钱泽书. 广西百色盆地早第三纪沟鞭藻和疑源类[J]. 古生物学报, 1979, 18(2): 71-88. |
[6] | 汪旭东, 张向涛, 林鹤鸣, 等. 珠江口盆地陆丰13洼陷中央背斜带地质构造特征及对油气成藏的控制作用[J]. 石油学报, 2019, 40(1): 56-66. |
[7] | 朱筱敏, 葛家旺, 吴陈冰洁, 等. 珠江口盆地陆丰凹陷深层砂岩储层特征及主控因素[J]. 石油学报. 2019, 40(增刊1): 69-80. |
[8] | 谢世文, 王宇辰, 舒誉, 等. 珠一坳陷湖盆古环境恢复与优质烃源岩发育模式[J]. 海洋地质与第四纪地质, 2022, 42(1): 159-169. |
[9] | 高阳东, 林鹤鸣, 汪旭东, 等. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义[J]. 现代地质, 2022, 36(1): 118-129. |
[10] | 施和生. 论油气资源不均匀分布与分带差异富集: 以珠江口盆地珠一坳陷为例[J]. 中国海上油气, 2013, 25(5): 1-8, 25, 93. |
[11] | 朱伟林, 崔旱云, 吴培康, 等. 被动大陆边缘盆地油气勘探新进展与展望[J]. 石油学报, 2017, 38(10): 1099-1109. |
[12] | 高阳东, 汪旭东, 林鹤鸣, 等. 珠江口盆地陆丰凹陷恩平组内部构造: 沉积转换面识别及意义[J]. 天然气地球科学, 2021, 32(7): 961-970. |
[13] | 张向涛, 刘培, 王文勇, 等. 珠一坳陷古近系文昌期构造转变对油气成藏的控制作用[J]. 地球科学, 2021, 46(5): 1797-1813. |
[14] | 朱定伟, 张向涛, 雷永昌, 等. 陆丰北地区构造特征及恩平组勘探方向[J]. 中国海上油气, 2020, 32(2): 44-53. |
[15] | 代一丁, 牛子铖, 汪旭东, 等. 珠江口盆地陆丰凹陷古近系与新近系油气富集规律的差异及其主控因素[J]. 石油学报, 2019, 40(增刊1): 41-52. |
[16] | 葛家旺, 朱筱敏, 雷永昌, 等. 多幕裂陷盆地构造-沉积响应及陆丰凹陷实例分析[J]. 地学前缘, 2021, 28(1): 77-89. |
[17] | 何雁兵, 肖张波, 郑仰帝, 等. 珠江口盆地陆丰13洼转换带中生界陆丰7-9潜山成藏特征[J]. 岩性油气藏, 2023, 35(3): 18-28. |
[18] | 王瑞菊, 邓宏文, 郭建宇, 等. 珠一坳陷构造活动对层序地层的控制作用[J]. 大庆石油地质与开发, 2009, 28(1): 10-14. |
[19] | 邓宏文, 钱凯. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社, 1993. |
[20] | 李圯, 刘可禹, 蒲秀刚, 等. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J]. 地球科学, 2020, 45(10): 3779-3796. |
[21] | 毛光周, 刘晓通, 安鹏瑞, 等. 无机地球化学指标在古盐度恢复中的应用及展望[J]. 山东科技大学学报(自然科学版), 2018, 37(1): 92-102, 118. |
[22] | 李智超, 李文厚, 赖绍聪, 等. 渭河盆地古近系细屑岩的古盐度分析[J]. 沉积学报, 2015, 33(3): 480-485. |
[23] | 史冀忠, 崔海峰, 许伟, 等. 银额盆地巴隆乌拉白垩系巴音戈壁组黑色页岩沉积环境及有机质富集模式[J]. 地质通报, 2022, 41(8): 1430-1444. |
[24] | COUCH E L. Calculation of paleosalinities from boron and clay mineral data[J]. American Association of Petroleum Geologists Bulletin. 1971, 55(10): 1829-1839. |
[25] | 王昌勇, 郑荣才, 刘哲, 等. 鄂尔多斯盆地陇东地区长9油层组古盐度特征及其地质意义[J]. 沉积学报, 2014, 32(1): 159-165. |
[26] | 马茗茗, 王昌勇, 许兴斌, 等. Adams和Couch法古盐度恢复结果的可靠性检验: 以青海湖布哈河口区沉积物为例[J]. 沉积学报, 2019, 37(6): 1224-1233. |
[27] | 钟红利, 蒲仁海, 闫华, 等. 塔里木盆地晚古生代古盐度与古环境探讨[J]. 西北大学学报(自然科学版), 2012, 42(1): 74-81. |
[28] | 郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质. 1999, 20(1): 22-27. |
[29] | 王益友, 郭文莹, 张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报. 1979(2): 51-60. |
[30] | NELSON B W. Sedimentary phosphate method for estimating paleosalinities[J]. Science, 1967, 158(3803): 917-920. |
[31] | 蓝先洪, 马道修, 徐明广, 等. 珠江三角洲若干地球化学标志及指相意义[J]. 海洋地质与第四纪地质, 1987, 7(1): 39-49. |
[32] | 宫少军, 秦志亮, 叶思源, 等. 黄河三角洲ZK5钻孔沉积物地球化学特征及其沉积环境[J]. 沉积学报, 2014, 32(5): 855-862. |
[33] | 孙小勇, 牟传龙, 葛祥英, 等. 四川广元-陕西镇巴地区上奥陶统五峰组地球化学特征及沉积环境意义[J]. 沉积与特提斯地质, 2016, 36(1): 46-54. |
[34] | 王随继, 黄杏珍, 妥进才, 等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报, 1997, 15(1): 65-70. |
[35] | 崔晨光, 张辉, 刘文香, 等. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征: 以山西临县招贤剖面和M115井为例[J]. 天然气地球科学, 2022, 33(6): 1001-1012. |
[36] | NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[37] | 潘世乐, 蒋赟, 康健, 等. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析[J]. 沉积学报, 2021, 39(5): 1292-1304. |
[38] | 马宝林, 王琪. 青海湖现代沉积物的元素分布特征[J]. 沉积学报, 1997, 15(3): 122-127. |
[39] | 袁宝印, 陈克造, BOWLER J M, 等. 青海湖的形成与演化趋势[J]. 第四纪研究, 1990, 10(3): 233-243. |
[40] | MCLENNAN S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303. |
[41] | 何龙, 王云鹏, 陈多福. 川南地区晚奥陶-早志留世沉积环境与古气候的地球化学特征[J]. 地球化学, 2019, 48(6): 555-566. |
[42] | 王琳霖, 浮昀, 方诗杰. 鄂尔多斯盆地东缘马家沟组元素地球化学特征及古沉积环境[J]. 石油实验地质, 2018, 40(4): 519-525. |
[43] | 陈森然, 许中杰, 孔锦涛, 等. 华南陆缘粤南地区晚三叠世—早、中侏罗世古气候演化及其对华南构造体制转换的响应[J]. 地球科学, 2021, 46(9): 3290-3306. |
[44] | 李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 42(10): 1774-1786. |
[45] | 周江羽, 陈建文, 张玉玺, 等. 下扬子地区幕府山组古环境和构造背景: 来自细粒混积沉积岩系元素地球化学的证据[J]. 地质学报, 2021, 95(6): 1693-1711. |
[46] | 刘新宇, 邵磊, 史德锋, 等. 西沙西科1井元素地球化学特征与海平面升降的关系[J]. 海洋地质前沿, 2021, 37(6): 8-17. |
[47] | 王纯豪, 韩超, 韩梅, 等. 川西坳陷中段雷口坡组碳酸盐岩地球化学特征及地质意义[J]. 山东科技大学学报(自然科学版), 2020, 39(1): 28-36. |
[48] | 王岚, 周海燕, 商斐, 等. 松辽盆地北部白垩纪青山口组黑色页岩元素地球化学特征及沉积古环境恢复[J]. 地质科学, 2022, 57(1): 156-171. |
[49] | 王彤, 朱筱敏, 董艳蕾, 等. 陆相坳陷湖盆沉积对深时古气候的响应信号: 以准噶尔盆地西北缘安集海河组为例[J]. 地学前缘, 2021, 28(1): 60-76. |
[50] | 张斌, 何媛媛, 陈琰, 等. 柴达木盆地西部咸化湖相优质烃源岩地球化学特征及成藏意义[J]. 石油学报, 2017, 38(10): 1158-1167. |
[51] | MOLDOWAN J M, JACOBSON S R, DAHL J, et al. Molecular fossils demonstrate Precambrian origin of dinoflagellates[M]// The ecology of the Cambrian radiation. New York: Columbia University Press, 2000: 474-494. |
[52] | 常睿, 王广利, 张枝焕, 等. 北部湾盆地沟鞭藻类分子化石的分布及成因[J]. 沉积学报, 2023, 41(1): 280-288. |
[53] | 张水昌, MOLDOWAN J M, LI M, 等. 分子化石在寒武-前寒武纪地层中的异常分布及其生物学意义[J]. 中国科学D辑: 地球科学, 2001, 31(4): 299-304. |
[54] | 童晓宁, 胡建芳, 祝孟博, 等. 分子标志物揭示的松辽盆地晚三冬期气候环境[J]. 地学前缘, 2017, 24(1): 154-165. |
[55] | 黄嫔. 海南乐东鹿母湾组沟鞭藻和疑源类及其沉积环境[J]. 微体古生物学报, 2010, 27(3): 211-220. |
[56] | 陈世悦, 王玲, 李聪, 等. 歧口凹陷古近系沙河街组一段下亚段湖盆咸化成因[J]. 石油学报, 2012, 33(1): 40-47. |
[57] | 郑金云, 高阳东, 张向涛, 等. 珠江口盆地构造演化旋回及其新生代沉积环境变迁[J]. 地球科学, 2022, 47(7): 2374-2390. |
[58] | 何雁兵, 雷永昌, 邱欣卫, 等. 元素地球化学在新区古环境重建中的应用: 以珠江口盆地韩江15洼为例[J]. 海洋地质与第四纪地质, 2022, 42(4): 159-170. |
[59] | DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518. |
[60] | 阳宏, 刘成林, 王飞龙, 等. 渤中凹陷东营组古沉积环境及烃源岩发育模式[J]. 岩性油气藏, 2021, 33(6): 81-92. |
[61] | 刘翰林, 邹才能, 邱振, 等. 鄂尔多斯盆地延长组7段3亚段异常高有机质沉积富集因素[J]. 石油学报, 2022, 43(11): 1520-1541. |
[62] | PAYTAN A, KASTNER M. Benthic Ba fluxes in the central Equatorial Pacific, implications for the oceanic Ba cycle[J]. Earth and Planetary Science Letters, 1996, 142(3/4): 439-450. |
[63] | DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. |
[64] | 罗欢, 邵德勇, 孟康, 等. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82. |
[65] | DONG T, HARRIS N B, AYRANCI K. Relative sea-level cycles and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: insights into sediment flux, redox conditions, and bioproductivity[J]. GSA Bulletin, 2018, 130(5/6): 859-880. |
[66] | WALSH I, DYMOND J, COLLIER R. Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments[J]. Deep Sea Research Part A Oceanographic Research Papers, 1988, 35(1): 43-58. |
[67] | 沈俊, 施张燕, 冯庆来. 古海洋生产力地球化学指标的研究[J]. 地质科技情报, 2011, 30(2): 69-77. |
[68] | PI D H, LIU C Q, SHIELDS-ZHOU G A, et al. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province, South China: constraints for redox environments and origin of metal enrichments[J]. Precambrian Research, 2013, 225: 218-229. |
[69] | 肖威, 张兵, 姚永君, 等. 川东二叠系龙潭组页岩岩相特征与沉积环境[J]. 岩性油气藏, 2022, 34(2): 152-162. |
[1] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[2] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[3] | JIN Zhijun, CHEN Shuping, ZHANG Rui. Fluctuation analysis for sedimentary basins: Review and outlook [J]. Earth Science Frontiers, 2024, 31(1): 284-296. |
[4] | HE Chencheng, CHEN Honghan, XIAO Xuewei, LIU Xiuyan, SU Ao. Differential shale gas generation in the Lower Cambrian Qiongzhusi stage in the Middle-Upper Yangtze region [J]. Earth Science Frontiers, 2023, 30(3): 44-65. |
[5] | WEI Haoyuan, ZHU Zongliang, XIAO Wenhua, WEI Jun, WEI Deqiang, YUAN Bochao, XIANG Xin. Oil-gas geological features and exploration direction in the Qingxi Sag, Jiuquan Basin [J]. Earth Science Frontiers, 2023, 30(1): 69-80. |
[6] | PENG Guangrong, DU Xiaodong, JIANG Suhua, LI Sanzhong, GUAN Xueting, WEI Dong, JIANG Yan, LU Leilei. Source rock evaluation based on paleotopographic and source-to-sink analysis: An example of the Yangjiang Sag, Pearl River Mouth Basin [J]. Earth Science Frontiers, 2022, 29(5): 188-202. |
[7] | DUAN Wei, TIAN Jinqiang, LI Sanzhong, YU Qiang, CHEN Ruixue, LONG Zulie. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: Source and formation mechanisms [J]. Earth Science Frontiers, 2022, 29(5): 176-187. |
[8] | ZHANG Xiangtao, PENG Guangrong, WANG Guangzeng, LIU Xinying, ZHAO Li, YANG Yue, ZHAN Huawang, YU Haiyang, MA Xiaoqian, LI Sanzhong. Fault response to the Huizhou Movement in the Pearl River Mouth Basin: Insights from a case study of the Eastern Yangjiang Sag [J]. Earth Science Frontiers, 2022, 29(5): 161-175. |
[9] | HU Bingyao, LONG Feijiang, HAN Xibin, ZHANG Yongcong, HU Liangming, XIANG Bo, GE Qian, BIAN Yeping. The evolution of paleoproductivity since the Middle Holocene in the Cosmonaut Sea, Antarctic [J]. Earth Science Frontiers, 2022, 29(4): 113-122. |
[10] | LING Yuan, WANG Yong, WANG Shuxian, SUN Qing, LI Haibing. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity: A review [J]. Earth Science Frontiers, 2022, 29(2): 327-342. |
[11] | JI Liming, LI Jianfeng, ZHANG Mingzhen, HE Cong, MA Bo, JIN Peihong. Effects of the lacustrine hydrothermal activity in the Yanchang period on the abundance and type of organic matter in source rocks in the Ordos Basin [J]. Earth Science Frontiers, 2021, 28(1): 388-401. |
[12] | WANG Tong, ZHU Xiaomin, DONG Yanlei, YANG Daoqing, SU Bin, TAN Mingxuan, LIU Yu, WU Wei, ZHANG Yaxiong. Signals of depositional response to the deep time paleoclimate in continental depression lakes: Insight from the Anjihaihe Formation in the northwestern Junggar Basin [J]. Earth Science Frontiers, 2021, 28(1): 60-76. |
[13] | DUAN Wenjing, ZHAO Fufeng, REN Kefa, LIU Xianfan, DENG Jianghong, YANG Mimi, CHU Yating. Zircon U-Pb dating and trace element geochemistry in syenite porphyry and granite xenoliths from Liuhe, western Yunnan, China [J]. Earth Science Frontiers, 2020, 27(3): 154-167. |
[14] | JIE Hong-Jing, WU An, SHU Meng-Tian, JIN Jian-Beng, ZHONG Wei, LIU Jun, MEI Mei. Geochronology, geochemistry and metallogenic implications of the Lamasu intrusion in western Tianshan, NW China. [J]. Earth Science Frontiers, 2013, 20(1): 190-205. |
[15] | ZHANG Chun-Meng, ZHANG Wei-Sheng, GUO Yang-Hai. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou. [J]. Earth Science Frontiers, 2012, 19(1): 136-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||