Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 347-369.DOI: 10.13745/j.esf.sf.2022.2.76
Previous Articles Next Articles
CHEN Xin1(), WANG Hui1,*(
), MAO Jingwen1,2, YU Miao3, QIAO Jianfeng4, WANG Zhian4
Received:
2022-03-02
Revised:
2022-04-28
Online:
2023-03-25
Published:
2023-01-05
Contact:
WANG Hui
CLC Number:
CHEN Xin, WANG Hui, MAO Jingwen, YU Miao, QIAO Jianfeng, WANG Zhian. Genesis and geological significance of hydrothermal Pb-Zn orebodies in the Xiarihamu mining area, East Kunlun Mountains, China[J]. Earth Science Frontiers, 2023, 30(2): 347-369.
Fig.2 (a) Simplified geologic map of the Xiarihamu area (modified after [20,41]), and (b) geological map of the hydrothermal Pb-Zn deposit in the HS31 anomaly area of Xiarihamu (modified after [29])
矿物 | 早期夕卡岩阶段 | 退化蚀变阶段 | 石英-硫化物阶段 | 碳酸盐阶段 |
---|---|---|---|---|
辉石 | ![]() | |||
石榴子石 | ||||
磷灰石 | ||||
榍石 | ||||
透闪石 | ||||
绿帘石 | ||||
绿泥石 | ||||
磁铁矿 | ||||
黄铜矿 | ||||
黄铁矿 | ||||
方铅矿 | ||||
闪锌矿 | ||||
辉银矿 | ||||
石英 | ||||
方解石 |
Table 1 Metallogenic stages and mineral forming sequence of the Xiarihamu hydrothermal Pb-Zn skarn ore body
矿物 | 早期夕卡岩阶段 | 退化蚀变阶段 | 石英-硫化物阶段 | 碳酸盐阶段 |
---|---|---|---|---|
辉石 | ![]() | |||
石榴子石 | ||||
磷灰石 | ||||
榍石 | ||||
透闪石 | ||||
绿帘石 | ||||
绿泥石 | ||||
磁铁矿 | ||||
黄铜矿 | ||||
黄铁矿 | ||||
方铅矿 | ||||
闪锌矿 | ||||
辉银矿 | ||||
石英 | ||||
方解石 |
编号 | 岩性 | wB/% | 矿物定名 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | Total | |||
1 | 夕卡岩 | 38.4 | 0.04 | 25.46 | 8.2 | 1.68 | 0 | 22.42 | — | — | — | — | 0.43 | 96.63 | 绿帘石 |
2 | 夕卡岩 | 37.78 | 0.05 | 24.11 | 9.95 | 1.5 | 0.02 | 22.15 | 0.01 | — | 0.01 | 0 | 0.54 | 96.12 | 绿帘石 |
3 | 夕卡岩 | 37.56 | — | 23.36 | 10.52 | 1.33 | 0.01 | 21.91 | — | — | — | 0.04 | 0.48 | 95.21 | 绿帘石 |
4 | 夕卡岩 | 38.17 | 0.02 | 24.45 | 9.36 | 1.22 | 0.01 | 22.4 | 0.08 | — | 0.03 | — | 0.47 | 96.22 | 绿帘石 |
5 | 夕卡岩 | 36.9 | 0.04 | 20.79 | 12.96 | 1.01 | 0.01 | 21.99 | 0.01 | — | — | 0.04 | 0.54 | 94.28 | 绿帘石 |
6 | 夕卡岩 | 38.66 | 0.06 | 27.24 | 5.43 | 2.55 | 0.08 | 22 | — | — | 0.04 | 0.03 | 0.45 | 96.53 | 绿帘石 |
7 | 夕卡岩 | 37.95 | 0.08 | 23.04 | 11.4 | 3.42 | — | 20.13 | — | — | 0.15 | — | 0.61 | 96.76 | 绿帘石 |
8 | 夕卡岩 | 38.76 | 0.09 | 26.9 | 6 | 2.19 | 0.04 | 22.35 | — | 0.01 | 0.04 | — | 0.52 | 96.89 | 绿帘石 |
9 | 夕卡岩 | 37.48 | — | 23.57 | 10.55 | 1.5 | 0.08 | 21.84 | — | 0 | — | — | 0.47 | 95.48 | 绿帘石 |
10 | 夕卡岩 | 38.72 | 0.14 | 26.98 | 5.7 | 1.09 | 0.03 | 23.21 | — | — | — | 0.05 | 0.51 | 96.42 | 绿帘石 |
11 | 夕卡岩 | 39.36 | 0.03 | 27.54 | 5.5 | 1.08 | 0.01 | 23.31 | — | — | 0.07 | — | 0.48 | 97.39 | 绿帘石 |
12 | 夕卡岩 | 38.09 | 0.17 | 21.08 | 13.66 | 1.18 | 0.02 | 22.14 | 0.01 | — | 0.02 | 0.03 | 0.44 | 96.82 | 绿帘石 |
13 | 夕卡岩 | 38.47 | 0.14 | 24.23 | 8.82 | 1.66 | 0.13 | 22.76 | 0.06 | — | — | — | 0.51 | 96.78 | 绿帘石 |
14 | 夕卡岩 | 37.73 | 0.1 | 21.08 | 14.02 | 1.17 | — | 22.19 | — | 0.01 | — | 0.01 | 0.53 | 96.84 | 绿帘石 |
15 | 夕卡岩 | 27.6 | — | 18.37 | 15.37 | 5.61 | 18.16 | 0.02 | 0.03 | — | — | 0.08 | 0.63 | 85.86 | 密绿泥石 |
16 | 夕卡岩 | 27.23 | — | 19.16 | 14.73 | 7.13 | 16.76 | 0.12 | 0.06 | — | — | 0.53 | 0.55 | 86.27 | 密绿泥石 |
17 | 夕卡岩 | 27.55 | 0.03 | 18.81 | 15.39 | 6.14 | 17.95 | 0.01 | — | 0.01 | 0.03 | 0.01 | 0.68 | 86.59 | 密绿泥石 |
18 | 夕卡岩 | 27.83 | 0.08 | 19.24 | 16.46 | 5.73 | 17.5 | 0.03 | — | 0.02 | 0.02 | 0.03 | 0.8 | 87.73 | 密绿泥石 |
19 | 夕卡岩 | 28.16 | 0.05 | 18.73 | 17.58 | 4.52 | 17.99 | 0.02 | 0.02 | 0.04 | — | 0 | 0.68 | 87.78 | 密绿泥石 |
20 | 夕卡岩 | 28.61 | 0.01 | 17.47 | 17.81 | 4.44 | 18.15 | 0.06 | 0 | — | — | 0.06 | 0.71 | 87.32 | 密绿泥石 |
21 | 夕卡岩 | 28.45 | 0.03 | 17.98 | 16.48 | 4.43 | 18.72 | 0.08 | — | 0 | 0.01 | 0.24 | 0.74 | 87.15 | 密绿泥石 |
22 | 夕卡岩 | 27.67 | 0.01 | 19.28 | 19.04 | 5.49 | 16 | 0.08 | 0.04 | — | 0.05 | 0.18 | 0.63 | 88.46 | 密绿泥石 |
23 | 夕卡岩 | 27.65 | 0.02 | 19.28 | 18.6 | 5.82 | 16.4 | 0.03 | 0.01 | — | — | 0.07 | 0.66 | 88.53 | 密绿泥石 |
24 | 夕卡岩 | 27.93 | 0.03 | 18.21 | 18.6 | 4.96 | 17.33 | 0.03 | — | 0.02 | — | 0.05 | 0.71 | 87.85 | 密绿泥石 |
25 | 夕卡岩 | 27.95 | 0.01 | 18.3 | 17.48 | 4.86 | 18.3 | 0.05 | 0.02 | 0 | — | 0.05 | 0.74 | 87.76 | 密绿泥石 |
26 | 夕卡岩 | 27.73 | 0.04 | 17.84 | 18.16 | 5.01 | 16.79 | 0.05 | — | 0 | — | 0.09 | 0.55 | 86.25 | 密绿泥石 |
27 | 夕卡岩 | 27.58 | — | 18.73 | 15.7 | 7.15 | 16.15 | 0 | 0.06 | — | — | 0.01 | 0.29 | 85.67 | 密绿泥石 |
28 | 夕卡岩 | 29.68 | 0.07 | 17.28 | 14.55 | 4.46 | 20.36 | 0.03 | — | 0.01 | 0.02 | 0.07 | 0.31 | 86.85 | 密绿泥石 |
29 | 夕卡岩 | 28.26 | 0.06 | 16.13 | 17.3 | 4.23 | 17.81 | 0.2 | — | — | — | 0.1 | 0.29 | 84.36 | 密绿泥石 |
Table 4 Results of electron microprobe analysis of epidote and chlorite from the Xiarihamu Pb-Zn ore body
编号 | 岩性 | wB/% | 矿物定名 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | Total | |||
1 | 夕卡岩 | 38.4 | 0.04 | 25.46 | 8.2 | 1.68 | 0 | 22.42 | — | — | — | — | 0.43 | 96.63 | 绿帘石 |
2 | 夕卡岩 | 37.78 | 0.05 | 24.11 | 9.95 | 1.5 | 0.02 | 22.15 | 0.01 | — | 0.01 | 0 | 0.54 | 96.12 | 绿帘石 |
3 | 夕卡岩 | 37.56 | — | 23.36 | 10.52 | 1.33 | 0.01 | 21.91 | — | — | — | 0.04 | 0.48 | 95.21 | 绿帘石 |
4 | 夕卡岩 | 38.17 | 0.02 | 24.45 | 9.36 | 1.22 | 0.01 | 22.4 | 0.08 | — | 0.03 | — | 0.47 | 96.22 | 绿帘石 |
5 | 夕卡岩 | 36.9 | 0.04 | 20.79 | 12.96 | 1.01 | 0.01 | 21.99 | 0.01 | — | — | 0.04 | 0.54 | 94.28 | 绿帘石 |
6 | 夕卡岩 | 38.66 | 0.06 | 27.24 | 5.43 | 2.55 | 0.08 | 22 | — | — | 0.04 | 0.03 | 0.45 | 96.53 | 绿帘石 |
7 | 夕卡岩 | 37.95 | 0.08 | 23.04 | 11.4 | 3.42 | — | 20.13 | — | — | 0.15 | — | 0.61 | 96.76 | 绿帘石 |
8 | 夕卡岩 | 38.76 | 0.09 | 26.9 | 6 | 2.19 | 0.04 | 22.35 | — | 0.01 | 0.04 | — | 0.52 | 96.89 | 绿帘石 |
9 | 夕卡岩 | 37.48 | — | 23.57 | 10.55 | 1.5 | 0.08 | 21.84 | — | 0 | — | — | 0.47 | 95.48 | 绿帘石 |
10 | 夕卡岩 | 38.72 | 0.14 | 26.98 | 5.7 | 1.09 | 0.03 | 23.21 | — | — | — | 0.05 | 0.51 | 96.42 | 绿帘石 |
11 | 夕卡岩 | 39.36 | 0.03 | 27.54 | 5.5 | 1.08 | 0.01 | 23.31 | — | — | 0.07 | — | 0.48 | 97.39 | 绿帘石 |
12 | 夕卡岩 | 38.09 | 0.17 | 21.08 | 13.66 | 1.18 | 0.02 | 22.14 | 0.01 | — | 0.02 | 0.03 | 0.44 | 96.82 | 绿帘石 |
13 | 夕卡岩 | 38.47 | 0.14 | 24.23 | 8.82 | 1.66 | 0.13 | 22.76 | 0.06 | — | — | — | 0.51 | 96.78 | 绿帘石 |
14 | 夕卡岩 | 37.73 | 0.1 | 21.08 | 14.02 | 1.17 | — | 22.19 | — | 0.01 | — | 0.01 | 0.53 | 96.84 | 绿帘石 |
15 | 夕卡岩 | 27.6 | — | 18.37 | 15.37 | 5.61 | 18.16 | 0.02 | 0.03 | — | — | 0.08 | 0.63 | 85.86 | 密绿泥石 |
16 | 夕卡岩 | 27.23 | — | 19.16 | 14.73 | 7.13 | 16.76 | 0.12 | 0.06 | — | — | 0.53 | 0.55 | 86.27 | 密绿泥石 |
17 | 夕卡岩 | 27.55 | 0.03 | 18.81 | 15.39 | 6.14 | 17.95 | 0.01 | — | 0.01 | 0.03 | 0.01 | 0.68 | 86.59 | 密绿泥石 |
18 | 夕卡岩 | 27.83 | 0.08 | 19.24 | 16.46 | 5.73 | 17.5 | 0.03 | — | 0.02 | 0.02 | 0.03 | 0.8 | 87.73 | 密绿泥石 |
19 | 夕卡岩 | 28.16 | 0.05 | 18.73 | 17.58 | 4.52 | 17.99 | 0.02 | 0.02 | 0.04 | — | 0 | 0.68 | 87.78 | 密绿泥石 |
20 | 夕卡岩 | 28.61 | 0.01 | 17.47 | 17.81 | 4.44 | 18.15 | 0.06 | 0 | — | — | 0.06 | 0.71 | 87.32 | 密绿泥石 |
21 | 夕卡岩 | 28.45 | 0.03 | 17.98 | 16.48 | 4.43 | 18.72 | 0.08 | — | 0 | 0.01 | 0.24 | 0.74 | 87.15 | 密绿泥石 |
22 | 夕卡岩 | 27.67 | 0.01 | 19.28 | 19.04 | 5.49 | 16 | 0.08 | 0.04 | — | 0.05 | 0.18 | 0.63 | 88.46 | 密绿泥石 |
23 | 夕卡岩 | 27.65 | 0.02 | 19.28 | 18.6 | 5.82 | 16.4 | 0.03 | 0.01 | — | — | 0.07 | 0.66 | 88.53 | 密绿泥石 |
24 | 夕卡岩 | 27.93 | 0.03 | 18.21 | 18.6 | 4.96 | 17.33 | 0.03 | — | 0.02 | — | 0.05 | 0.71 | 87.85 | 密绿泥石 |
25 | 夕卡岩 | 27.95 | 0.01 | 18.3 | 17.48 | 4.86 | 18.3 | 0.05 | 0.02 | 0 | — | 0.05 | 0.74 | 87.76 | 密绿泥石 |
26 | 夕卡岩 | 27.73 | 0.04 | 17.84 | 18.16 | 5.01 | 16.79 | 0.05 | — | 0 | — | 0.09 | 0.55 | 86.25 | 密绿泥石 |
27 | 夕卡岩 | 27.58 | — | 18.73 | 15.7 | 7.15 | 16.15 | 0 | 0.06 | — | — | 0.01 | 0.29 | 85.67 | 密绿泥石 |
28 | 夕卡岩 | 29.68 | 0.07 | 17.28 | 14.55 | 4.46 | 20.36 | 0.03 | — | 0.01 | 0.02 | 0.07 | 0.31 | 86.85 | 密绿泥石 |
29 | 夕卡岩 | 28.26 | 0.06 | 16.13 | 17.3 | 4.23 | 17.81 | 0.2 | — | — | — | 0.1 | 0.29 | 84.36 | 密绿泥石 |
编号 | 岩性 | 位置 | wB/% | 矿物 定名 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | F | Total | ||||
1 | 夕卡岩 | 30.4 | 34.26 | 3.56 | 0.2 | 0.02 | 0.02 | 28.15 | 0.09 | — | 0.06 | — | 0.29 | — | 97.04 | 榍石 | |
2 | 夕卡岩 | 30.41 | 33.85 | 3.6 | 0.19 | — | 0.03 | 28.22 | — | — | — | 0.04 | 0.34 | — | 96.68 | 榍石 | |
3 | 夕卡岩 | 30.59 | 34.94 | 2.89 | 0.22 | 0.01 | 0.04 | 27.84 | 0.04 | — | 0.03 | 0.06 | 0.35 | — | 96.99 | 榍石 | |
4 | 夕卡岩 | 30.96 | 33.22 | 4.47 | 0.32 | 0.04 | 0.06 | 28.28 | 0.02 | 0.02 | 0.02 | — | 0.31 | — | 97.71 | 榍石 | |
5 | 夕卡岩 | 30.5 | 36.78 | 2.07 | 0.2 | — | 0.06 | 28.03 | 0.01 | — | 0.04 | 0.09 | 0.34 | — | 98.11 | 榍石 | |
6 | 夕卡岩 | 核 | 30.93 | 31.6 | 3.8 | 0.35 | 0.03 | — | 29.1 | 0.01 | 0 | 0.05 | 0.03 | — | 1.1 | 96.99 | 榍石 |
7 | 夕卡岩 | ↓ | 30.9 | 34.08 | 1.65 | 0.33 | 0.08 | 0.01 | 28.68 | — | — | 0.03 | 0 | — | 0.46 | 96.21 | 榍石 |
8 | 夕卡岩 | ↓ | 30.3 | 31.95 | 3.81 | 0.32 | 0.15 | 0.03 | 29.04 | — | — | 0.01 | 0.01 | — | 1.18 | 96.78 | 榍石 |
9 | 夕卡岩 | 边 | 28.99 | 31.98 | 3.55 | 0.27 | 0.05 | 0.02 | 28.98 | 0.02 | — | 0.04 | 0.01 | — | 0.96 | 94.86 | 榍石 |
10 | 夕卡岩 | 核 | 30.81 | 35.43 | 1.62 | 0.27 | 0.02 | — | 28.88 | 0.02 | — | — | 0.01 | — | 0.13 | 97.19 | 榍石 |
11 | 夕卡岩 | ↓ | 31.34 | 31 | 3.74 | 0.24 | 0.06 | 0.03 | 28.91 | — | — | 0.04 | 0.02 | — | 0.86 | 96.23 | 榍石 |
12 | 夕卡岩 | 边 | 31.19 | 31.97 | 3.78 | 0.47 | 0.01 | 0.02 | 28.95 | — | — | 0.03 | 0.04 | — | 1.1 | 97.57 | 榍石 |
13 | 夕卡岩 | — | 0.04 | 0.01 | 0.09 | 0.03 | — | 56.81 | 0 | — | 40.64 | — | — | 3.38 | 101 | 磷灰石 | |
14 | 夕卡岩 | — | 0.06 | 0.02 | 0.01 | 0.04 | 0.01 | 55.1 | 0 | 0.01 | 40.13 | 0.01 | — | 6.93 | 102.33 | 磷灰石 | |
15 | 夕卡岩 | — | 0.04 | 0 | 0.07 | 0.01 | — | 55.68 | 0 | — | 38.59 | — | — | 3.63 | 98.03 | 磷灰石 | |
16 | 夕卡岩 | — | — | — | — | 0.04 | — | 55.14 | — | 0.01 | 39.54 | — | — | 5.75 | 100.48 | 磷灰石 | |
17 | 夕卡岩 | 核 | 0.01 | 0.05 | 0.02 | 0.04 | 0.06 | 0.06 | 55.45 | — | 0.02 | 40.28 | — | — | 4.92 | 100.89 | 磷灰石 |
18 | 夕卡岩 | 边 | 0.05 | 0.05 | 0.01 | — | 0.07 | 0.02 | 55.07 | 0.01 | 0.01 | 39.16 | 0.02 | — | 6.27 | 100.75 | 磷灰石 |
19 | 夕卡岩 | — | 0.07 | 0.03 | 0.13 | 0.03 | 0.02 | 56.46 | 0.02 | 0.03 | 40.77 | — | — | 3.98 | 101.52 | 磷灰石 | |
20 | 夕卡岩 | — | 0.03 | 0.01 | 0.01 | — | 0.01 | 55.38 | — | — | 40.18 | 0.08 | — | 3.69 | 99.4 | 磷灰石 |
Table 5 Results of electron microprobe analysis of titanite and apatite from the Miarihamu Pb-Zn ore body
编号 | 岩性 | 位置 | wB/% | 矿物 定名 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | Cr2O3 | SrO | F | Total | ||||
1 | 夕卡岩 | 30.4 | 34.26 | 3.56 | 0.2 | 0.02 | 0.02 | 28.15 | 0.09 | — | 0.06 | — | 0.29 | — | 97.04 | 榍石 | |
2 | 夕卡岩 | 30.41 | 33.85 | 3.6 | 0.19 | — | 0.03 | 28.22 | — | — | — | 0.04 | 0.34 | — | 96.68 | 榍石 | |
3 | 夕卡岩 | 30.59 | 34.94 | 2.89 | 0.22 | 0.01 | 0.04 | 27.84 | 0.04 | — | 0.03 | 0.06 | 0.35 | — | 96.99 | 榍石 | |
4 | 夕卡岩 | 30.96 | 33.22 | 4.47 | 0.32 | 0.04 | 0.06 | 28.28 | 0.02 | 0.02 | 0.02 | — | 0.31 | — | 97.71 | 榍石 | |
5 | 夕卡岩 | 30.5 | 36.78 | 2.07 | 0.2 | — | 0.06 | 28.03 | 0.01 | — | 0.04 | 0.09 | 0.34 | — | 98.11 | 榍石 | |
6 | 夕卡岩 | 核 | 30.93 | 31.6 | 3.8 | 0.35 | 0.03 | — | 29.1 | 0.01 | 0 | 0.05 | 0.03 | — | 1.1 | 96.99 | 榍石 |
7 | 夕卡岩 | ↓ | 30.9 | 34.08 | 1.65 | 0.33 | 0.08 | 0.01 | 28.68 | — | — | 0.03 | 0 | — | 0.46 | 96.21 | 榍石 |
8 | 夕卡岩 | ↓ | 30.3 | 31.95 | 3.81 | 0.32 | 0.15 | 0.03 | 29.04 | — | — | 0.01 | 0.01 | — | 1.18 | 96.78 | 榍石 |
9 | 夕卡岩 | 边 | 28.99 | 31.98 | 3.55 | 0.27 | 0.05 | 0.02 | 28.98 | 0.02 | — | 0.04 | 0.01 | — | 0.96 | 94.86 | 榍石 |
10 | 夕卡岩 | 核 | 30.81 | 35.43 | 1.62 | 0.27 | 0.02 | — | 28.88 | 0.02 | — | — | 0.01 | — | 0.13 | 97.19 | 榍石 |
11 | 夕卡岩 | ↓ | 31.34 | 31 | 3.74 | 0.24 | 0.06 | 0.03 | 28.91 | — | — | 0.04 | 0.02 | — | 0.86 | 96.23 | 榍石 |
12 | 夕卡岩 | 边 | 31.19 | 31.97 | 3.78 | 0.47 | 0.01 | 0.02 | 28.95 | — | — | 0.03 | 0.04 | — | 1.1 | 97.57 | 榍石 |
13 | 夕卡岩 | — | 0.04 | 0.01 | 0.09 | 0.03 | — | 56.81 | 0 | — | 40.64 | — | — | 3.38 | 101 | 磷灰石 | |
14 | 夕卡岩 | — | 0.06 | 0.02 | 0.01 | 0.04 | 0.01 | 55.1 | 0 | 0.01 | 40.13 | 0.01 | — | 6.93 | 102.33 | 磷灰石 | |
15 | 夕卡岩 | — | 0.04 | 0 | 0.07 | 0.01 | — | 55.68 | 0 | — | 38.59 | — | — | 3.63 | 98.03 | 磷灰石 | |
16 | 夕卡岩 | — | — | — | — | 0.04 | — | 55.14 | — | 0.01 | 39.54 | — | — | 5.75 | 100.48 | 磷灰石 | |
17 | 夕卡岩 | 核 | 0.01 | 0.05 | 0.02 | 0.04 | 0.06 | 0.06 | 55.45 | — | 0.02 | 40.28 | — | — | 4.92 | 100.89 | 磷灰石 |
18 | 夕卡岩 | 边 | 0.05 | 0.05 | 0.01 | — | 0.07 | 0.02 | 55.07 | 0.01 | 0.01 | 39.16 | 0.02 | — | 6.27 | 100.75 | 磷灰石 |
19 | 夕卡岩 | — | 0.07 | 0.03 | 0.13 | 0.03 | 0.02 | 56.46 | 0.02 | 0.03 | 40.77 | — | — | 3.98 | 101.52 | 磷灰石 | |
20 | 夕卡岩 | — | 0.03 | 0.01 | 0.01 | — | 0.01 | 55.38 | — | — | 40.18 | 0.08 | — | 3.69 | 99.4 | 磷灰石 |
Fig.6 Chondrite-normalized REE patterns for titanite from the Xiarihamu Pb-Zn ore body. Ranges of REE values for Ruanjiawan, Ray Gulch, Mactung and Machangqing deposits adapted from [73,76,78]. Chondrite-normalized REE values adapted from [79].
Fig.8 Tera-Wasserburg diagram (a) and 207Pb-corrected 206Pb/238U weighted mean age diagram (b) for apatite samples from the hydrothermal Pb-Zn ore body
Fig.10 Simplified schematic showing tectonic setting (a) and metallogenic model (b) of the skarn Pb-Zn ore body at the Xiarihamu mining area. Modified after [28].
[1] | 姜春发, 杨经绥, 冯秉贵, 等. 昆仑开合构造[M]. 北京: 地质出版社, 1992. |
[2] | 姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000. |
[3] |
DONG Y P, HE D F, SUN S S, et al. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 2018, 186: 231-261.
DOI URL |
[4] |
DONG Y P, SUN S S, SANTOSH M, et al. Central China orogenic belt and amalgamation of east Asian continents[J]. Gondwana Research, 2021, 100: 131-194.
DOI URL |
[5] |
SONG S G, BI H Z, QI S S, et al. HP-UHP metamorphic belt in the East Kunlun Orogen: final closure of the proto-Tethys ocean and formation of the pan-north-China continent[J]. Journal of Petrology, 2018, 59(11): 2043-2060.
DOI URL |
[6] | 裴先治, 李瑞保, 李佐臣, 等. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 2018, 43(12): 4498-4520. |
[7] | 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. |
[8] | 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414. |
[9] | 马昌前, 熊富浩, 尹烁, 等. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例[J]. 岩石学报, 2015, 31(12): 3555-3568. |
[10] |
YU M, DICK J M, FENG C Y, et al. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: a critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 2020, 191: 104168.
DOI URL |
[11] | 丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(4): 10-17. |
[12] | 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678. |
[13] | 潘彤. 青海矿床成矿系列探讨[J]. 地球科学与环境学报, 2019, 41(3): 297-315. |
[14] | 李文渊, 张照伟, 高永宝, 等. 昆仑古特提斯构造转换与镍钴锰锂关键矿产成矿作用研究[J]. 中国地质, 2022, 49(05): 1385-1407. |
[15] | 张德全, 党兴彦, 佘宏全, 等. 柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J]. 矿床地质, 2005, 24(2): 87-98. |
[16] | WANG H, FENG C Y, LI R X, et al. Geological characteristics, metallogenesis, and tectonic setting of porphyry-skarn Cu deposits in East Kunlun Orogen[J]. Geological Journal, 2018, 53: 58-76. |
[17] |
WU J J, ZENG Q D, SANTOSH M, et al. Intrusion-related orogenic gold deposit in the East Kunlun belt, NW China: a multiproxy investigation[J]. Ore Geology Reviews, 2021, 139: 104550.
DOI URL |
[18] |
LI C S, ZHANG Z W, LI W Y, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China[J]. Lithos, 2015, 216/217: 224-240.
DOI URL |
[19] | 张照伟, 李文渊, 钱兵, 等. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 2015, 42(3): 438-451. |
[20] |
SONG X Y, YI J N, CHEN L M, et al. The giant xiarihamu Ni-co sulfide deposit in the East Kunlun orogenic belt, northern Tibet Plateau, China[J]. Economic Geology, 2016, 111(1): 29-55.
DOI URL |
[21] | 丰成友, 于淼, 李大新, 等. 新疆祁漫塔格巴什尔希钨锡矿床流体包裹体地球化学研究[J]. 矿床地质, 2013, 32(1): 20-36. |
[22] | 李加多, 王新雨, 祝新友, 等. 青海祁漫塔格海西期成矿初探: 以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 2019, 10(8): 1775-1783. |
[23] | 王新雨, 祝新友, 李加多, 等. 青海牛苦头矿区两期岩浆岩及其矽卡岩型成矿作用[J]. 岩石学报, 2021, 37(5): 1567-1586. |
[24] | 姚磊, 吕志成, 赵财胜, 等. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA-ICP-MS锆石U-Pb年龄: 对泥盆纪成岩成矿作用的指示[J]. 地质通报, 2016, 35(7): 1158-1169. |
[25] | 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(6): 1647-1665. |
[26] |
ZHONG S H, LI S Z, FENG C Y, et al. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: a zircon perspective[J]. Ore Geology Reviews, 2021, 139: 104560.
DOI URL |
[27] |
SONG X Y, WANG K Y, BARNES S J, et al. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China[J]. American Mineralogist, 2020, 105(4): 479-497.
DOI URL |
[28] | 张照伟, 钱兵, 王亚磊, 等. 东昆仑夏日哈木镍成矿赋矿机理认识与找矿方向指示[J]. 西北地质, 2020, 53(3): 153-168. |
[29] | 青海省第五地质勘查院. 青海省格尔木市拉陵灶火地区铜多金属矿整装勘查项目报告[R]. 青海: 青海省第五地质勘查院, 2021. |
[30] |
CLARK M K, FARLEY K A, ZHENG D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88.
DOI URL |
[31] | COWGILL E, YIN A, HARRISON T M, et al. Reconstruction of the Altyn Tagh Fault based on U-Pb geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 108(B7: 1-28.). |
[32] |
YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin[J]. Geological Society of America Bulletin, 2008, 120(7/8): 813-846.
DOI URL |
[33] |
YIN A, DANG Y Q, ZHANG M, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (part 2): wedge tectonics in southern Qaidam Basin and the eastern Kunlun Range[J]. Geological Society of America Bulletin, 2007, DOI: https://doi.org/10.1130/2007.2433(18).
DOI |
[34] | 姜春发, 冯秉贵, 杨经绥, 等. 昆仑地质构造轮廓[J]. 中国地质科学院地质研究所文集, 1986(2): 70-80. |
[35] | 古凤宝. 东昆仑地质特征及晚古生代: 中生代构造演化[J]. 青海地质, 1994(1): 4-14. |
[36] | 许志琴, 李海兵, 杨经绥, 等. 东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J]. 地质学报, 2001, 75(2): 156-164. |
[37] |
YU M, FENG C Y, SANTOSH M, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 2017, 167: 103-123.
DOI URL |
[38] |
HE D F, DONG Y P, LIU X M, et al. Tectono-thermal events in East Kunlun, northern Tibetan Plateau: evidence from zircon U-Pb geochronology[J]. Gondwana Research, 2016, 30: 179-190.
DOI URL |
[39] | 孟繁聪, 崔美慧, 吴祥珂, 等. 东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J]. 岩石学报, 2013, 29(6): 2107-2122. |
[40] |
HE D F, DONG Y P, ZHANG F F, et al. The 1.0 Ga S-type granite in the East Kunlun Orogen, Northern Tibetan Plateau: implications for the Meso- to Neoproterozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2016, 130: 46-59.
DOI URL |
[41] | 张勤山, 马楠, 郝亚青, 等. 综合化探方法在青海夏日哈木超大型铜镍矿床中的找矿应用[J]. 物探与化探, 2016, 40(3): 429-437. |
[42] | 王冠. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 2014. |
[43] | 姜常义, 凌锦兰, 周伟, 等. 东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 2015, 31(4): 1117-1136. |
[44] | 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J]. 大地构造与成矿学, 2013, 37(4): 685-697. |
[45] | 奥琮, 孙丰月, 李碧乐, 等. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义[J]. 西北地质, 2014, 47(1): 96-106. |
[46] |
王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401.
DOI |
[47] | 王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木矿区新元古代早期二长花岗岩锆石U-Pb年代学、地球化学及其构造意义[J]. 大地构造与成矿学, 2016, 40(6): 1247-1260. |
[48] | 郭峰, 王盘喜, 卞孝东, 等. 东昆仑夏日哈木地区二长花岗岩年代学、地球化学特征及地质意义[J]. 中国地质调查, 2020, 7(6): 51-60. |
[49] | 路远发. GeoKit: 一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. |
[50] |
BRANDELIK A. CALCMIN - an EXCELTM Visual Basic application for calculating mineral structural formulae from electron microprobe analyses[J]. Computers & Geosciences, 2009, 35(7): 1540-1551.
DOI URL |
[51] |
GÜNTHER D, HEINRICH C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1363-1368.
DOI URL |
[52] |
LUO T, HU Z C, ZHANG W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in193 nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655-1663.
DOI URL |
[53] |
HU Z C, ZHANG W, LIU Y S, et al. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157.
DOI URL |
[54] |
LUO T, HU Z C, ZHANG W, et al. Watervapor-assisted “universal” nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(15): 9016-9024.
DOI URL |
[55] | WIEDENBECK M, ALLÉ P, CORFU F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and ree analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23. |
[56] |
SPANDLER C, HAMMERLI J, SHA P, et al. MKED1: a new titanite standard for in situ analysis of Sm-Nd isotopes and U-Pb geochronology[J]. Chemical Geology, 2016, 425: 110-126.
DOI URL |
[57] |
LIU Y S, GAO S, HU Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-north China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571.
DOI URL |
[58] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[59] | LUDWIG K R. Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4: 70. |
[60] |
SCHOENE B, BOWRING S A. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the40Ar/39Ar standard MMhb[J]. Contributions to Mineralogy and Petrology, 2006, 151(5): 615-630.
DOI URL |
[61] |
BARFOD G H, KROGSTAD E J, FREI R, et al. Lu-Hf and PbSL geochronology of apatites from Proterozoic terranes: a first look at Lu-Hf isotopic closure in metamorphic apatite[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1847-1859.
DOI URL |
[62] |
CHEW D M, SYLVESTER P J, TUBRETT M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1/2): 200-216.
DOI URL |
[63] |
MCDOWELL F W, MCINTOSH W C, FARLEY K A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3/4): 249-263.
DOI URL |
[64] | THOMSON S N, GEHRELS G E, RUIZ J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): doi:10.1029/2011GC003928. |
[65] |
COCHRANE R, SPIKINGS R A, CHEW D, et al. High temperature (>350 ℃) thermochronology and mechanisms of Pb loss in apatite[J]. Geochimica et Cosmochimica Acta, 2014, 127: 39-56.
DOI URL |
[66] |
MEFFRE S, LARGE R R, SCOTT R, et al. Age and pyrite Pb-isotopic composition of the giant Sukhoi Log sediment-hosted gold deposit, Russia[J]. Geochimica et Cosmochimica Acta, 2008, 72(9): 2377-2391.
DOI URL |
[67] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[J]. Economic. Geology, 100th Anniversary Volume, 2005: 299-336. |
[68] |
ARMBRUSTER T, BONAZZI P, AKASAKA M, et al. Recommended nomenclature of epidote-group minerals[J]. European Journal of Mineralogy, 2006, 18(5): 551-567.
DOI URL |
[69] | Higgins J B, Ribbe P H. The structure of malayaite, CaSnOSiO4, a tin analog of titanite[J]. American Mineralogist, 1977, 62(7/8): 801-806. |
[70] | 朱乔乔, 谢桂青, 蒋宗胜, 等. 湖北金山店大型矽卡岩型铁矿热液榍石特征和原位微区LA-ICPMS U-Pb定年[J]. 岩石学报, 2014, 30(5): 1322-1338. |
[71] | 吕沅峻, 彭建堂, 蔡亚飞. 湖南杏枫山钨矿床热液榍石的地球化学特征、U-Pb定年及其地质意义[J]. 岩石学报, 2021, 37(3): 830-846. |
[72] |
FU Y, SUN X M, ZHOU H Y, et al. In-situ LA-ICP-MS U-Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China[J]. Ore Geology Reviews, 2016, 77: 43-56.
DOI URL |
[73] |
DENG X D, LI J W, ZHOU M F, et al. In-situ LA-ICPMS trace elements and U-Pb analysis of titanite from the Mesozoic Ruanjiawan W-Cu-Mo skarn deposit, Daye district, China[J]. Ore Geology Reviews, 2015, 65: 990-1004.
DOI URL |
[74] |
LI J W, DENG X D, ZHOU M F, et al. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits: a case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China[J]. Chemical Geology, 2010, 270(1/2/3/4): 56-67.
DOI URL |
[75] |
ALEINIKOFF J N, WINTSCH R P, FANNING C M, et al. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: an integrated SEM, EMPA, TIMS, and SHRIMP study[J]. Chemical Geology, 2002, 188(1/2): 125-147.
DOI URL |
[76] |
FU Y, SUN X M, HOLLINGS P, et al. Geochronology and trace element geochemistry of titanite in the Machangqing Cu-Mo-dominated polymetallic deposit, Yunnan Province, southwest China[J]. Journal of Asian Earth Sciences, 2018, 158: 398-414.
DOI URL |
[77] |
HAYDEN L A, WATSON E B, WARK D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155(4): 529-540.
DOI URL |
[78] |
CHE X D, LINNEN R L, WANG R C, et al. Distribution of trace and rare earth elements in titanite from tungsten and molybdenum deposits in Yukon and British Columbia, Canada[J]. The Canadian Mineralogist, 2013, 51(3): 415-438.
DOI URL |
[79] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[80] |
TERA F, WASSERBURG G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14(3): 281-304.
DOI URL |
[81] |
PACEY A, WILKINSON J J, COOKE D R. Chlorite and epidote mineral chemistry in porphyry ore systems: a case study of the north parkes district, new South Wales, Australia[J]. Economic Geology, 2020, 115(4): 701-727.
DOI URL |
[82] | 赵一鸣. 夕卡岩矿床研究的某些重要新进展[J]. 矿床地质, 2002, 21(2): 113-120, 136. |
[83] |
VEZZONI S, DINI A, ROCCHI S. Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy)[J]. Ore Geology Reviews, 2016, 77: 176-193.
DOI URL |
[84] | CHANG Z S, SHU Q H, MEINERT L. Skarn deposits of China[J]. 2019, 189-234. |
[85] |
COOK N J, CIOBANU C L. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting[J]. Mineralogical Magazine, 2001, 65(3): 351-372.
DOI URL |
[86] |
LI J, XU L L, BI X W, et al. New titanite U-Pb and molybdenite Re-Os ages for a hydrothermal vein-type Cu deposit in the Lanping Basin, Yunnan, SW China: constraints on regional metallogeny and implications for exploration[J]. Mineralium Deposita, 2021, 56(3): 441-456.
DOI URL |
[87] |
LI Q L, LI X H, WU F Y, et al. In-situ SIMS U-Pb dating of Phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 2012, 21(4): 745-756.
DOI URL |
[88] |
ZHANG W, JIANG S Y, OUYANG Y P, et al. Geochronology and textural and compositional complexity of apatite from the mineralization-related granites in the world-class Zhuxi W-Cu skarn deposit: a record of magma evolution and W enrichment in the magmatic system[J]. Ore Geology Reviews, 2021, 128: 103885.
DOI URL |
[89] | 周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857-864. |
[90] | 刘敏, 宋世伟, 崔玉荣, 等. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究[J]. 岩石学报, 2021, 37(3): 717-732. |
[91] |
LI H R, QIAN Y, SUN F Y, et al. Zircon U-Pb dating and sulfide Re-Os isotopes of the Xiarihamu Cu-Ni sulfide deposit in Qinghai Province, northwestern China[J]. Canadian Journal of Earth Sciences, 2020, 57(8): 885-902.
DOI URL |
[92] | 凌锦兰. 柴周缘镁铁质—超镁铁质岩体与镍矿床成因研究[D]. 西安: 长安大学, 2014. |
[93] | 杜玮, 姜常义, 凌锦兰, 等. 东昆仑夏日哈木铜镍矿床Ⅱ号岩体年代学、地球化学及其意义[J]. 矿床地质, 2017, 36(5): 1185-1196. |
[94] | 王冠, 孙丰月, 李碧乐, 等. 夏日哈木矿区早泥盆世镁铁质岩墙群的年代学特征及地质意义[J]. 黑龙江科技大学学报, 2019, 29(1): 35-40. |
[95] |
SONG X Y, DANYUSHEVSKY L V, KEAYS R R, et al. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 2012, 47(3): 277-297.
DOI URL |
[96] | 靳树芳. 甘肃金川铜镍硫化物矿床磁黄铁矿与磁铁矿地球化学特征及成因研究[D]. 西安: 长安大学, 2018. |
[97] |
MARFIN A E, IVANOV A V, ABRAMOVA V D, et al. A trace element classification tree for chalcopyrite from oktyabrsk deposit, norilsk-talnakh ore district, Russia: LA-ICPMS study[J]. Minerals, 2020, 10(8): 716.
DOI URL |
[98] |
ORTEGA L, LUNAR R, GARCIA-PALOMERO F, et al. The aguablanca Ni Cu PGE deposit, southwestern Iberia: magmatic ore-forming processes and retrograde evolution[J]. The Canadian Mineralogist, 2004, 42(2): 325-350.
DOI URL |
[99] |
MENG F C, ZHANG J X, CUI M H. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 2013, 23(2): 825-836.
DOI URL |
[100] | 贾丽辉, 孟繁聪, 冯惠彬. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据[J]. 岩石学报, 2014, 30(8): 2339-2350. |
[101] | 祁生胜, 宋述光, 史连昌, 等. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 2014, 30(11): 3345-3356. |
[102] | 张照伟, 钱兵, 李文渊, 等. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据[J]. 中国地质, 2017, 44(4): 816-817. |
[103] |
李文渊, 王亚磊, 钱兵, 等. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 2020, 27(2): 276-293.
DOI |
[104] |
WANG H, FENG C Y, LI D X, et al. Geology, geochronology and geochemistry of the Saishitang Cu deposit, East Kunlun Mountains, NW China: constraints on ore genesis and tectonic setting[J]. Ore Geology Reviews, 2016, 72: 43-59.
DOI URL |
[105] | 毛景文, 周振华, 丰成友, 等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(6): 1437-1471. |
[1] | CHEN Ke, SHAO Yongjun, LIU Zhongfa, ZHANG Junke, LI Yongshun, CHEN Yuying. The controlling role of magmatic factors on the differential mineralization in the Tongling ore district, eastern China: Evidence from the mineralogy of amphibole and plagioclase [J]. Earth Science Frontiers, 2024, 31(3): 199-217. |
[2] | LIU Jiawen, TIAN Shihong, WANG Ling. Application of magnesium stable isotopes for studying important geological processes—a review [J]. Earth Science Frontiers, 2023, 30(3): 399-424. |
[3] | FAN Chaoxi, XU Cheng, CUI Ying, WEI Chunwan, KUANG Guangxi, SHI Aiguo, LI Zhuoqi. Carbonatite magma and crustal metasomatism: A review [J]. Earth Science Frontiers, 2022, 29(4): 330-344. |
[4] | KONG Zhigang, ZHANG Binchen, WU Yue, ZHANG Changqing, LIU Yi, ZHANG Feng, LI Yanglin. Structural control and metallogenic mechanism of the Daliangzi Ge-rich Pb-Zn deposit in Sichuan Province, China [J]. Earth Science Frontiers, 2022, 29(1): 143-159. |
[5] | XU Lingang, FU Xuerui, YE Huishou, ZHENG Wei, CHEN Bo, FANG Zhenglong. Geochemical composition and paleoceanic environment of the Lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region [J]. Earth Science Frontiers, 2022, 29(1): 160-175. |
[6] | XIE Guiqing, MAO Jingwen, ZHANG Changqing, LI Wei, SONG Shiwei, ZHANG Rongqing. Triassic deposits in South China: Geological characteristics, ore-forming mechanism and ore deposit model [J]. Earth Science Frontiers, 2021, 28(3): 252-270. |
[7] | WANG Bingzhang, PAN Tong, REN Haidong, WANG Tao, ZHAO Zhiyi, FENG Jianping, ZHANG Jinming. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area [J]. Earth Science Frontiers, 2021, 28(1): 318-333. |
[8] | CHEN Guochao, PEI Xianzhi, LI Ruibao, LI Zuochen, PEI Lei, LIU Chengjun, CHEN Youxin, WANG Meng, GAO Feng, WEI Junqi. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt [J]. Earth Science Frontiers, 2020, 27(4): 33-48. |
[9] | OUYANG Yongpeng, ZHOU Xianrong, YAO Zaiyu, RAO Jianfeng, SONG Shiwei, WEI Jin, LU Yi. Study on the two-stage garnets and their indication of mineralization in the Zhuxi W(Cu) deposit, northeastern Jiangxi Province [J]. Earth Science Frontiers, 2020, 27(4): 219-231. |
[10] | DENG Jun, WANG Qingfei, CHEN Fuchuan, LI Gongjian, YANG Liqiang, WANG Changming, ZHANG Jing, SUN Xiang, SHU Qihai, HE Wenyan, GAO Xue, GAO Liang, LIU Xuefei, ZHENG Yuanchuan, QIU Kunfeng, XUE Shengchao, XU Jiahao. Further discussion on the Sanjiang Tethyan composite metallogenic system [J]. Earth Science Frontiers, 2020, 27(2): 106-136. |
[11] | DU Yangsong, CAO Yi, QIN Xinlong, PANG Zhenshan, DU Yilun, WANG Gongwen. A review on the Mesozoic crust-mantle interaction and metallogeny of various skarn deposits in the Jiangxi-Anhui segment along the Yangtze River [J]. Earth Science Frontiers, 2020, 27(2): 165-181. |
[12] | ZHAO Xinfu, ZENG Liping, LIAO Wang, LI Wanting, HU Hao, LI Jianwei. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and its implication for ore genesis [J]. Earth Science Frontiers, 2020, 27(2): 197-217. |
[13] | GAO Zuoyu,LIU Yunhua,HAN Yixiao,LEI Wanshan,DENG Nan. Geological characteristics and genesis of the Fanjiashan copper and gold skarn deposit of western Qinling in Tianshui, Gansu [J]. Earth Science Frontiers, 2019, 26(5): 96-105. |
[14] | CHEN Guochao,PEI Xianzhi,LI Ruibao,LI Zuochen,PEI Lei,LIU Chengjun,CHEN Youxin,WANG Meng,GAO Feng,LI Xiaobing. Lithospheric extension of the post-collision stage of the Paleo-Tethys oceanic system in the East Kunlun Orogenic Belt: insights from Late Triassic plutons [J]. Earth Science Frontiers, 2019, 26(4): 191-208. |
[15] | CHEN Xue,YUAN Wanming,YUAN Erjun,WANG Ke,FENG Zirui. Apatite fission track analysis of tectonic activity in the Dongshangen mining area, East Kunlun, QinghaiTibet Plateau. [J]. Earth Science Frontiers, 2018, 25(6): 330-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||