Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 77-89.DOI: 10.13745/j.esf.sf.2020.5.9
Previous Articles Next Articles
GE Jiawang1(), ZHU Xiaomin2, LEI Yongchang3, YU Fusheng2
Received:
2019-06-30
Revised:
2019-10-08
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
GE Jiawang, ZHU Xiaomin, LEI Yongchang, YU Fusheng. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression[J]. Earth Science Frontiers, 2021, 28(1): 77-89.
Fig.5 The Eocene tectono-stratigraphy of the Lufeng Depression in the Pearl River Mouth Basin. The study interval includes the Wenchang and Enping Formations.
[1] | RAVNAS R, STEEL R J. Architecture of marine rift basin successions[J]. AAPG Bulletin, 1998, 82:110-146. |
[2] |
HENSTRA G A, ROTEVATN A, GAWTHORPE R L, et al. Evolution of a major segmented normal fault during multiphase rifting: the origin of plan-view zigzag geometry[J]. Journal of Structural Geology, 2015, 74:45-63.
DOI URL |
[3] |
MORLEY C K, HARANYA C, PHOOSONGSEE W, et al. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand[J]. Journal of Structural Geology, 2004, 26:1803-1829.
DOI URL |
[4] |
DENG C, FOSSEN H, GAWTHORPE R L, et al. Influence of fault reactivation during multiphase rifting: the Oseberg area, northern North Sea rift[J]. Marine and Petroleum Geology, 2017, 86:1252-1272.
DOI URL |
[5] | 焦养泉, 周海民, 刘少峰, 等. 断陷盆地多层次幕式裂陷作用与沉积响应: 以南堡老第三纪断陷盆地为例[J]. 地球科学: 中国地质大学学报, 1996, 21(6):633-636. |
[6] | 林畅松. 盆地沉积动力学: 研究现状及未来发展趋势[J]. 石油与天然气地质, 2019, 40(2):685-700. |
[7] | 王维, 叶加仁, 杨香华, 等. 珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应[J]. 地球科学: 中国地质大学学报, 2015, 40(6):1061-1071. |
[8] | 解习农, 程守田, 陆永潮. 陆相盆地幕式构造旋回与层序构成[J]. 地球科学: 中国地质大学学报, 1996, 21(1):27-33. |
[9] | 严德天, 王华, 王清晨. 中国东部第三系典型断陷盆地幕式构造旋回及层序地层特征[J]. 石油学报, 2008, 29(2):185-190. |
[10] | 林畅松, 刘景彦, 张英志, 等. 构造活动盆地的层序地层与构造地层分析: 以中国中、新生代构造活动湖盆分析为例[J]. 地学前缘, 2005, 12(4):365-374. |
[11] |
HENZA A A, WITHJACK M O, SCHLISCHE R W. How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension?[J]. Journal of Structural Geology, 2011, 33:1312-1324.
DOI URL |
[12] |
WHIPP P S, JACKSON C A L, GAWTHORPE R L, et al. Normal fault array evolution above a reactivated rift fabric: a subsurface example from the northern Horda Platform, Norwegian North Sea[J]. Basin Research, 2014, 26:523-549.
DOI URL |
[13] |
HENSTRA G A, GAWTHORPE R L, HELLAND-HANSEN W, et al. Depositional systems in multiphase rifts: seismic case study from the Lofoten margin, Norway[J]. Basin Research, 2017, 29:447-469.
DOI URL |
[14] |
BELL R E, JACKSON C AL, WHIPP P S, et al. Strain migration during multiphase extension: observations from the northern North Sea[J]. Tectonics, 2014, 33:1936-1963.
DOI URL |
[15] |
DUFFY O B, BELL R E, JACKSON C A L, et al. Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea[J]. Journal of Structural Geology, 2015, 80:99-119.
DOI URL |
[16] |
NOLL C A, HALL M. Normal fault growth and its function on the control of sedimentation during basin formation: a case study from field exposures of the Upper Cambrian Owen Conglomerate, West Coast Range, western Tasmania, Australia[J]. AAPG Bulletin, 2006, 90:1609-1630.
DOI URL |
[17] | MORLEY C K. Evolution of large normal faults: evidence from seismic reflection data[J]. AAPG Bulletin, 2002, 86:961-978. |
[18] | MCLEOD A E, UNDERHILL J R, DAVIES S J, et al. The influence of fault array evolution on synrift sedimentation patterns: controls on deposition in the Strathspey-Brent-Statfjord half graben, northern North Sea[J]. AAPG Bulletin, 2002, 86:1061-1093. |
[19] |
DAWERS N H, ANDERS M H. Displacement-length scaling and fault linkage[J]. Journal of Structural Geology, 1995, 17:607-614.
DOI URL |
[20] |
GAWTHORPE R L, LEEDER M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12:195-218.
DOI URL |
[21] | SCHLISCHE R W, ANDERS M H. Stratigraphic effects and tectonic implications of the growth of normal faults and extensional basins[M]//BERATAN K K, Reconstructing the structural history of basin and range extension using sedimentology and stratigraphy. Boulder: GSA, 1996: 183-203. |
[22] | PROSSER S. Rift-related depositional systems and their seismic expression[M]//WILLIAMS G D, DOBB A. Tectonics and seismic sequence stratigraphy. London: Geological Society, 1993: 35-66. |
[23] |
GE J W, ZHU X M, WANG R, et al. Tectono-sedimentary evolution and hydrocarbon reservoirs in the Early Cretaceous Tanan Depression, Tamtsag Basin, Mongolia[J]. Marine and Petroleum Geology, 2018, 94:43-64.
DOI URL |
[24] |
GUPTA S, UNDERHILL J R, SHARP I R, et al. Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt[J]. Basin Research, 1999, 11:167-189.
DOI URL |
[25] |
DAVIES S J, DAWERS N H, MCLEOD A E, et al. The structural and sedimentological evolution of early synrift successions: the Middle Jurassic Tarbert Formation, North Sea[J]. Basin Research, 2000, 12:343-365.
DOI URL |
[26] | 胡阳, 吴智平, 钟志洪, 等. 珠江口盆地珠一坳陷始新世中-晚期构造变革特征及成因[J]. 石油与天然气地质, 2016, 37(5):779-785. |
[27] | 邓棚. 南海北部陆缘古近纪多幕裂陷作用属性及转换: 以珠江口盆地珠一坳陷为例[D]. 武汉:中国地质大学(武汉), 2018: 17-38. |
[28] | 吴冬, 朱筱敏, 李志, 等. 苏丹Muglad盆地Fula凹陷白垩纪断陷期沉积模式[J]. 石油勘探与开发, 2015, 42(3):319-327. |
[29] |
ZHOU D, RU K, CHEN H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251:161-177.
DOI URL |
[30] | 葛家旺, 朱筱敏, 张向涛, 等. 珠江口盆地陆丰凹陷文昌组构造-沉积演化模式[J]. 中国矿业大学学报, 2018, 47(2):308-322. |
[31] | 葛家旺, 朱筱敏, 吴陈冰洁, 等. 辫状河三角洲沉积特征及成因差异: 以珠江口盆地陆丰凹陷恩平组为例[J]. 石油学报, 2019, 40(增刊1):139-152. |
[32] | 米立军, 张向涛, 汪旭东, 等. 陆丰凹陷古近系构造-沉积差异性及其对油气成藏的控制[J]. 中国海上油气, 2018, 30(5):1-9. |
[33] |
GE J W, ZHU X M, ZHANG X T, et al. Tectono-stratigraphic evolution and hydrocarbon exploration in the Eocene Southern Lufeng Depression, Pearl River Mouth Basin, South China Sea[J]. Australian Journal of Earth Science, 2017, 64:931-956.
DOI URL |
[34] | RU K, PIGOTT J D. Episodic rifting and subsidence in the South China Sea[J]. AAPG Bulletin, 1986, 70:1136-1155. |
[35] |
PIGOTT J D, RU K. Basin superposition on the northern margin of the South China Sea[J]. Tectonophysics, 1994, 235:27-50.
DOI URL |
[1] | TONG Kui, LI Zhiwu, LIU Shugen, I.Tonguç UYSAL, SHI Zejin, LI Jinxi, Andrew TODD, WU Wenhui, WANG Zijian, LIU Shengwu, LI Ke, HUA Tian. Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge [J]. Earth Science Frontiers, 2024, 31(4): 297-313. |
[2] | CHEN Wenlin, ZHENG Qiugen, HUANG Yiming, ZHANG Yi, LIN Changsong. Recover the Liyue Basin position in the southern margin of the South China Sea before seafloor spreading [J]. Earth Science Frontiers, 2023, 30(5): 420-429. |
[3] | ZHANG Xiangtao, PENG Guangrong, WANG Guangzeng, LIU Xinying, ZHAO Li, YANG Yue, ZHAN Huawang, YU Haiyang, MA Xiaoqian, LI Sanzhong. Fault response to the Huizhou Movement in the Pearl River Mouth Basin: Insights from a case study of the Eastern Yangjiang Sag [J]. Earth Science Frontiers, 2022, 29(5): 161-175. |
[4] | DUAN Wei, TIAN Jinqiang, LI Sanzhong, YU Qiang, CHEN Ruixue, LONG Zulie. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: Source and formation mechanisms [J]. Earth Science Frontiers, 2022, 29(5): 176-187. |
[5] | ZHAN Cheng, LU Shaoping, FANG Penggao. Multiphase rift and migration mechanism in the Pearl River Mouth Basin [J]. Earth Science Frontiers, 2022, 29(4): 307-318. |
[6] | LI Ruoshuang, LI Quanguo. Characterization of the trace fossil Teredolites longissimus (Apectoichnus longissimus) from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula [J]. Earth Science Frontiers, 2022, 29(3): 381-391. |
[7] | XI Dangpeng, TANG Zihua, WANG Xuejiao, QIN Zuohuan, CAO Wenxin, JIANG Tian, WU Baoxu, LI Yuanhao, ZHANG Yingyue, JIANG Wenbin, KAMRAN Muhammad, FANG Xiaomin, WAN Xiaoqiao. The Cretaceous-Paleogene marine stratigraphic framework that records significant geological events in the western Tarim Basin [J]. Earth Science Frontiers, 2020, 27(6): 165-198. |
[8] | LIANG Guanghe. Detailed study of the formation of Japanese islands based on tectonic evolution of basins in the East China Sea and Northern South China Sea [J]. Earth Science Frontiers, 2020, 27(1): 244-259. |
[9] | QI Jiafu, WU Jingfu, MA Bingshan, QUAN Zhizhen, NENG Yuan. The structural model and dynamics concerning middle section, Pearl River Mouth Basin in north margin of South China Sea [J]. Earth Science Frontiers, 2019, 26(2): 203-221. |
[10] | LI Shubo,WANG Yuejun,WU Shimin. MesoCenozoic tectonothermal pattern of the Pearl River Mouth Basin: constraints from zircon and apatite fission track data [J]. Earth Science Frontiers, 2018, 25(1): 95-107. |
[11] | CAO Xinxing, SONG Zhiguang, LI Yan. The characteristics of organic matter in Maoming oil shales and their paleoclimate significance [J]. Earth Science Frontiers, 2016, 23(3): 243-252. |
[12] | HUANG Chenggang, YUAN Jianying, Tian Guangrong. The geochemical characteristics and formation mechanism of the Eocene lacustrine dolomite reservoirs in the Western Qaidam [J]. Earth Science Frontiers, 2016, 23(3): 230-242. |
[13] | . Natural gas hydrate accumulation elements and drilling results analysis in the eastern part of the Pearl River Mouth Basin. [J]. Earth Science Frontiers, 2015, 22(6): 125-135. |
[14] | ZHANG Dong-Dong, LIU Che-Xiang, HUANG Yi-Jian, DENG Yu, ZHANG Xiao-Long. Uplifting characteristics and its petroleum significance of Beidagang salient tectonic belt in Qikou Sag. [J]. Earth Science Frontiers, 2015, 22(3): 129-136. |
[15] | Zhu-Xiao-Wei, SUN Yong-Ge, MAO Sheng-Yi, GUAN Gong-Xiang, WU Neng-You. The identification of longchain diols and ketools in Site4B sediment from the Pearl River Mouth Basin and its implication [J]. Earth Science Frontiers, 2014, 21(6): 321-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||