Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (3): 381-391.DOI: 10.13745/j.esf.sf.2021.7.23
LI Ruoshuang1,2(), LI Quanguo1,2,*(
)
Received:
2021-03-17
Revised:
2021-04-25
Online:
2022-05-25
Published:
2022-04-28
Contact:
LI Quanguo
CLC Number:
LI Ruoshuang, LI Quanguo. Characterization of the trace fossil Teredolites longissimus (Apectoichnus longissimus) from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula[J]. Earth Science Frontiers, 2022, 29(3): 381-391.
样本 | 统计数量/个 | 平均粒径/μm | 中间粒径/μm | 最大粒径/μm | 标准偏差/μm |
---|---|---|---|---|---|
草莓状黄铁矿 | 273 | 10.52 | 8.72 | 44 | 6.32 |
Table 1 Statistical results of the size distribution of framboidal pyrite grains
样本 | 统计数量/个 | 平均粒径/μm | 中间粒径/μm | 最大粒径/μm | 标准偏差/μm |
---|---|---|---|---|---|
草莓状黄铁矿 | 273 | 10.52 | 8.72 | 44 | 6.32 |
[1] | KELLY S, BROMLEY R G, et al. Ichnological nomenclature of clacate borings[J]. Palaeontology, 1984, 27(4): 793-807. |
[2] | LEYMERIE M A. Suite de mémoire sur le terrain Crétacé du department de l’Aube[J]. Mémoires de la Société Géologique de France, 1842, 4: 291-364. |
[3] |
DONOVAN S K. A new ichnogenus for Teredolites longissimus Kelly and Bromley[J]. Swiss Journal of Palaeontology, 2018, 137(1): 95-98.
DOI URL |
[4] |
DONOVAN S K, EWIN T A M. Substrate is a poor ichnotaxobase: a new demonstration[J]. Swiss Journal of Palaeontology, 2018, 137(1): 103-107.
DOI URL |
[5] |
VILLEGAS-MARTÍN J, DE GIBERT J M, ROJAS-CONSUEGRA R, et al. Jurassic Teredolites from Cuba: new trace fossil evidence of early wood-boring behavior in bivalves[J]. Journal of South American Earth Sciences, 2012, 38: 123-128.
DOI URL |
[6] | SERRANO-BRAÑAS C I, ESPINOSA-CHÁVEZ B, MACCRACKEN S A. Teredolites trace fossils in log-grounds from the Cerro del Pueblo Formation (Upper Cretaceous) of the state of Coahuila, Mexico[J]. Journal of South American Earth Sciences, 2019, 95: 102316. |
[7] |
KUMAR K, SINGH H, RANA R S. IchnospeciesTeredolites longissimus and teredinid body fossils from the early Eocene of India: taphonomic and palaeoenvironmental implications[J]. Ichnos, 2011, 18(2): 57-71.
DOI URL |
[8] |
PLINT A G, PICKERILL R K. Non-marine Teredolites from the middle Eocene of southern England[J]. Lethaia, 1985, 18(4): 341-347.
DOI URL |
[9] |
GINGRAS M K, MACEACHERN J A, PICKERILL R K. Modern perspectives on the Teredolites ichnofacies: observations from Willapa Bay, Washington[J]. PALAIOS, 2004, 19(1): 79-88.
DOI URL |
[10] | 常晓琳, 黄元耕, 陈中强, 等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报, 2020, 38(1): 150-165. |
[11] | MACELLARI C E. Stratigraphy, sedimentology and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island (Antarctic Peninsula)[M]// Geological Society of America memoirs. Boulder: Geological Society of America, 1988: 25-54. |
[12] |
ZINSMEISTER W J. Review of the Upper Cretaceous-Lower Tertiary sequence on Seymour Island, Antarctica[J]. Journal of the Geological Society, 1982, 139(6): 779-785.
DOI URL |
[13] |
MARENSSI S A, NET L I, SANTILLANA S N. Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica[J]. Sedimentary Geology, 2002, 150(3/4): 301-321.
DOI URL |
[14] |
POREBSKI S J. Shelf-valley compound fill produced by fault subsidence and eustatic sea-level changes, Eocene La Meseta Formation, Seymour Island, Antarctica[J]. Geology, 2000, 28(2): 147-150.
DOI URL |
[15] | MARENSSI S A, SANTILLANA S N, RINALDI C A. Stratigraphy of the La Meseta Formation (Eocene), Marambio (Seymour) Island, Antarctica[J]. Asociación Paleontológica Argentina, Publicación Especial, 1998, 5: 137-146. |
[16] | ELLIOT D H. Tectonic setting and evolution of the James Ross Basin, northern Antarctic Peninsula[M]// Geological Society of America memoirs. Boulder: Geological Society of America, 1988: 541-556. |
[17] | ELLIOT D H, TRAUTMAN T A. ower Tertiary strata on Seymour Island, Antarctic Peninsula[M]//CRADDOCK C. Antarctic geosciences. Madison: University of Wisconsin Press, 1982: 287-297. |
[18] | SADLER P M. Geometry and stratification of uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula[M]// Geological Society of America memoirs. Boulder: Geological Society of America, 1988: 303-320. |
[19] | HARWOOD D M. Cretaceous to Eocene Seymour Island siliceous microfossil biostratigraphy[C]// Workshop on Cenozoic geology of the Southern High Latitudes. Columbus: Ohio State University, 1985: 17-18. |
[20] | ASKIN R A. Eocene-?earliest Oligocene terrestrial palynology of Seymour Island, Antarctica[M]// RICCI C A. The Antarctic Region: geological evolution and processes Terra Antarctica Publication. Siena, 1997: 993-996. |
[21] |
HALL S A. Cretaceous and Tertiary dinoflagellates from Seymour Island, Antarctica[J]. Nature, 1977, 267(5608): 239-241.
DOI URL |
[22] | DUTTON A L, LOHMANN K C, ZINSMEISTER W J. Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica[J]. Paleoceanography, 2002, 17(2): 6-13. |
[23] |
MARENSSI S A. Eustatically controlled sedimentation recorded by Eocene strata of the James Ross Basin, Antarctica[J]. Geological Society of London, Special Publications, 2006, 258(1): 125-133.
DOI URL |
[24] | STILWELL J D, ZINSMEISTER W J. Molluscan systematics and biostratigraphy:lower Tertiary La Meseta Formation, Seymour Island, Antartic Peninsula[M]. Washington, DC: American Geophysical Union, 1992. |
[25] |
MEYER D L, OJI T. Eocene crinoids from Seymour Island, Antarctic Peninsula: paleobiogeographic and paleoecologic implications[J]. Journal of Paleontology, 1993, 67(2): 250-257.
DOI URL |
[26] | DOKTOR M, GAŻDZICKI A, JERZMA ŃSKA A, et al. A plant-and-fish assemblage from the Eocene La Meseta Formation of Seymour Island (Antarctic Peninsula) and its environmental implications[J]. Palaeontologica Polonica, 1996, 55(55): 127-146. |
[27] | FRANCIS J E. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic implications[J]. Palaeontology, 1986, 29: 665-684. |
[28] | FELDMAN R M, WOODBURNE M O. Geology and paleontology of Seymour Island, Antarctic Peninsula[M]. Boulder: Geological Society of America, 1988. |
[29] |
WOODBURNE M O, ZINSMEISTER W J. Fossil land mammal from Antarctica[J]. Science, 1982, 218(4569): 284-286.
DOI URL |
[30] |
FORDYCE R E. Origins and evolution of Antarctic marine mammals[J]. Geological Society of London, Special Publications, 1989, 47(1): 269-281.
DOI URL |
[31] |
ENGELBRECHT A, MÖRS T, REGUERO M A, et al. Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica[J]. Journal of South American Earth Sciences, 2017, 78: 175-189.
DOI URL |
[32] |
JADWISZCZAK P. Penguin response to the Eocene climate and ecosystem change in the northern Antarctic Peninsula region[J]. Polar Science, 2010, 4(2): 229-235.
DOI URL |
[33] |
HOSPITALECHE C A, REGUERO E. Additional Pelagornithidae remains from Seymour Island, Antarctica[J]. Journal of South American Earth Sciences, 2020, 99: 102504.
DOI URL |
[34] |
DINGLE R V, MARENSSI S A, LAVELLE M. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula[J]. Journal of South American Earth Sciences, 1998, 11(6): 571-579.
DOI URL |
[35] |
IVANY L C, VAN SIMAEYS S, DOMACK E W, et al. Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula[J]. Geology, 2006, 34(5): 377-380.
DOI URL |
[36] |
SAVRDA C E. Teredolites, wood substrates, and sea-level dynamics[J]. Geology, 1991, 19(9): 905-908.
DOI URL |
[37] |
SAVRDA C E, COUNTS J, MCCORMICK O, et al. Log-grounds and Teredolites in transgressive deposits, Eocene Tallahatta Formation (Southern Alabama, USA)[J]. Ichnos, 2005, 12(1): 47-57.
DOI URL |
[38] |
SAVRDA C E, OZALAS K, DEMKO T H, et al. Log-grounds and the ichnofossil Teredolites in transgressive deposits of the Clayton Formation (lower Paleocene), western Alabama[J]. PALAIOS, 1993, 8(4): 311-324.
DOI URL |
[39] | GOTHAN W. Fossile Hölzer aus dem Bathonian von Russisch-Polen[J]. Verhandlungen Russische-Kaiserlische Mineralogische Gesellschaft, 1906, 44: 435-458. |
[40] |
CANTRILL D J, POOLE I. Taxonomic turnover and abundance in Cretaceous to Tertiary wood floras of Antarctica: implications for changes in forest ecology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 215(3/4): 205-219.
DOI URL |
[41] |
PHILIPPE M, BAMFORD M K. A key to morphogenera used for Mesozoic conifer-like woods[J]. Review of Palaeobotany and Palynology, 2008, 148(2/3/4): 184-207.
DOI URL |
[42] |
PUJANA R R, RAFFI M E, OLIVERO E B. Conifer fossil woods from the Santa Marta Formation (Upper Cretaceous), Brandy Bay, James Ross Island, Antarctica[J]. Cretaceous Research, 2017, 77: 28-38.
DOI URL |
[43] |
PUJANA R R, MARENSSI S A, SANTILLANA S N. Fossil woods from the Cross Valley Formation (Paleocene of Western Antarctica): Araucariaceae-dominated forests[J]. Review of Palaeobotany and Palynology, 2015, 222: 56-66.
DOI URL |
[44] |
PUJANA R R, SANTILLANA S N, MARENSSI S A. Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests[J]. Review of Palaeobotany and Palynology, 2014, 200: 122-137.
DOI URL |
[45] |
OH C, PHILIPPE M, MCLOUGHLIN S, et al. New fossil woods from lower Cenozoic volcano-sedimentary rocks of the Fildes Peninsula, King George Island, and the implications for the trans-Antarctic Peninsula Eocene climatic gradient[J]. Papers in Palaeontology, 2020, 6(1): 1-29.
DOI URL |
[46] |
YAMADA S, NANJO J, NOMURA S, et al. Morphology of iron pyrite crystals[J]. Journal of Crystal Growth, 1979, 46(1): 10-14.
DOI URL |
[47] |
RICKARD D T. The origin of framboids[J]. Lithos, 1970, 3(3): 269-293.
DOI URL |
[48] |
WILKIN R T, BARNES H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
DOI URL |
[49] |
WIGNALL P B, NEWTON R, BROOKFIELD M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188.
DOI URL |
[50] |
WEI H Y, ALGEO T J, YU H, et al. Episodic euxinia in the Changhsingian (late Permian) of South China: evidence from framboidal pyrite and geochemical data[J]. Sedimentary Geology, 2015, 319: 78-97.
DOI URL |
[51] | 常华进, 储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481. |
[52] |
WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
DOI URL |
[53] |
WEI H Y, WEI X M, QIU Z, et al. Redox conditions across the G-L boundary in South China: evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14.
DOI URL |
[1] | TONG Kui, LI Zhiwu, LIU Shugen, I.Tonguç UYSAL, SHI Zejin, LI Jinxi, Andrew TODD, WU Wenhui, WANG Zijian, LIU Shengwu, LI Ke, HUA Tian. Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge [J]. Earth Science Frontiers, 2024, 31(4): 297-313. |
[2] | GE Jiawang, ZHU Xiaomin, LEI Yongchang, YU Fusheng. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression [J]. Earth Science Frontiers, 2021, 28(1): 77-89. |
[3] | XI Dangpeng, TANG Zihua, WANG Xuejiao, QIN Zuohuan, CAO Wenxin, JIANG Tian, WU Baoxu, LI Yuanhao, ZHANG Yingyue, JIANG Wenbin, KAMRAN Muhammad, FANG Xiaomin, WAN Xiaoqiao. The Cretaceous-Paleogene marine stratigraphic framework that records significant geological events in the western Tarim Basin [J]. Earth Science Frontiers, 2020, 27(6): 165-198. |
[4] | CAO Xinxing, SONG Zhiguang, LI Yan. The characteristics of organic matter in Maoming oil shales and their paleoclimate significance [J]. Earth Science Frontiers, 2016, 23(3): 243-252. |
[5] | HUANG Chenggang, YUAN Jianying, Tian Guangrong. The geochemical characteristics and formation mechanism of the Eocene lacustrine dolomite reservoirs in the Western Qaidam [J]. Earth Science Frontiers, 2016, 23(3): 230-242. |
[6] | GU Chi, HU Guang-Xi, LUO Wen-Sheng, NI Jun-E, LIANG Wei, TUN E-Sheng, MEI Mian-Xiang, LIU Yan. Characteristics and genesis of reservoir spaces in Neocene reef reservoir of Liuhua Oilfield, Pearl River Mouth Basin. [J]. Earth Science Frontiers, 2012, 19(2): 49-58. |
[7] | SU Xin, DING Xuan, JIANG Zai-Xin, HU Bin, MENG Mei-Cen, CHEN Meng-Sha. Using of multimicrofossil proxies for reconstructing quantitative paleowater depth during the deposit period of LST of Ess4 in Dongying Depression. [J]. Earth Science Frontiers, 2012, 19(1): 188-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||