Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (2): 182-196.DOI: 10.13745/j.esf.sf.2020.3.14
Previous Articles Next Articles
XIE Yuling(), CUI Kai*(
), XIA Jiaming, WANG Ying, QU Yunwei, YU Chao, SHAN Xiaoyu
Received:
2020-01-09
Revised:
2020-02-10
Online:
2020-03-25
Published:
2020-03-25
Contact:
CUI Kai
CLC Number:
XIE Yuling, CUI Kai, XIA Jiaming, WANG Ying, QU Yunwei, YU Chao, SHAN Xiaoyu. The origin of ore-forming materials of the Yanshanian porphyry Mo-hydrothermal Pb-Zn(Ag) metallogenic system in eastern China[J]. Earth Science Frontiers, 2020, 27(2): 182-196.
Fig.2 The distribution of Yanshanian porphyry Mo and hydrothermal Pb-Zn (Ag) deposits of China and their tectonic settings. The tectonic setting after [34].
Fig.3 Simplified geological map with distribution of porphyry Mo and hydrothermal Pb-Zn deposits in the Luanchuan area, Henan Province. Adapted from [16].
Fig.5 Zr-10000Ga/Al (a) and K2O-Na2O (b) diagrams of causative porphyry for Yanshanian porphyry Mo deposits in eastern China. Data adapted from [50,79-85].
Fig.6 Primitive mantle-normalized trace element patterns and chondrite-normalized REE patterns of the intrusive rocks from typical Mo deposits in eastern China. Standardized data from [89].
[1] | US Geological Survey. Mineral commodity summaries 2009[R]. Reston, Virginia: US Geological Survey, 2009: 193. |
[2] | US Geological Survey. Mineral commodity summaries 2010[R]. Reston, Virginia: US Geological Survey, 2010: 198. |
[3] | US Geological Survey. Mineral commodity summaries 2011[R]. Reston, Virginia: US Geological Survey, 2011: 198. |
[4] | US Geological Survey. Mineral commodity summaries 2012[R]. Reston, Virginia: US Geological Survey, 2012: 198. |
[5] | US Geological Survey. Mineral commodity summaries 2013[R]. Reston, Virginia: US Geological Survey, 2013: 198. |
[6] | US Geological Survey. Mineral commodity summaries 2014[R]. Reston, Virginia: US Geological Survey, 2014: 196. |
[7] | US Geological Survey. Mineral commodity summaries 2015[R]. Reston, Virginia: US Geological Survey, 2015: 196. |
[8] | US Geological Survey. Mineral commodity summaries 2016[R]. Reston, Virginia: US Geological Survey, 2016: 202. |
[9] | US Geological Survey. Mineral commodity summaries 2017[R]. Reston, Virginia: US Geological Survey, 2017: 202. |
[10] | US Geological Survey. Mineral commodity summaries 2018[R]. Reston, Virginia: US Geological Survey, 2018: 200. |
[11] | US Geological Survey. Mineral commodity summaries 2019[R]. Reston, Virginia: US Geological Survey, 2019: 195. |
[12] | US Geological Survey. Mineral commodity summaries 2005[R]. Reston, Virginia: US Geological Survey, 2005: 197. |
[13] | US Geological Survey. Mineral commodity summaries 2006[R]. Reston, Virginia: US Geological Survey, 2006: 199. |
[14] | US Geological Survey. Mineral commodity summaries 2007[R]. Reston, Virginia: US Geological Survey, 2007: 195. |
[15] | US Geological Survey. Mineral commodity summaries 2008[R]. Reston, Virginia: US Geological Survey, 2008: 199. |
[16] | 段士刚, 薛春纪, 刘国印, 等. 河南栾川地区铅锌矿床地质和硫同位素地球化学[J]. 地学前缘, 2010, 17(2): 375-384. |
[17] | 谢玉玲, 李腊梅, 李应栩, 等. 内蒙古东乌珠穆沁旗地区燕山期钼(钨)-铅锌(银)成矿系统[M]. 北京: 地质出版社, 2015. |
[18] | 王莹, 谢玉玲, 钟日晨, 等. 大别造山带沙坪沟斑岩型钼-热液脉型铅锌矿成矿系统: 流体包裹体及稳定同位素约束[J]. 中国有色金属学报, 2019, 29(3): 628-648. |
[19] | 王长明, 邓军, 张寿庭, 等. 河南南泥湖Mo-W-Cu-Pb-Zn-Ag-Au成矿区内生成矿系统[J]. 地质科技情报, 2006, 25(6): 47-52. |
[20] | 张毅星, 刘传权, 杨瑞西, 等. 河南栾川冷水地区钼钨铅锌矿田成矿系列及找矿方向[J]. 华南地质与矿产, 2006, 22(4): 26-32. |
[21] | 叶会寿, 毛景文, 李永峰, 等. 豫西南泥湖矿田钼钨及铅锌银矿床地质特征及其成矿机理探讨[J]. 现代地质, 2006, 20(1): 165-174. |
[22] |
ZHAI D G, LIU J J, ZHANG A L, et al. U-Pb, Re-Os and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and po-lymetallic(Ag-Pb-Zn-Cu)vein mineralization at Bianjiada-yuan, Inner Mongolia, Northeast China: implications for discrete mineralization events[J]. Economic Geology, 2017, 112(8): 2041-2059.
DOI URL |
[23] |
ZHAI D G, LIU J J, ZHANG H Y, et al. A magmatic-hy-drothermal origin for Ag-Pb-Zn vein formation at the Bian-jiadayuan deposit, Inner Mongolia, NE China: Evidences from fluid inclusion, stable (C-H-O) and noble gas isotope studies[J]. Ore Geology Reviews, 2018, 101: 1-16.
DOI URL |
[24] |
ZHAI D G, LIU J J, COOK N J, et al. Mineralogical, text-ural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 2019, 54(1): 47-66.
DOI URL |
[25] |
ZENG Q D, LIU J M, QIN K Z, et al. Types, characteris-tics, and time-space distribution of molybdenum deposits in China[J]. International Geology Review, 2013, 55(11): 1311-1358.
DOI URL |
[26] | 范羽, 周涛发, 张达玉, 等. 中国钼矿床的时空分布及成矿背景分析[J]. 地质学报, 2014, 88(4): 784-804. |
[27] |
MAO J W, PIRAJNO F, XIANG J F, et al. Mesozoic moly-bdenum deposits in the east Qinling-Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43(1): 264-293.
DOI URL |
[28] |
CHEN Y J, WANG P, LI N, et al. The collision-type por-phyry Mo deposits in Dabie Shan, China[J]. Ore Geology Reviews, 2017, 81: 405-430.
DOI URL |
[29] | 戴自希, 盛继福, 白冶, 等. 世界铅锌资源的分布与潜力[M]. 北京: 地震出版社, 2005: 1-387. |
[30] | 杨永强, 翟裕生, 侯玉树, 等. 沉积岩型铅锌矿床的成矿系统研究[J]. 地学前缘, 2006, 13(3): 200-205. |
[31] | 唐攀科, 王春艳, 梅友松, 等. 中国铅锌矿产资源成矿特征与资源潜力评价[J]. 地学前缘, 2018, 25(3): 31-49. |
[32] | LEACH D L, SONG Y C. Sediment-hosted zinc-lead and copper deposits in China[J]. Society of Economic Geologists, Special Publication, 2019, 22: 325-409. |
[33] | 中国地质科学院地质研究所. 中国内生金属成矿图说明书[M]. 北京: 地图出版社, 1987: 1-72. |
[34] |
KUSKY T M. Geophysical and geological tests of tectonic models of the North China Craton[J]. Gondwana Research, 2011, 20(1): 26-35.
DOI URL |
[35] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 14-28. |
[36] | 翟裕生. 成矿系统研究与找矿[J]. 地质调查与研究, 2003a, 26(2): 65-71. |
[37] | 翟裕生. 成矿系统研究与找矿[J]. 地质调查与研究, 2003b, 26(3): 129-135. |
[38] |
HEDENQUIST J W, ARRIBAS A, REYNOLDS T J. Evo-lution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 1998, 93(4): 373-404.
DOI URL |
[39] | SILLITOE R H, HEDENQUIST J W. Linkages between volcanotectonic settings, ore-fluid compositions, and epi-thermal precious-metal deposits[J]. Society of Economic Geologists, Special Publication, 2003, 10: 315-343. |
[40] |
RICHARDS J P, WILKINSON D, ULLRICH T. Geology of the Sari Gunay epithermal gold deposit, Northwest Iran[J]. Economic Geology, 2006, 101(8): 1455-1496.
DOI URL |
[41] |
WALLIER S, REY R, KOUZMANOV K, et al. Magmatic-fluids in the breccia-hosted epithermal Au-Ag deposit of Rosia Montana, Romania[J]. Economic Geology, 2006, 101(5): 923-954.
DOI URL |
[42] | 唐菊兴, 孙兴国, 丁帅, 等. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床[J]. 地球学报, 2014, 35(1): 6-10. |
[43] | 李光明, 张夏楠, 秦克章, 等. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据[J]. 岩石学报, 2015, 31(8): 2307-2324. |
[44] | 毛景文, 郑榕芬, 叶会寿, 等. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义[J]. 矿床地质, 2006, 25(4): 359-368. |
[45] | 毛景文, 叶会寿, 王瑞廷, 等. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价[J]. 地质通报, 2009, 28(1): 72-79. |
[46] | 张怀东, 王波华, 郝越进, 等. 安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息[J]. 矿床地质, 2012, 31(1): 41-51. |
[47] | 李厚民, 陈毓川, 叶会寿, 等. 东秦岭—大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列[J]. 地质学报, 2008, 82(11): 1468-1477. |
[48] | LUDINGTON S, PLUMLEE G S. Climax-type porphyry molybdenum deposits [R]. Reston, Virginia: US Geological Survey, 2009: 1-16. |
[49] | STEIN H J, CROCK J D. Chapter 11: Late Cretaceous-Tertiary magmatism in the Colorado mineral belt: rare earth element and samarium-neodymium isotopic studies[J]. Geological Society of America Memoir, 1990, 174: 195-224. |
[50] |
GAO Y, MAO J W, YE H S, et al. Geochronology, geo-chemistry and Sr-Nd-Pb isotopic constraints on the origin of the Qian’echong porphyry Mo deposit, Dabie Orogen, East China[J]. Journal of Asian Earth Sciences, 2014, 85: 163-177.
DOI URL |
[51] |
WESTRA G, KEITH S B. Classification and genesis of stock-work molybdenum deposits[J]. Economic Geology, 1981, 76(4): 844-873.
DOI URL |
[52] | 卢欣祥, 于在平, 冯有利, 等. 东秦岭深源浅成型花岗岩的成矿作用及地质构造背景[J]. 矿床地质, 2002, 21(2): 168-178. |
[53] |
PETTKE T, OBERLI F, HEINRICH C A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions[J]. Earth and Planetary Science Letters, 2010, 296(3/4): 267-277.
DOI URL |
[54] |
LI N, PIRAJNO F. Early Mesozoic Mo mineralization in the Qinling Orogen: an overview[J]. Ore Geology Reviews, 2017, 81(S1): 431-450.
DOI URL |
[55] |
ZHU L M, ZHANG G W, GUO B, et al. Geochemistry of the Jinduicheng Mo-bearing porphyry and deposit, and its implications for the geodynamic setting in East Qinling, P. R. China[J]. Geochemistry, 2010, 70(2): 159-174.
DOI URL |
[56] | 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1817. |
[57] | 侯增谦, 郑远川, 耿元生. 克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用[J]. 矿床地质, 2015, 34(4): 641-674. |
[58] |
HOU Z Q, ZHANG H R, PAN X F, et al. Porphyry Cu (-Mo-Au) systems in non-arc settings: examples from the Tibetan-Himalyan orogens and the Yangtze block[J]. Ore Geology Reviews, 2011, 39: 21-45.
DOI URL |
[59] |
WANG G R, WU G, XU L Q, et al. Molybdenite Re-Os age, H-O-C-S-Pb isotopes, and fluid inclusion study of the Caosiyao porphyry Mo deposit in Inner Mongolia, China[J]. Ore Geology Reviews, 2017, 81: 728-744.
DOI URL |
[60] |
WU G, LI X Z, XU L Q, et al. Age, geochemistry, and Sr-Nd-Hf-Pb isotopes of the Caosiyao porphyry Mo deposit in Inner Mongolia, China[J]. Ore Geology Reviews, 2017, 81: 706-727.
DOI URL |
[61] |
ZHANG C, LI N. Geochronology and zircon Hf isotope geochemistry of granites in the giant Chalukou Mo deposit, NE China: implications for tectonic setting[J]. Ore Geology Reviews, 2017, 81: 780-793.
DOI URL |
[62] |
ZHOU Y T, LAI Y, SHU Q H, et al. Geochronology and fluid inclusion study of the Shabutai porphyry Mo deposit, Inner Mongolia[J]. Ore Geology Reviews, 2017, 81: 745-759.
DOI URL |
[63] | 吴利仁. 中国东部中生代花岗岩类[J]. 岩石学报, 1985, 1(1): 1-10. |
[64] | KEITH J D, CHRISTIANSEN E H, CARTEN R B. The genesis of giant porphyry molybdenum deposits[J]. Society of Economic Geologists, Special Publication, 1993, 2: 285-317. |
[65] | 张作伦, 曾庆栋, 屈文俊, 等. 内蒙碾子沟钼矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 岩石学报, 2009, 25(1): 212-218. |
[66] | 翟德高, 刘家军, 王建平, 等. 内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义[J]. 现代地质, 2009, 23(2): 262-268. |
[67] | 孟繁聪, 薛怀民, 李天福, 等. 苏鲁造山带晚中生代地幔的富集特征:来自辉长岩的地球化学证据[J]. 岩石学报, 2005, 21(6): 1583-1592. |
[68] | 张宏福, 周新华, 范蔚茗, 等. 华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[J]. 岩石学报, 2005, 21(4): 1271-1280. |
[69] | 洪大卫, 王涛, 童英, 等. 华北地台和秦岭—大别—苏鲁造山带的中生代花岗岩与深部地球动力学过程[J]. 地学前缘, 2003, 10(3): 231-256. |
[70] | 阎国翰, 许保良, 牟保磊, 等. 中国北方中生代富碱侵入岩钕、锶、铅同位素特征及其意义[J]. 矿物岩石地球化学通报, 2001, 20(4): 234-237. |
[71] | 孙海瑞, 黄智龙, 冷成彪, 等. 内蒙古东乌旗迪彦钦阿木钼矿与外围铅锌银矿之间的成因联系: 来自S和Pb同位素的制约[J]. 矿床地质, 2014, 33(增刊1): 255-256. |
[72] | 袁峰, 周涛发, 范裕, 等. 庐枞盆地中生代火山岩的起源、演化及形成背景[J]. 岩石学报, 2008, 24(8): 1691-1702. |
[73] | 赵振华, 包志伟, 张伯友. 湘南中生代玄武岩类地球化学特征[J]. 中国科学:D辑, 1998, 28(增刊2): 7-14. |
[74] | 杨彪, 王正其, 肖金根, 等. 安徽黄梅尖地区基性岩脉K-Ar年代学、地球化学特征及地质意义[J]. 华东地质, 2020, 41(1): 1-9. |
[75] | 周珂, 叶会寿, 毛景文, 等. 豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄[J]. 矿床地质, 2009, 28(2): 170-184. |
[76] | 褚少雄, 曾庆栋, 刘建明, 等. 西拉沐伦钼矿带车户沟斑岩型钼-铜矿床成矿流体特征及其地质意义[J]. 岩石学报, 2010, 26(8): 2465-2481. |
[77] | 聂凤军, 孙振江, 李超, 等. 黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义[J]. 矿床地质, 2011, 30(5): 828-836. |
[78] | 张莉莉, 江思宏, 李红梅, 等. 河北丰宁撒岱沟门钼矿床成岩成矿年代学及成矿岩体地球化学特征[J]. 地球学报, 2019, 40(5): 708-724. |
[79] | 王莹. 安徽沙坪沟地区幔源岩浆活动与Mo-Pb-Zn成矿系统[D]. 北京: 北京科技大学, 2019: 1-147. |
[80] |
CHEN W, XU Z W, LU X C, et al. Petrogenesis of the Bao’anzhai granite and associated Mo mineralization, western Dabie orogen, east-central China: constraints from zircon U-Pb and molybdenite Re-Os dating, whole-rock geochemistry, and Sr-Nd-Pb-Hf isotopes[J]. International Geology Review, 2013, 55(10): 1220-1238.
DOI URL |
[81] |
ZHAI D G, LIU J J, WANG J P, et al. Zircon U-Pb and molybdenite Re-Os geochronology, and whole-rock geoche-mistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China[J]. Journal of Asian Earth Sciences, 2014, 79: 144-160.
DOI URL |
[82] |
WU C, JIANG T, WU C, et al. Geochemistry, zircon U-Pb and molybdenite Re-Os dating of the Taolaituo porphyry Mo deposit in the Central Great Hinggan Range: implications for the geodynamic evolution of northeastern China[J]. Geological Journal, 2016, 51(6): 949-964.
DOI URL |
[83] | 王科强, 张德会, 王晨昇, 等. 浙江金华银坑斑岩型钼矿床的成岩成矿作用: 来自岩石学、岩石地球化学、同位素与锆石SHRIMP U-Pb年代学的证据[J]. 地学前缘, 2015, 22(3): 357-367. |
[84] |
WU H Y, ZHANG L C, GAO J, et al. U-Pb geochronology, isotope systematics, and geochemical characteristics of the Triassic Dasuji porphyry Mo deposit, Inner Mongolia, North China: implications for tectonic evolution and constraints on the origin of ore-related granitoids[J]. Journal of Asian Earth Sciences, 2018, 165: 132-144.
DOI URL |
[85] |
ZHOU T C, ZENG Q D, CHEN P W, et al. The formation of the Caosiyao giant porphyry Mo deposit on the northern margin of the North China Craton: constraints from U-Pb and Re-Os geochronology, whole-rock geochemistry, Hf isotopes, and oxygen fugacity of the magma[J]. Geological Journal, 2019, 54(4): 2160-2184.
DOI URL |
[86] | 梁涛. 安妥岭斑岩钼矿的成因及其深部约束[D]. 北京: 中国地质大学(北京), 2010: 1-185. |
[87] | 谢玉玲, 李腊梅, 郭翔, 等. 安徽西冲钼矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关系研究[J]. 岩石学报, 2015, 31(7): 1929-1942. |
[88] | 王萍. 安徽金寨沙坪沟钼矿区岩浆岩特征及成因[D]. 合肥: 合肥工业大学, 2013: 1-86. |
[89] |
SUN S, MCDONOUGH W F. Chemical and isotopic systema-tics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[90] |
NIU Y L, REGELOUS M, WENDT I J, et al. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component[J]. Earth and Planetary Science Letters, 2002, 199(3/4): 327-345.
DOI URL |
[91] | 赵振华, 熊小林, 韩小东. 花岗岩稀土元素四分组效应形成机理探讨: 以千里山和巴尔哲花岗岩为例[J]. 中国科学:D辑, 1999, 29(4): 331-338. |
[92] |
MA H X, CHEN B, YANG M C. Magma mixing origin for the Aolunhua porphyry related to Mo-Cu mineralization, eastern Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 24(3/4): 1152-1171.
DOI URL |
[93] | 陈志广, 张连昌, 吴华英, 等. 内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J]. 岩石学报, 2008, 24(4): 879-889. |
[94] | 覃锋, 刘建明, 曾庆栋, 等. 内蒙古小东沟斑岩型钼矿床的成矿时代及成矿物质来源[J]. 现代地质, 2008, 22(2): 173-180. |
[95] |
SHU Q H, LAI Y, WANG C, et al. Geochronology, geo-chemistry and Sr-Nd-Hf isotopes of the Haisugou porphyry Mo deposit, northeast China, and their geological signifi-cance[J]. Journal of Asian Earth Sciences, 2014, 79: 777-791.
DOI URL |
[96] | DING C W, DAI P, LEON B, et al. Geochemistry and Sr-Nd-Pb isotopes of the granites from the Hashitu Mo Deposit of Inner Mongolia, China: constraints on their origin and tectonic setting[J]. Acta Geologica Sinica(English Edition), 2016, 90(1): 106-120. |
[97] | 戴宝章, 蒋少涌, 王孝磊. 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报, 2009, 25(11): 2889-2901. |
[98] | 高阳. 大别山千鹅冲和汤家坪斑岩钼矿地质地球化学及成因研究[D]. 北京: 中国地质科学院, 2014. |
[99] |
CHEN W, XU Z W, QIU W H, et al. Petrogenesis of the Yaochong granite and Mo deposit, Western Dabie orogen, eastern central China: constraints from zircon U-Pb and molybdenite Re-Os ages, whole-rock geochemistry and Sr-Nd-Pb-Hf isotopes[J]. Journal of Asian Earth Sciences, 2015, 103: 198-211.
DOI URL |
[100] | 曹晶, 叶会寿, 陈小丹, 等. 豫西雷门沟钼矿区花岗斑岩年代学、地球化学和Sr-Nd-Hf同位素研究[J]. 矿床地质, 2016, 35(4): 677-695. |
[101] | 李全忠, 谢智, 徐夕生, 等. 大别造山带早白垩世基性岩的同位素特征及下地壳物质对岩浆源区的贡献[J]. 岩石学报, 2008, 24(8): 1771-1781. |
[102] | 王世明, 马昌前, 王琳燕, 等. 大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因[J]. 地球科学:中国地质大学学报, 2010, 35(4): 572-584. |
[103] |
CHEN L, MA C Q, ZHANG J Y, et al. Mafic dykes deri-ved from Early Cretaceous depleted mantle beneath the Dabie orogenic belt: implications for changing lithosphere mantle beneath Eastern China[J]. Geological Journal, 2011, 46(4): 333-343.
DOI URL |
[104] | 李洪英, 毛景文, 王晓霞, 等. 陕西金堆城钼矿区花岗岩Sr、Nd、Pb同位素特征及其地质意义[J]. 中国地质, 2011, 38(6): 1536-1550. |
[105] | 何俊, 徐晓春, 王萍, 等. 安徽沙坪沟斑岩钼矿床赋矿岩体钾质交代作用及其微量元素和Sr-Nd同位素响应[J]. 矿床地质, 2018, 37(3): 611-629. |
[106] | 王林均, 许成, 吴敏, 等. 小秦岭碳酸岩的Sr-Nd-Pb同位素地球化学[J]. 矿物学报, 2012, 32(3): 370-378. |
[107] | 黄典豪, 侯增谦, 杨志明, 等. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 2009, 83(12): 1968-1984. |
[108] |
XU C, CHAKHMOURADIAN A R, TAYLOR R N, et al. Origin of carbonatites in the South Qinling orogen: implications for crustal recycling and timing of collision between the South and North China Blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206.
DOI URL |
[109] | 刘建明, 张宏福, 孙景贵, 等. 山东幔源岩浆岩的碳-氧和锶-钕同位素地球化学研究[J]. 中国科学: D辑, 2003, 33(10): 921-930. |
[110] |
YING J, ZHOU X, ZHANG H. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source[J]. Lithos, 2004, 75(3/4): 413-426.
DOI URL |
[111] |
YANG Y H, WU F Y, LI Q L, et al. In situ U-Th-Pb dating and Sr-Nd isotope analysis of Bastnäsite by LA-(MC)-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 543-565.
DOI URL |
[112] | 张宏福, 杨岳衡. 华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征[J]. 岩石学报, 2007, 23(2): 285-294. |
[113] |
WALLACE S R, MACKENZIE W B, BLAIR R G, et al. Geology of the Urad and Henderson Molybdenite Deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with those at Climax, Colorado[J]. Economic Geology, 1978, 73(3): 325-368.
DOI URL |
[114] | CHEN Y J, LI C, ZHANG J, et al. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type[J]. Science in China Series D: Earth Sciences, 2000, 43(S1): 82-94. |
[115] | SINCLAIR W. Porphyry deposits[C]// GOODFELLOW W D. Mineral deposits of Canada: a synconfproc of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, 2007: 223-243. |
[116] | FARMER G L, DEPAOLO D J. Origin of Mesozoic and Tertiary granite in the Western United States and implications for Pre-Mesozoic crustal structure: 2. Nd and Sr isotopic studies of unmineralized and Cu And Mo mineralized granite in the Precambrian Craton[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10141-10160. |
[117] |
KLEMM L M, PETTKE T, HEINRICH C A. Fluid and source magma evolution of the Questa porphyry Mo Deposit, New Mexico, USA[J]. Mineralium Deposita, 2008, 43(5): 533-552.
DOI URL |
[118] | 侯增谦, 郑远川, 杨志明, 等. 大陆碰撞成矿作用: Ⅰ. 冈底斯新生代斑岩成矿系统[J]. 矿床地质, 2012, 31(4): 647-670. |
[119] |
RICHARDS J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26.
DOI URL |
[120] | 英基丰, 周新华. 鲁西地区中生代碳酸岩类的微量元素和锶、钕同位素组成特征[J]. 矿物岩石地球化学通报, 2001, 20(4): 309-311. |
[121] | 夏庆霖, 陈永清. 山东龙宝山岩体稀土元素特征及矿源研究[J]. 物探与化探, 2002, 26(2): 110-112, 117. |
[122] | 李建康, 袁忠信, 白鸽, 等. 山东微山稀土矿床成矿流体的演化及对成矿的制约[J]. 矿物岩石, 2009, 29(3): 60-68. |
[123] |
WANG C, LIU J C, ZHANG H D, et al. Geochronology and mineralogy of the Weishan Carbonatite in Shandong Province, Eastern China[J]. Geoscience Frontiers, 2019, 10(2): 769-785.
DOI URL |
[124] | XIE Y L, HOU Z Q, GOLDFARB R, et al. Rare earth element deposits in China[J]. Reviews in Economic Geology, 2016, 18: 115-136. |
[125] | XIE Y L, VERPLANCK P, HOU Z Q, et al. Rare earth element deposits in China: a review and some new understanding[J]. Society of Economic Geologists, Special Publication, 2019, 22: 509-552. |
[126] | 邱检生, 王德滋, 曾家湖. 鲁西中生代富钾火山岩及煌斑岩微量元素和Nd-Sr同位素地球化学[J]. 高校地质学报, 1997, 3(4): 384-395. |
[127] | 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984: 1-110. |
[128] | 蒲广平. 牦牛坪稀土矿的特点及其开发利用[J]. 矿产保护与利用, 1994(5): 17-20. |
[129] | 黄典豪, 王义昌, 聂凤军, 等. 一种新的钼矿床类型:陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J]. 地质学报, 1985, 59(3): 241-257, 275. |
[130] | 宋文磊, 许成, 王林均, 等. 陕西黄龙铺碳酸岩脉型钼矿床成因初探[J]. 矿物学报, 2009, 29(增刊1): 250-251. |
[131] | 许成, 宋文磊, 漆亮, 等. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J]. 岩石学报, 2009, 25(2): 422-430. |
[132] |
MCDONOUGH W F, SUN S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
DOI URL |
[133] |
HOU Z Q, LIU Y, TIAN S H, et al. Formation of carbo-natite related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific Reports, 2015, 5: 10231.
DOI URL |
[134] |
HEIN J R, MIZELL K, KOSCHINSKY A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology application: comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14.
DOI URL |
[135] |
KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4(8): 535-539.
DOI URL |
[136] |
CHEN Y J, PIRAJNO F, SUI Y H. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: a case study of orogenic silver-dominated deposits and related tectonic setting[J]. Mineralium Deposita, 2004, 39(5/6): 560-575.
DOI URL |
[137] | 燕长海. 东秦岭铅锌银成矿系统内部结构[M]. 北京: 地质出版社, 2004: 1-96. |
[138] | 付治国, 瓮纪昌, 燕长海, 等. 东秦岭冷水北沟铅锌银矿床同位素地球化学特征[J]. 物探与化探, 2010, 34(1): 34-39. |
[139] |
XIE Y L, HOU Z Q, YIN S P, et al. Continuous car-bonatitic melt-fluid evolution of a REE mineralization system: evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China[J]. Ore Geology Reviews, 2009, 36(1/2/3): 90-105.
DOI URL |
[140] | 杨永飞, 李诺, 杨艳. 河南省栾川南泥湖斑岩型钼钨矿床流体包裹体研究[J]. 岩石学报, 2009, 25(10): 2550-2562. |
[141] | 祁进平, 陈衍景, 倪培, 等. 河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因[J]. 岩石学报, 2007, 23(9): 2119-2130. |
[142] | 张家菁, 王登红, 刘善宝, 等. 江西省铅山县篁碧铅锌矿区同位素年代学和稳定同位素组成[J]. 岩石学报, 2012, 28(10): 3325-3333. |
[143] | 翟德高, 刘家军, 王建平, 等. 内蒙古甲乌拉大型Pb-Zn-Ag矿床稳定同位素地球化学研究[J]. 地学前缘, 2013, 20(2): 213-225. |
[144] | 何鹏, 郭硕, 张阔, 等. 大兴安岭中南段昌图锡力银铅锌锰多金属矿床成矿物质来源及矿床成因:来自S-Pb-C-O同位素的制约[J]. 地质学报, 2019, 93(8): 2037-2054. |
[145] | TRIAL A F, RUDNICK R L, ASHWAL L D, et al. Fluid inclusion in mantle xenoliths from Ichinomegata, Japan: evidence for subducted H2O?[J]. EOS, 1984, 65: 306. |
[146] | 樊祺诚, 刘若新, 杨瑞瑛. 地幔橄榄岩矿物中富稀土元素的CO2流体包裹体及其地球化学意义[J]. 岩石学报, 1993, 9(4): 411-417. |
[147] | 谢玉玲, 潘琳, 徐九华, 等. 地幔岩中不同产状的流体-熔体包裹体及地幔流体交代作用[J]. 新疆地质, 2005, 23(1): 10-13, 109. |
[148] | 邓黎旭, 刘勇胜, 宗克清, 等. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征[J]. 地球科学, 2019, 44(4): 1113-1127. |
[149] | 郑建平, 路风香, 郭晖, 等. 金刚石中流体包裹体的研究[J]. 科学通报, 1994, 39(3): 253-256. |
[150] | RANKIN A H. Carbonatite-associated rare metal deposits: composition and evolution of ore-forming fluids: the fluid inclusion evidence[M]// LINNEN R L, SAMSON I M. Rare-earth geochemistry and mineral deposits. St. John's, Newfoundland, Canada: Geological Association of Canada, 2003, 17: 299-314. |
[151] |
XIE Y L, LI Y X, HOU Z Q, et al. A model for car-bonatite hosted REE mineralisation: the Mianning-Dechang REE Belt, Western Sichuan Province, China[J]. Ore Geology Reviews, 2015, 70: 595-612.
DOI URL |
[152] |
FAN H R, XIE Y H, WANG K Y, et al. Methane-rich fluid inclusions in skarn near the giant REE-Nb-Fe deposit at Bayan Obo, Northern China[J]. Ore Geology Reviews, 2004, 25(3/4): 301-309.
DOI URL |
[153] |
FAN H R, HU F F, YANG K F, et al. Fluid unmixing/immiscibility as an ore-forming process in the giant REE-Nb-Fe deposit, Inner Mongolia, China: evidence from fluid inclusions[J]. Journal of Geochemical Exploration, 2006, 89(1/2/3): 104-107.
DOI URL |
[154] | 吴敏, 许成, 王林均, 等. 庙垭碳酸岩型稀土矿床成矿过程初探[J]. 矿物学报, 2011, 31(3): 478-484. |
[155] | 夏群科, 程徽, 刘佳. 山东铁铜沟橄榄岩的水含量: 华北克拉通早白垩世富水岩石圈的分布[J]. 地球科学, 2017, 42(6): 853-861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||