

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 473-496.DOI: 10.13745/j.esf.sf.2025.5.32
YUAN Jianguo1(
), ZHANG Wanyi1,*(
), PANG Zhenshan1, LI Guangxu1, CHEN Gang2, GUO Lingjun3, ZHAI Qingguo4, TENG Xuejian5, WAN Yu6, SHI Chunyuan7
Received:2025-05-07
Revised:2025-06-10
Online:2025-11-25
Published:2025-11-12
Contact:
ZHANG Wanyi
CLC Number:
YUAN Jianguo, ZHANG Wanyi, PANG Zhenshan, LI Guangxu, CHEN Gang, GUO Lingjun, ZHAI Qingguo, TENG Xuejian, WAN Yu, SHI Chunyuan. The characteristics of global podiform chromites and prospecting potential in China[J]. Earth Science Frontiers, 2025, 32(6): 473-496.
| 年份 | 南非 | 土耳其 | 哈萨克 斯坦 | 印度 | 芬兰 | 其他 | 总计 |
|---|---|---|---|---|---|---|---|
| 2014 | 1 200 | 260 | 370 | 354 | — | 459 | 2 643 |
| 2015 | 1 400 | 350 | 549 | 320 | — | 422 | 3 041 |
| 2016 | 1 470 | 280 | 538 | 320 | — | 416 | 3 024 |
| 2017 | 1 650 | 650 | 458 | 350 | — | 458 | 3 566 |
| 2018 | 1 760 | 800 | 669 | 430 | 221 | 425 | 4 305 |
| 2019 | 1 640 | 1 000 | 670 | 414 | 242 | 511 | 4 477 |
| 2020 | 1 320 | 800 | 700 | 250 | 229 | 398 | 3 697 |
| 2021 | 1 860 | 696 | 650 | 425 | 227 | 362 | 4 220 |
| 2022 | 1 910 | 541 | 600 | 400 | 200 | 538 | 4 189 |
| 2023 | 1 800 | 600 | 600 | 420 | 200 | 520 | 4 140 |
| 2024 | 2 100 | 800 | 650 | 410 | 190 | 290 | 4 400 |
Table 1 Global chromite production in 2014-2024 (10 000 tons)[11,15]
| 年份 | 南非 | 土耳其 | 哈萨克 斯坦 | 印度 | 芬兰 | 其他 | 总计 |
|---|---|---|---|---|---|---|---|
| 2014 | 1 200 | 260 | 370 | 354 | — | 459 | 2 643 |
| 2015 | 1 400 | 350 | 549 | 320 | — | 422 | 3 041 |
| 2016 | 1 470 | 280 | 538 | 320 | — | 416 | 3 024 |
| 2017 | 1 650 | 650 | 458 | 350 | — | 458 | 3 566 |
| 2018 | 1 760 | 800 | 669 | 430 | 221 | 425 | 4 305 |
| 2019 | 1 640 | 1 000 | 670 | 414 | 242 | 511 | 4 477 |
| 2020 | 1 320 | 800 | 700 | 250 | 229 | 398 | 3 697 |
| 2021 | 1 860 | 696 | 650 | 425 | 227 | 362 | 4 220 |
| 2022 | 1 910 | 541 | 600 | 400 | 200 | 538 | 4 189 |
| 2023 | 1 800 | 600 | 600 | 420 | 200 | 520 | 4 140 |
| 2024 | 2 100 | 800 | 650 | 410 | 190 | 290 | 4 400 |
| [1] | 张泽南, 张照志, 潘昭帅, 等. 全球铬矿石资源国对中国供应安全度分析[J]. 中国矿业, 2019, 28(10): 69-76. |
| [2] | 李静远, 周娜, 胡珮琪, 等. 全球铬矿贸易网络格局演化及竞争力分析[J]. 中国矿业, 2024, 33(7): 48-58. |
| [3] | UK. Policy paper: UK critical minerals strategy[S/OL]. (2025-02-06)[2025-04-10]. https://www.gov.uk/government/publications/uk-critical-mineral-strategy. |
| [4] | EP. Critical raw materials for the EU enablers of the green and digital recovery[S/OL]. (2024-09-05)[2025-05-03]. https://www.europarl.europa.eu/RegData/etudes |
| [5] | METI. Japan’s new international resource strategy to secure rare metals[S/OL]. (2024-06-03)[2025-03-08]. https://www.enecho.meti.go.jp/en/category/special/article/detail_158.html. |
| [6] | 自然资源部. 全国矿产资源规划(2016-2020年)[S/OL]. (2025-03-07)[2025-03-10]. https://www.mnr.gov.cn/dt/dzdc/201611/t20161130_2323389.html. |
| [7] | USGS. International strategic minerals inventory summary report-rare-earth oxides[S/OL]. (2025-01-08)[2025-04-18]. https://pubs.usgs.gov/circ/1993/0930n/report.pdf. |
| [8] | GA. Critical minerals at geoscience Australia[S/OL]. (2025-01-09)[2025-03-16]. https://www.ga.gov.au/scientific-topics/minerals/critical-minerals. |
| [9] | CG. The Canadian critical minerals strategy[S/OL]. (2025-03-09)[2025-03-17]. https://www.canada.ca/en/campaign/critical-minerals-in-canada/canadian-criticalminerals-strategy.html. |
| [10] | 王学求, 李雪龙, 吴慧, 等. 关键元素超长富集与战略资源效应[J]. 地学前缘, 2025, 32(1): 11-22. |
| [11] | USGS. Mineral commodity summaries 2024[S/OL]. (2025-04-09)[2025-04-18]. https://doi.org/10.3133/mcs2024. |
| [12] | KOLELI N, DEMIR A. Environmental materials and waste: resource recovery and pollution prevention[M]. Academic Press. Chapter 11-Chromite, 2016: 245-263. |
| [13] | 周佐民, 刘晓阳, 龚鹏辉, 等. 铬铁矿成矿作用与研究进展[J]. 中国地质, 2023, 50(2): 425-441. |
| [14] | 袁小晶, 李鹏远. 中国铬资源全球布局分析[J]. 中国矿业, 2019, 28(7): 60-64. |
| [15] | 王修, 刘冲昊, 王安建. 全球铬矿资源特征、供需形势及企业竞争分析[J]. 中国矿业, 2024, 34(2): 449-457. |
| [16] | PAKTUNC A D. Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle[J]. Ore Geology Reviews, 1990, 5(3): 211-222. |
| [17] | 高永伟, 洪俊, 吕鹏瑞, 等. 哈萨克斯坦乌拉尔肯皮赛铬铁矿资源基地地质背景、成矿特征及矿床成因[J]. 西北地质, 2023, 56(1): 142-155. |
| [18] | SCHULTE R, TAYLOR R, PIATAK N, et al. Stratiform chromite deposit model[M]. Virginia: USGS, 2010. |
| [19] | 马林霄, 梁成, 卢天骄, 等. 南非布什维尔德杂岩体西翼赫尔辛基铬铁矿地质特征[J]. 矿产勘查, 2021, 12(1): 86-92. |
| [20] | 阮涛, 钟宏, 柏中杰, 等. 蛇绿岩豆荚状铬铁矿床研究进展与展望[J]. 矿物岩石地球化学通报, 2023, 42(5): 1078-1100, 961, 964. |
| [21] | 王希斌, 鲍佩声. 豆荚状铬铁矿床的成因: 以西藏自治区罗布莎铬铁矿床为例[J]. 地质学报, 1987(2): 166-181, 201-202. |
| [22] | 田亚洲. 新疆萨尔托海蛇绿岩中高铝型铬铁矿成因[D]. 北京: 中国地质科学院, 2015. |
| [23] | ARAI S, MIURA M. Formation and modification of chromitites in the mantle[J]. Lithos, 2016, 264: 277-295. |
| [24] | 杨经绥, 连东洋, 吴魏伟, 等. 蛇绿岩中铬铁矿研究的问题与思考[J]. 地质学报, 2022, 96(5): 1608-1634. |
| [25] | LAGO B L, RABINOWICZ M, NICOLAS A. Podiform chromite ore bodies: a genetic model[J]. Journal of Petrology, 1982, 23(1): 103-125. |
| [26] | 宋述光, 张立飞, 牛耀龄, 等. 大陆碰撞造山带的两类橄榄岩: 以柴北缘超高压变质带为例[J]. 地学前缘, 2007, 14(2): 129-137. |
| [27] | ZHOU M F, BAI W J. Chromite deposits in China and their origin[J]. Mineralium Deposita, 1992, 27(3): 192-199. |
| [28] | 郝梓国. 豆荚型铬铁矿床的研究现状[J]. 地质地球化学, 1989, 3: 15-20. |
| [29] | ZHOU M-F, ROBINSON P T. Origin and tectonic environment of podiform chromite deposits[J]. Economic Geology, 1997, 92(2): 259-262. |
| [30] | RUSKOV T, SPIROV I, GEORGIEVA M, et al. Mössbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: implications for a highly reduced deep mantle[J]. Journal of Metamorphic Geology, 2010, 28(5): 551-560. |
| [31] | SATSUKAWA T, GRIFFIN W L, PIAZOLO S, et al. Messengers from the deep: fossil wadsleyite-chromite microstructures from the Mantle Transition Zone[J]. Scientific Reports, 2015, 5: 16484. |
| [32] | 李江海, 牛向龙, 黄雄南, 等. 豆荚状铬铁矿: 古大洋岩石圈残片的重要证据[J]. 地学前缘, 2002, 9(4): 235-246. |
| [33] | 史仁灯, 杨经绥, 黄启帅, 等. 古老大陆岩石圈地幔与蛇绿岩型铬铁矿床成因机制探讨[C]// 首届全国矿产勘查大会.合肥, 2021. |
| [34] | ARAI S, YURIMOTO H. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products[J]. Economic Geology, 1994, 89(6): 1279-1288. |
| [35] | ZHOU M-F, ROBINSON P T. High-Cr and high-Al podiform chromitites, western China: relationship to partial melting and melt/rock reaction in the upper mantle[J]. International Geology Review, 1994, 36(7): 678-686. |
| [36] | CASSARD D, NICOLAS A, RABINOVITCH M, et al. Structural classification of chromite pods in southern New Caledonia[J]. Economic Geology, 1981, 76(4): 805-831. |
| [37] | 金振民, KOHLSTEDT D L, 金淑燕. 铬铁矿预富集和上地幔部分熔融关系的实验研究[J]. 地质论评, 1996, 5: 424-429. |
| [38] | 罗照华, 江秀敏, 刘晓, 等. 蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记: 来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据[J]. 地学前缘, 2019, 26(1): 272-285. |
| [39] | 刘婷, 郑有业, 郭统军. 大中型豆荚状铬铁矿床地球化学特征研究[J]. 地质科技情报, 2019, 38(2): 217-225. |
| [40] | XIONG F H, YANG J S, ROBINSON P T, et al. Diamonds discovered from high-Cr podiform chromitites of bulqiza, eastern mirdita ophiolite, Albania[J]. Acta Geologica Sinica - English Edition, 2017, 91(2): 455-468. |
| [41] | PEIGHAMBARI S, UYSAL I, STOSCH H G, et al. Genesis and tectonic setting of ophiolitic chromitites from the Dehsheikh ultramafic complex (Kerman, southEastern Iran): inferences from platinum-group elements and chromite compositions[J]. Ore Geology Reviews, 2016, 74: 39-51. |
| [42] | GHAZI A M, HASSANIPAK A A, MAHONEY J J, et al. Geochemical characteristics, 40Ar-39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran[J]. Tectonophysics, 2004, 393(1/2/3/4): 175-196. |
| [43] | ÜŞÜMEZSOY Ş. On the formation mode of the Guleman chromite deposits (Turkey)[J]. Mineralium Deposita, 1990, 25(2): 89-95. |
| [44] | URAL M, DENIZ K, SAYIT K. Mafic volcanic and subvolcanic rocks from the Yüksekova complex in the içme-Kesikköprü province (East of Elaziğ, Eastern Turkey): whole-rock geochemistry and confocal Raman spectroscopy characterization[J]. IOP Conference Series: Earth and Environmental Science, 2019, 362(1): 012122. |
| [45] | 马文鑫, 何胜, 苏世杰, 等. 西藏罗布莎地区地球物理异常与铬铁矿成矿特征及成矿预测[J]. 中国锰业, 2023, 41(4): 74-82, 88. |
| [46] | 熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163. |
| [47] | TZAMOS E, FILIPPIDIS A, RASSIOS A, et al. Major and minor element geochemistry of chromite from the Xerolivado-Skoumtsa mine, Southern Vourinos: implications for chrome ore exploration[J]. Journal of Geochemical Exploration, 2016, 165: 81-93. |
| [48] | TZAMOS E, KAPSIOTIS A, FILIPPIDIS A, et al. Metallogeny of the Chrome Ores of the Xerolivado-Skoumtsa Mine, Vourinos Ophiolite, Greece: implications on the genesis of IPGE-bearing high-Cr chromitites within a heterogeneously depleted mantle section[J]. Ore Geology Reviews, 2017, 90: 226-242. |
| [49] | FILIPPIDIS A. Chemical variation of chromite in the central sector of Xerolivado chrome mine of Vourinos, Western Macedonia, Greece[J]. Neues Jahrbuch Für Mineralogie - Monatshefte, 1997, 1997(8): 354-370. |
| [50] | DILEK Y, FURNES H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 2009, 113(1): 1-20. |
| [51] | KHAN M, KERR A C, MAHMOOD K. Formation and tectonic evolution of the Cretaceous-Jurassic Muslim Bagh ophiolitic complex, Pakistan: implications for the composite tectonic setting of ophiolites[J]. Journal of Asian Earth Sciences, 2007, 31(2): 112-127. |
| [52] | 张博扬, 熊发挥, 徐向珍, 等. 西藏班公湖—怒江缝合带中段东巧豆荚状铬铁矿地球化学特征及构造意义[J]. 地质学报, 2024, 98(11): 3368-3392. |
| [53] | 曹楚奇, 杨经绥, 杨胜标, 等. 西藏班公湖-怒江缝合带中段东巧豆荚状铬铁矿特征及构造背景[J]. 岩石学报, 2022, 38(11): 3391-3410. |
| [54] | 董玉飞. 西藏班公湖—怒江缝合带中段东巧地幔橄榄岩和豆荚状铬铁矿成因研究[D]. 北京: 中国地质大学(北京), 2019. |
| [55] | PROENZA J, MELGAREJO J C. Granates de la serie gr osul aria-u va r ovita en cromititas podiformes del Yacimiento Mercedita (Cuba)[J]. Geogaceta, 1996, 20: 1517-1519. |
| [56] | 芮会超. 古巴东部莫阿—巴拉科阿蛇绿岩及豆荚状铬铁矿成因[D]. 北京: 中国地质大学(北京), 2022. |
| [57] | ITURRALDE-VINENT M A, DIAZ OTERO C, RODRIGUEZ-VEGA A, et al. Tectonic implications of paleontologic dating of Cretaceous-Danian sections of Northeastern Cuba[J]. Geol Acta, 2005. |
| [58] | GARUTI G, ZACCARINI F, MOLOSHAG V, et al. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: an example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia[J]. The Canadian Mineralogist, 1999, 37(5): 1099-1115. |
| [59] | GARUTI G, EVGENY E V, THALHAMMER O A, et al. Chromitites of the Urals(part 1): overview of mineral chemistry and geo-tectonic setting[J]. Ofioliti, 2012, 37(1): 27-53. |
| [60] | SAVELIEVA G N, SUSLOV P V, LARIONOV A N. Vendian tectono-magmatic events in mantle ophiolitic complexes of the polar Urals: U-Pb dating of zircon from chromitite[J]. Geotectonics, 2007, 41(2): 105-113. |
| [61] | SAVELIEVA G N. Ophiolites in European variscides and uralides: geodynamic settings and metamorphism[J]. Geotectonics, 2011, 45(6): 439-452. |
| [62] | 张勤军, 朱志新. 新疆萨尔托海铬铁矿特征及大地构造环境[J]. 新疆地质, 2021, 39(3): 404-409. |
| [63] | 杨合群. 萨尔托海式铬铁矿[J]. 西北地质, 2018, 51(2): 56. |
| [64] | 王成, 任利民, 张晓军, 等. 内蒙古贺根山蛇绿岩中铬铁矿特征及大地构造环境[J]. 矿物岩石地球化学通报, 2018, 37(1): 139-148. |
| [65] | 韩雪, 王兴文, 张昊. 内蒙贺根山—索伦山铬铁矿调查评价项目成果报告[R]. 呼和浩特: 中国冶金地质总局第一地质勘查院, 2018. |
| [66] | 薛建平, 苏尚国, 陈海舰, 等. 内蒙古索伦山地区地幔橄榄岩中豆荚状铬铁找矿前景[J]. 科学技术与工程, 2017, 17(25): 25-32. |
| [67] | 陈喜峰, 叶锦华, 陈秀法. 菲律宾阿科杰(Acoje)铬铁矿床研究进展[C]// 第八届全国成矿理论与找矿方法学术讨论会. 南昌, 2017. |
| [68] | YUMUL G P, DIMALANTA C B, JUMAWAN F T. Geology of the southern zambales ophiolite complex, Luzon, Philippines[J]. Island Arc, 2000, 9(4): 542-555. |
| [69] | ABUAMARAH B A. Geochemistry and fore-arc evolution of upper mantle peridotites in the Cryogenian Bir Umq ophiolite, Arabian Shield, Saudi Arabia[J]. International Geology Review, 2020, 62(5): 630-648. |
| [70] | 朱生英. 苏丹英格萨纳山超基性岩与铬铁矿床地质特征及控矿因素的分析[J]. 西北地质, 1980, 4: 59-66. |
| [71] | 黄增保. 甘肃大道尔吉铬铁矿矿床成矿岩体地球化学特征及其研究意义[D]. 成都: 成都理工大学, 2012. |
| [72] | 周会武, 李志林. 玉石沟铬铁矿床的成因[J]. 甘肃地质学报, 1995(1) : 1-10. |
| [73] | 刘嘉, 蔡鹏捷. 基性-超基性岩铜镍矿与铬铁矿含矿性判别研究[J]. 地质找矿论丛, 2019, 34(4): 499-509. |
| [74] | 孙鼐, 彭亚鸣. 火成岩石学[M]. 北京: 地质出版社, 1985. |
| [75] | 代俊峰, 宫磊, 霍永豪. 含矿基性-超基性岩的镁铁比值[J]. 地质找矿论丛, 2016, 31(1): 42-46. |
| [76] | 倪善芹, 侯泉林, 琚宜文, 等. 铂族元素作为地球化学指示剂有关问题讨论[J]. 地质论评, 2007(5): 631-641. |
| [77] | BARNES S J, NALDRETT A J, GORTON M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53(3/4): 303-323. |
| [78] | ECONOMOU-ELIOPOULOS M. Platinum-group element distribution in chromite ores from ophiolite complexes: implications for their exploration[J]. Ore Geology Reviews, 1996, 11(6): 363-381. |
| [79] | 邹海波, 周新民, 周国庆. 含豆荚状铬铁矿蛇绿岩与非含矿蛇绿岩[J]. 地质与勘探, 1992(4): 30-33, 46. |
| [80] | MOHAMED-ALI M A, IBRAHIM S A. Geophysical and geochemical exploration of the gold bearing placer deposits in the southern blue Nile (Sudan)[C]// On Significant Applications of Geophysical Methods. Cham: Springer, 2019: 147-150. |
| [81] | 何兰芳, 李亮, 刘鸿飞, 等. 铬铁矿地球物理勘探: 回顾与展望[J]. 地质学报, 2023, 97(11): 3786-3801. |
| [82] | ALSHAREEF S, HU X Y, WANG J H, et al. Integrated geological and geophysical approaches to map structural controls of chromite deposits associated with ultramafic-mafic complexes of the Ingasana in the southwestern Blue Nile metallogenic province, SE Sudan[J]. Ore Geology Reviews, 2025, 177: 106441. |
| [83] | 邱添, 杨经绥, 吴魏伟, 等. 阿尔巴尼亚布尔齐泽豆荚状铬铁矿成因及富Ti熔体交代记录[C]// 第十届全国成矿理论与找矿方法学术讨论会. 西安, 2023. |
| [84] | FURNES H, DE WIT M, DILEK Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation[J]. Geoscience Frontiers, 2014, 5(4): 571-603. |
| [85] | 陈艳虹, 杨经绥. 豆荚状铬铁矿床研究回顾与展望[J]. 地球科学, 2018, 43(4): 991-1010. |
| [86] | 潘桂棠. 全球洋-陆转换中的特提斯演化[J]. 特提斯地质, 1994: 23-40. |
| [87] | 张洪瑞, 侯增谦, 杨志明. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29(1): 113-133. |
| [88] | ŞENGÖR A M C. Plate tectonics and orogenic research after 25 years: synopsis of a Tethyan perspective[J]. Tectonophysics, 1991, 187(1/2/3): 315-344. |
| [89] | ŞENGÖR A M C. Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey[J]. Geological Society, London, Special Publications, 1987, 28(1): 575-589. |
| [90] | HOXHA L. Structural control of Bulqiza chromite deposits: a case history[J]. Journal of Alpine Geology, Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Österreich, 2007, 48: 52-58. |
| [91] | BEQIRAJ A, MASI U, et al. Geochemical characterization of podiform chromite ores from the ultramafic massif of Bulqiza (Eastern Ophiolitic Belt, Albania) and hints for exploration[J]. Exploration and Mining Geology, 2000, 9(2): 149-156. |
| [92] | QIU T, YANG J S, MILUSHI, Ibrahim, et al. Petrology and PGE abundances of high-Cr and high-Al podiform chromitites and peridotites from the Bulqiza Ultramafic massif, eastern Mirdita ophiolite, Albania[J]. Acta Geologica Sinica - English Edition, 2018, 92(3): 1063-1081. |
| [93] | ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. |
| [94] | HARALD F, INNA S. Ophiolites of the central asian orogenic belt: geochemical and petrological characterization and tectonic settings[J]. Geoscience Frontiers, 2019, 10(4): 1255-1284. |
| [95] | SAVELIEV D E, MAKATOV D K, RAKHIMOV I R, et al. Silicates from Lherzolites in the south-eastern part of the Kempirsay Massif as the source for giant chromitite deposits (the southern Urals, Kazakhstan)[J]. Minerals, 2022, 12(8): 1061. |
| [96] | 郭令智, 施央申, 马瑞士. 西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化[J]. 地质学报, 1983(1): 11-21. |
| [97] | NICOLAS A, GIRARDEAU J, MARCOUX J, et al. The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere[J]. Nature, 1981, 294(5840): 414-417. |
| [98] | ZHANG P-F, ZHOU M-F, YUMUL G P Jr. Coexistence of high-Al and high-Cr chromite orebodies in the Acoje block of the Zambales ophiolite, Philippines: evidence for subduction initiation[J]. Ore Geology Reviews, 2020, 126: 103739. |
| [99] | BACUTA G C Jr, KAY R W, GIBBS A K, et al. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines[J]. Journal of Geochemical Exploration, 1990, 37(1): 113-145. |
| [100] | 鲍佩声. 元古代蛇绿岩及铬铁矿[J]. 岩石学报, 2019, 35(10): 2971-2988. |
| [101] | 王登红, 应立娟, 王成辉, 等. 中国贵金属矿床的基本成矿规律与找矿方向[J]. 地学前缘, 2007, 14(5): 71-81. |
| [102] | 张建, 王登红, 付平, 等. 中国铬矿资源形势及其找矿方向[J]. 西北地质, 2009, 42(3): 69-76. |
| [103] | 王登红, 徐志刚, 盛继福, 等. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 2014, 88(12): 2176-2191. |
| [104] | 熊盛青, 杨海, 范振宇, 等. 基于航磁资料的中国蛇绿岩带研究[J]. 地质学报, 2024, 98(3): 725-757. |
| [105] | YAN T T, WANG X Q, LIU D S, et al. Continental-scale spatial distribution of chromium (Cr) in China and its relationship with ultramafic-mafic rocks and ophiolitic chromite deposit[J]. Applied Geochemistry, 2021, 126: 104896. |
| [106] | 杨毅恒, 曾乐, 邓凡, 等. 中国铬铁矿资源潜力分析及找矿方向[J]. 地学前缘, 2018, 25(3): 138-147. |
| [107] | 陆国隆, 祝庆敏, 朱永峰. 贺根山豆荚状铬铁矿中硅酸盐包体及其地质意义[J]. 地质学报, 2021, 95(6): 1805-1821. |
| [108] | 陈国超, 张晓飞, 裴先治, 等. 雅鲁藏布江中段日喀则地区却顶布—路曲地幔橄榄岩岩石地球化学特征、成因及其地质意义[J]. 地学前缘, 2024, 31(3): 1-19. |
| [109] | 张万平, 莫宣学, 朱弟成, 等. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学[J]. 成都理工大学学报(自然科学版), 2011, 38(5): 538-548. |
| [110] | 徐向珍, 杨经绥, 郭国林, 等. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究[J]. 岩石学报, 2011, 27(11): 3179-3196. |
| [111] | 刘飞, 李观龙, 杨经绥, 等. 西藏班公湖—怒江缝合带东段丁青蛇绿岩铬铁矿地质背景探讨[C]// 首届全国矿产勘查大会. 合肥, 2021. |
| [112] | LIU C, WU F, LIU T, et al. An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites[J]. Fundamental Research, 2022, 2(1): 74-83 |
| [113] | 张夏楠, 李光明, 秦克章, 等. 西藏班公湖—怒江带西段龙荣矿集区的岩浆活动及其对成矿的指示[J]. 岩石学报, 2025, 41(2): 585-599. |
| [114] | 李观龙, 刘飞, 杨经绥, 等. 蛇绿岩中识别出不同类型的方辉橄榄岩及其岩相分带: 来自丁青蛇绿岩专项地质调查的证据[J]. 岩石学报, 2022, 38(11): 3375-3390. |
| [115] | TANG Y, ZHAI Q-G, CHUNG S L, et al. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan Plateau[J]. GSA Bulletin, 2020, 132(9/10): 2202-2220. |
| [116] | 龚雪婧, 张腾蛟, 肖荣阁. 中国豆荚状铬铁矿床成因的研究现状及进展[C]// 中国矿物岩石地球化学学会第14届学术年会. 南京, 2013. |
| [117] | ZHANG X H, YUAN L L, XUE F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1): 311-327. |
| [118] | MIAO L C, FAN W M, LIU D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6): 348-370. |
| [119] | 滕学建, 王树庆, 韩雪, 等. 内蒙古贺根山地区铬铁矿地质特征及找矿预测[J]. 华北地质, 2024, 47(4): 1-11. |
| [120] | 白文吉, 李行. 内蒙古贺根山蛇绿岩型铬铁矿中固体包裹体矿物化学成分研究[J]. 矿物学报, 1993, 3: 204-213. |
| [121] | 白文吉, 李行, LE BEL L. 内蒙古贺根山蛇绿岩的铬铁矿床生成条件的讨论[C]// 北京: 中国地质科学院地质研究所文集, 1985: 1-19. |
| [122] | 陈汉. 甘肃地矿史话[M]. 兰州: 甘肃文化出版社, 2011. |
| [123] | 鲍佩声, 王希斌, 彭根永, 等. 中国铬铁矿[M]. 北京: 科学出版社, 1999. |
| [124] | 洪俊, 姚文光, 计文化, 等. 巴基斯坦基性-超基性岩铬尖晶石矿物化学及铬铁矿找矿潜力分析[J]. 新疆地质, 2015, 33(2): 251-257. |
| [125] | 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因: 质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761. |
| [126] | 董连慧, 李基宏, 李凤鸣, 等. 新疆铬铁矿成矿条件与勘查部署建议[J]. 新疆地质, 2012, 30(3): 292-299. |
| [1] | CHEN Yanyan, WEN Zhixin, TAO Shizhen, WU Wei, LIU Xiangbai, YANG Xiuchun, GAO Jianrong, LIU Qingyao, LI Jing, YANG Yiqing, CHEN Yue. Enrichment mechanism and resource potential of helium in shale gas and coalbed methane plays: A case study of shale gas in Southern Sichuan Basin and coalbed methane in Eastern Ordos Basin [J]. Earth Science Frontiers, 2025, 32(5): 244-257. |
| [2] | HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting [J]. Earth Science Frontiers, 2025, 32(1): 127-141. |
| [3] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
| [4] | ZHANG Bimin, WANG Xueqiu, ZHOU Jian, WANG Wei, LIU Hanliang, LIU Dongsheng, Sounthone LAOLO, Phomsylalai SOUKSAN, XIE Miao, DONG Chunfang, LIU Qingqing, LU Yuexin, WANG Haonan, HE Bin. Copper mineralization pattern and machine learning-based copper prospectivity prediction in Laos [J]. Earth Science Frontiers, 2025, 32(1): 61-77. |
| [5] | ZENG Zhaoyang, NING Shuzheng, WANG Ziguo. Strategic mineral resources in coal: A case study on gallium and germanium [J]. Earth Science Frontiers, 2024, 31(6): 331-349. |
| [6] | WEI Haoyuan, ZHU Zongliang, XIAO Wenhua, WEI Jun, WEI Deqiang, YUAN Bochao, XIANG Xin. Oil-gas geological features and exploration direction in the Qingxi Sag, Jiuquan Basin [J]. Earth Science Frontiers, 2023, 30(1): 69-80. |
| [7] | WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, ZHENG Min, CHEN Xiaoming, QI Xuefeng. Petroleum resource potential, distribution and key exploration fields in China [J]. Earth Science Frontiers, 2022, 29(6): 146-155. |
| [8] | LI Dawei, MI Shiyun, WEN Zhixin, WANG Zhaoming, LIU Zuodong, WANG Yonghua, WU Zhenzhen, NIU Min, ZHANG Qian. Hydrocarbon accumulation conditions in and resource potential of the Asia-Pacific region [J]. Earth Science Frontiers, 2022, 29(6): 136-145. |
| [9] | XU Xuhui, LU Jianlin, WANG Baohua, ZHENG Lunju, FANG Chengming, CAI Pengrui, ZHAO Linjie. Marine basins in China: Petroleum resource dynamic evolution and exploration directions [J]. Earth Science Frontiers, 2022, 29(6): 73-83. |
| [10] | FENG Jun, ZHANG Qi, LUO Jianmin. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas [J]. Earth Science Frontiers, 2022, 29(4): 403-411. |
| [11] | ZHANG Baolin, LÜ Guxian, YU Jianguo, LIANG Guanghe, LI Zhiyuan, XU Xingwang, HU Baoqun, WANG Hongcai, BI Minfeng, JIAO Jiangang, WANG Cuizhi. Classification of tectonic deformation lithofacies based on deep geophysical information [J]. Earth Science Frontiers, 2022, 29(1): 413-426. |
| [12] | SUN Minghang, LIU Demin, KANG Zhiqiang, GUAN Yanwu, LIANG Guoke, HUANG Xiqiang, YE Jiahui, GUO Shangyu, SUN Xingting, TANG Wei, FENG Minhao. Analysis of hot-dry geothermal resource potential in southeastern Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 72-80. |
| [13] | LUO Jianmin,WANG Xiaowei,ZHANG Qi,SONG Bingtian,YANG Zhongming,ZHAO Yanqing. Application of geological big data to quantitative target area optimization for regional mineral prospecting in China [J]. Earth Science Frontiers, 2019, 26(4): 76-83. |
| [14] | SONG Xianglong,LI Nan,XIAO Keyan,FAN Jianfu,CUI Ning. Design and implementation of a information management system for the national mineral resources potential evaluation project. [J]. Earth Science Frontiers, 2018, 25(3): 196-203. |
| [15] | CAO Ye,TANG Yao,YAO Meijuan,SHANG Pengqiang,ZOU Zhendong,QIU Guoyu,XIONG Xianxiao. Geological characteristics and resource potential analysis of sulfur deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 179-195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||