Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (6): 265-276.DOI: 10.13745/j.esf.sf.2022.8.3
Previous Articles Next Articles
YANG Fengli1,2(), XU Mingchen1,2,*(), ZHUANG Yuan2, ZHAO Xixi1, HU Yuyang2, YANG Ruiqing2
Received:
2022-07-07
Revised:
2022-07-27
Online:
2022-11-25
Published:
2022-10-20
Contact:
XU Mingchen
CLC Number:
YANG Fengli, XU Mingchen, ZHUANG Yuan, ZHAO Xixi, HU Yuyang, YANG Ruiqing. Paleozoic paleogeographic reconstruction and evolution of the three continental blocks of central and western China[J]. Earth Science Frontiers, 2022, 29(6): 265-276.
Fig.1 Sketch maps of the Tarim (a), Sichuan (b) and Ordos (c) basins of central and western China showing the tectonic units of the study area and distribution of paleomagnetic sampling sites. Modified after [20].
盆地 | 层位 | 时代/Ma | 采样钻井 | 岩性 | 样品 个数 | 精度 参数 | 磁倾角/ (°) | 置信区间 α95/(°) | 古纬度/ (°) |
---|---|---|---|---|---|---|---|---|---|
塔里木 盆地 | 中二叠统库普库满苏组(P2k) | 270~265 | Z18 | 火山碎屑岩 | 4 | 21.54 | 46.0 | 20.4 | 27.4 |
下石炭统巴楚组(C1b) | 359~326 | S108,AT19, BT6 | 岩屑石英砂岩 | 16 | 9.30 | 44.2 | 13.2 | 25.9 | |
上泥盆统东河塘组(D3d) | 385~359 | Z18 | 砂岩 | 4 | 26.91 | 19.3 | 29.0 | 9.9 | |
下志留统柯坪塔格组(S1k) | 441~438 | AT40,AT19, Z18,S9,BT6 | 岩屑石英砂岩 | 36 | 15.42 | 35.8 | 8.1 | 19.8 | |
奥陶系硫磺山群(O2-3l) | 467~456 | S108,KT1 | 灰岩 | 4 | 36.43 | 37.1 | 24.6 | 20.7 | |
奥陶系鹰山组(O1-2y) | 478~467 | Z18,BT6,SB2 | 泥晶灰岩 | 19 | 4.38 | 32.1 | 23.7 | 17.4 | |
下寒武统肖尔布拉克组( | 530~513 | XH1,KT1, DG1 | 泥岩、 泥晶白云岩 | 8 | 19.50 | 42.5 | 9.8 | 24.6 | |
鄂尔多 斯盆地 | 下二叠统太原组(P1t) | 304~298 | XF5,NS1, J77,DB8 | 砂岩 | 10 | 13.63 | 33.2 | 13.3 | 18.1 |
中奥陶统马家沟组(O2m) | 471~460 | XF5,DB8,B2 | 白云岩、灰岩 | 13 | 12.42 | 14.8 | 13.8 | 7.5 | |
中寒武统张夏组( | 506~500 | CT1,DB8,XH1 | 白云岩、灰岩 | 6 | 19.12 | 35.5 | 15.4 | 19.6 | |
四川 盆地 | 下志留统龙马溪组(S1l) | 444~441 | LY3,YY2 | 页岩 | 6 | 16.94 | 9.3 | 16.2 | 4.7 |
下寒武统筇竹寺组( | 520~514 | JS103 | 暗色灰岩 | 3 | 37.01 | 23.6 | 24.9 | 12.3 | |
震旦系灯影组(Z2d) | 551~541 | JS103 | 白云岩 | 3 | 21.82 | 39.3 | 31.6 | 22.3 |
Table 1 Summary of Paleozoic paleomagnetic sample data and testing results for the three basins (Tarim, Ordos and Sichuan basins) in the study area
盆地 | 层位 | 时代/Ma | 采样钻井 | 岩性 | 样品 个数 | 精度 参数 | 磁倾角/ (°) | 置信区间 α95/(°) | 古纬度/ (°) |
---|---|---|---|---|---|---|---|---|---|
塔里木 盆地 | 中二叠统库普库满苏组(P2k) | 270~265 | Z18 | 火山碎屑岩 | 4 | 21.54 | 46.0 | 20.4 | 27.4 |
下石炭统巴楚组(C1b) | 359~326 | S108,AT19, BT6 | 岩屑石英砂岩 | 16 | 9.30 | 44.2 | 13.2 | 25.9 | |
上泥盆统东河塘组(D3d) | 385~359 | Z18 | 砂岩 | 4 | 26.91 | 19.3 | 29.0 | 9.9 | |
下志留统柯坪塔格组(S1k) | 441~438 | AT40,AT19, Z18,S9,BT6 | 岩屑石英砂岩 | 36 | 15.42 | 35.8 | 8.1 | 19.8 | |
奥陶系硫磺山群(O2-3l) | 467~456 | S108,KT1 | 灰岩 | 4 | 36.43 | 37.1 | 24.6 | 20.7 | |
奥陶系鹰山组(O1-2y) | 478~467 | Z18,BT6,SB2 | 泥晶灰岩 | 19 | 4.38 | 32.1 | 23.7 | 17.4 | |
下寒武统肖尔布拉克组( | 530~513 | XH1,KT1, DG1 | 泥岩、 泥晶白云岩 | 8 | 19.50 | 42.5 | 9.8 | 24.6 | |
鄂尔多 斯盆地 | 下二叠统太原组(P1t) | 304~298 | XF5,NS1, J77,DB8 | 砂岩 | 10 | 13.63 | 33.2 | 13.3 | 18.1 |
中奥陶统马家沟组(O2m) | 471~460 | XF5,DB8,B2 | 白云岩、灰岩 | 13 | 12.42 | 14.8 | 13.8 | 7.5 | |
中寒武统张夏组( | 506~500 | CT1,DB8,XH1 | 白云岩、灰岩 | 6 | 19.12 | 35.5 | 15.4 | 19.6 | |
四川 盆地 | 下志留统龙马溪组(S1l) | 444~441 | LY3,YY2 | 页岩 | 6 | 16.94 | 9.3 | 16.2 | 4.7 |
下寒武统筇竹寺组( | 520~514 | JS103 | 暗色灰岩 | 3 | 37.01 | 23.6 | 24.9 | 12.3 | |
震旦系灯影组(Z2d) | 551~541 | JS103 | 白云岩 | 3 | 21.82 | 39.3 | 31.6 | 22.3 |
Fig.3 Examples of typical demagnetization behaviors before tilt correction in samples collected from three basins the study area. Panel (a): Orthogonal (Zijderveld) vector plots. Panel (b): Decay of natural remanent magnetization (NRM) during thermal demagnetization.
Fig.4 Stereographic projections of the principle axes of the ellipsoid of AMS for the samples from the Tarim (a), Ordos (b) and Sichuan (c) basins in the study area
Fig.5 Comparison of paleomagnetic data between this study and previous research results (after [3,7-8] for the Tarim (a), North China (b) and South China (c) in the study area)
Fig.7 Migration paths of the three continental blocks of China (North China, South China and Tarim) and world's major continental blocks during the Paleozoic
[1] |
SCOTESE C R, BAMBACH R K, BARTON C, et al. Paleozoic base maps[J]. The Journal of Geology, 1979, 87(3): 217-277.
DOI URL |
[2] | 朱日祥, 杨振宇, 吴汉宁, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学D辑: 地球科学, 1998, 28(增刊1): 1-16. |
[3] | 万天丰, 朱鸿. 古生代与三叠纪中国各陆块在全球古大陆再造中的位置与运动学特征[J]. 现代地质, 2007, 21(1): 1-13. |
[4] |
DOMEIER M, TORSVIK T H. Plate tectonics in the late Paleozoic[J]. Geoscience Frontiers, 2014, 5(3): 303-350.
DOI URL |
[5] |
ZHAO G C, WANG Y J, HUANG B C, et al. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186(1): 262-286.
DOI URL |
[6] |
李江海, 王洪浩, 李维波, 等. 显生宙全球古板块再造及构造演化[J]. 石油学报, 2014, 35(2): 207-218.
DOI |
[7] | 黄宝春, 周烑秀, 朱日祥. 从古地磁研究看中国大陆形成与演化过程[J]. 地学前缘, 2008, 15(3): 348-359. |
[8] |
HUANG B C, YAN Y G, PIPER J D A, et al. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times[J]. Earth-Science Reviews. 2018, 186(1): 8-36.
DOI URL |
[9] | 李三忠, 杨朝, 赵淑娟, 等. 全球早古生代造山带(Ⅳ):板块重建与Carolina超大陆[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1026-1041. |
[10] | 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200. |
[11] | 朱夏. 试论古全球构造与古生代油气盆地[J]. 石油与天然气地质, 1983, 4(1): 1-33. |
[12] |
SETON M, MüLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3/4): 212-270.
DOI URL |
[13] | MüLLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth & Planetary Sciences, 2016, 44(1): 107-138. |
[14] | 李三忠, 余珊, 赵淑娟, 等. 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质, 2013, 33(3): 65-94. |
[15] |
HUANG B C, YANG Z Y, OTOFUJI Y, et al. Early Paleozoic paleomagnetic poles from the western part of the North China Block and their implications[J]. Tectonophysics, 1999, 308(3): 377-402.
DOI URL |
[16] |
WU H N, ZHU R X, COURTILLOT V. Paleomagnetic results of Paleozoic and Mesozoic rocks from Xingshan-Zigui section in Hubei Province, South China[J]. Science in China, 1999, 42(2): 182-194.
DOI URL |
[17] | 方大钧, 金国海, 姜莉萍, 等. 塔里木盆地古生代古地磁结果及其构造地质意义[J]. 地球物理学报, 1996, 39(4): 522-532. |
[18] | 孙丽莎, 黄宝春. 塔里木地块奥陶纪古地磁新结果及其构造意义[J]. 地球物理学报, 2009, 52(7): 1836-1848. |
[19] | TAUXE L, BANERJEE S K, BUTLER R F, et al. Essentials of paleomagnetism[M]. fifth web edition. La Jolla, USA: Scripps Institution of Oceanography. 2018: 213-224. |
[20] | 李国玉, 吕鸣岗. 中国含油气盆地图集[M]. 2版. 北京: 石油工业出版社, 2002: 185-246. |
[21] | ZIJDERVELD J D. AC demagnetization of rocks: analysis of results (methods on Paleomagnetism)[M]. Amsterdam: Elsevier, 1967: 254-286. |
[22] |
KIRSCHVINK J. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International. 1980, 62(3): 699-718.
DOI URL |
[23] | FISHER R A. Dispersion on a sphere[J]. Proceedings of The Royal Society of London. Series A. Mathematical and Physical Sciences, 1953, 217(1130): 295-305. |
[24] |
MCFADDEN P L, REID A B. Analysis of palaeomagnetic inclination data[J]. Geophysical Journal International, 1982, 69(2): 307-319.
DOI URL |
[25] |
VAN DER VOO R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1): 1-9.
DOI URL |
[26] |
MURPHY J B, PISAREVSKY S A, NANCE R D. Potential geodynamic relationships between the development of peripheral orogens along the northern margin of Gondwana and the amalgamation of West Gondwana[J]. Mineralogy and Petrology, 2012, 107(5): 635-650.
DOI URL |
[27] |
PEIXOTO E, PEDROSA-SOARES A C, ALKMIM F F, et al. A suture-related accretionary wedge formed in the Neoproterozoic Araçuaí orogen (SE Brazil) during Western Gondwanaland assembly[J]. Gondwana Research, 2015, 27(2): 878-896.
DOI URL |
[28] |
VEEVERS J J. West Gondwanaland during and after the PanAfrican and Brasiliano orogenies: downslope vectors and detrital-zircon U-Pb and TDM ages and εHf/Nd pinpoint the provenances of the Ediacaran Paleozoic molasse[J]. Earth-Science Reviews, 2017, 171(1): 105-140.
DOI URL |
[29] |
DONG Y P, SANTOSH M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 2016, 29(1): 1-40.
DOI URL |
[30] |
ALEXEIEV D V, COOK H E, BUVTYSHKIN V M, et al. Structural evolution of the Ural-Tian Shan junction: a view from Karatau Ridge, South Kazakhstan[J]. Comptes Rendus Geoscience, 2009, 341(2): 287-297.
DOI URL |
[31] | LI S Z, YANG Z, ZHAO S J, et al. Global early Paleozoic orogens (Ⅱ): subduction-accretionary-type orogeny[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 968-1004. |
[32] |
EIZENHÖFER P R, ZHAO G, ZHANG J, et al. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks[J]. Tectonics, 2014, 33(4): 441-463.
DOI URL |
[33] |
ZHANG S H, ZHAO Y, YE H, et al. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 2014, 126(9/10): 1275-1300.
DOI URL |
[34] | 肖文交, 宋东方, BRIAN F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512-1545. |
[35] |
SONG S G, WANG M M, XU X, et al. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: implications for two cycles of seafloor spreading and accretionary orogenic events[J]. Tectonics, 2015, 34(10): 2221-2248.
DOI URL |
[36] |
LI Y L, ZHOU H W, BROUWER F M, et al. Tectonic significance of the Xilin Gol Complex, Inner Mongolia, China: petrological, geochemical and U-Pb zircon age constraints[J]. Journal of Asian Earth Sciences, 2011, 42(5): 1018-1029.
DOI URL |
[37] |
MATTERN F, SCHNEIDER W. Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China)[J]. Journal of Asian Earth Sciences, 2000, 18(6): 637-650.
DOI URL |
[38] | 张传林, 于海峰, 叶海敏, 等. 塔里木西部奥依塔克斜长花岗岩: 年龄、 地球化学特征、 成岩作用及其构造意义[J]. 中国科学D 辑: 地球科学, 2006, 36(10): 881-893. |
[39] | 刘成军. 西昆仑造山带(西段)及周缘早古生代—早中生代物质组成与构造演化[D]. 西安: 长安大学, 2015. |
[40] | 刘函. 北阿尔金洋新元古代—早古生代裂拼演化过程[D]. 武汉: 中国地质大学(武汉), 2011. |
[41] | 吴玉, 陈正乐, 陈柏林, 等. 北阿尔金恰什坎萨依沟地区早古生代构造变形特征及构造演化启示[J]. 地质力学学报, 2019, 25(3): 301-312. |
[42] | 韩芳林, 崔建堂, 计文化, 等. 西昆仑其曼于特蛇绿混杂岩的发现及其地质意义[J]. 地质通报, 2002, 21(8): 573-578. |
[43] | 于晓飞, 孙丰月, 李碧乐, 等. 西昆仑大同地区加里东期成岩、 成矿事件: 来自LA-ICP-MS锆石U-Pb定年和辉钼矿Re-Os定年的证据[J]. 岩石学报, 2011, 27(6): 1770-1778. |
[44] | 杨鑫, 徐旭辉, 邓尚, 等. 塔里木西南大陆边缘原特提斯洋构造演化[J]. 地球科学, 2020, 45(11): 4153-4175. |
[45] | 周鼎武, 苏犁, 简平, 等. 南天山榆树沟蛇绿岩地体中高压麻粒岩SHRIMP锆石U-Pb年龄及构造意义[J]. 科学通报, 2004, 49(14): 1411-1415. |
[46] | 杨经绥, 徐向珍, 李天福, 等. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据[J]. 岩石学报, 2011, 27(1): 77-95. |
[47] | 武鹏, 王国强, 李向民, 等. 甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义[J]. 地质通报, 2012, 31(12): 2032-2037. |
[48] | 张喜, 高俊, 董连慧, 等. 新疆中天山乔霍特铜矿区Ⅰ型花岗岩锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 岩石学报, 2011, 27(6): 1637-1648. |
[49] | 杨晨, 董云鹏, 梁文天, 等. 勉略构造带康县区段磁组构特征及其构造意义[J]. 地球物理学进展, 2013, 28(1): 214-223. |
[50] | 李王晔, 李曙光, 裴先治, 等. 西秦岭关子镇蛇绿混杂岩的地球化学和锆石SHRIMP U-Pb年龄[J]. 岩石学报, 2007, 23(11): 2836-2844. |
[51] | 董云鹏, 张国伟, 孙圣思, 等. 中国大陆“十字构造”形成演化及其大陆动力学意义[J]. 地质力学学报, 2019, 25(5): 769-797. |
[52] | GE R F, ZHU W B, WU H L, et al. The Paleozoic northern margin of the Tarim Craton: passive or active?[J]. Lithos, 2012, 142(1): 1-15. |
[53] | 许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806. |
[54] | 李江海, 周肖贝, 李维波, 等. 塔里木盆地及邻区寒武纪—三叠纪构造古地理格局的初步重建[J]. 地质论评, 2015, 61(6): 1225-1234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||