Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (6): 277-290.DOI: 10.13745/j.esf.sf.2022.8.5
Previous Articles Next Articles
ZHU Weilin1(), XU Xuhui2, WANG Bin3, CAO Qian3, CHEN Chunfeng4, GAO Shunli4, FENG Kailong1, FU Xiaowei1,*()
Received:
2022-07-07
Revised:
2022-08-01
Online:
2022-11-25
Published:
2022-10-20
Contact:
FU Xiaowei
CLC Number:
ZHU Weilin, XU Xuhui, WANG Bin, CAO Qian, CHEN Chunfeng, GAO Shunli, FENG Kailong, FU Xiaowei. Late Mesozoic continental arc migration in southern China and its effects on the evolution of offshore forearc basins[J]. Earth Science Frontiers, 2022, 29(6): 277-290.
Fig.3 Stratigraphic and sedimentary comparisons between wells for Mesozoic strata of the South China Sea-Taiwan-East China Sea-Zhejiang regions (well locations see insert map). Modified from [39-40,42-43].
Fig.4 Lithofacies paleogeographic sketch map of southern China showing the arc distribution pattern in the Early Jurassic. Basemap modified from [50].
Fig.5 Lithofacies paleogeographic sketch map of southern China showing the arc distribution pattern in the Middle-Late Jurassic (onshore basin data from [55])
Fig.6 Lithofacies paleogeographic sketch map of southern China showing the arc distribution pattern in the Early Cretaceous (onshore basin data from [55])
[1] |
NODA A. Forearc basins: types, geometries, and relationships to subduction zone dynamics[J]. Geological Society of America Bulletin, 2016, 128(5/6): 879-895.
DOI URL |
[2] |
LI Z X, LI X H. Formation of the 1 300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179-182.
DOI URL |
[3] | LI Z X, LI X H, CHUNG S L, et al. Magmatic switch-on and switch-off along the South China continental margin since the Permian: transition from an Andean-type to a western Pacific-type plate boundary[J]. Tectonophysics, 2012, 532/533/534/535: 271-290. |
[4] |
SUO Y, LI S, JIN C, et al. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China[J]. Earth-Science Reviews, 2019, 196: 102884.
DOI URL |
[5] |
LI J, DONG S, CAWOOD P A, et al. An Andean-type retro-arc foreland system beneath Northwest South China revealed by sinoprobe profiling[J]. Earth and Planetary Science Letters, 2018, 490: 170-179.
DOI URL |
[6] |
LI J, ZHANG Y, DONG S, et al. Cretaceous tectonic evolution of South China: a preliminary synthesis[J]. Earth-Science Reviews, 2014, 134: 98-136.
DOI URL |
[7] |
WANG G C, JIANG Y H, LIU Z, et al. Multiple origins for the middle Jurassic to early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian province, SE China and tectonic implications[J]. Lithos, 2016, 246/247: 197-211.
DOI URL |
[8] | 刘潜, 于津海, 苏斌, 等. 福建锦城187 Ma花岗岩的发现: 对华南沿海早侏罗世构造演化的制约[J]. 岩石学报, 2011, 27(12): 3575-3589. |
[9] |
ZHAO L, GUO F, ZHANG X, et al. Cretaceous crustal melting records of tectonic transition from subduction to slab rollback of the paleo-Pacific plate in SE China[J]. Lithos, 2021, 384/385: 105985.
DOI URL |
[10] |
XU C, ZHANG L, SHI H, et al. Tracing an Early Jurassic magmatic arc from South to East China seas[J]. Tectonics, 2017, 36: 466-492.
DOI URL |
[11] |
LIN S, XING G, DAVIS D W, et al. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46: 319-322.
DOI URL |
[12] |
XU C, SHI H, BARNES C G, et al. Tracing a Late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea[J]. International Geology Review, 2016, 58: 71-94.
DOI URL |
[13] |
LIU L, XU X, XIA Y. Asynchronizing paleo-Pacific slab rollback beneath SE China: insights from the episodic Late Mesozoic volcanism[J]. Gondwana Research, 2016, 37: 397-407.
DOI URL |
[14] |
GUO C, CHEN Y, ZENG Z, et al. Petrogenesis of the Xihuashan granites in southeastern China: constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes[J]. Lithos, 2012, 148: 209-227.
DOI URL |
[15] |
CHEN J Y, YANG J H, ZHANG J H, et al. Geochemical transition shown by Cretaceous granitoids in southeastern China: implications for continental crustal reworking and growth[J]. Lithos, 2014, 196/197: 115-130.
DOI URL |
[16] |
GUO F, FAN W, LI C, et al. Multi-stage crust-mantle interaction in SE China: temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fujian provinces[J]. Lithos, 2012, 150: 62-84.
DOI URL |
[17] |
CHEN J Y, YANG J H, ZHANG J H, et al. Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern Vhina: zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence[J]. Lithos, 2013, 162/163: 140-156.
DOI URL |
[18] |
CHEN J Y, YANG J H, ZHANG J H. Origin of Cretaceous aluminous and peralkaline A-type granitoids in northeastern Fujian, coastal region of southeastern China[J]. Lithos, 2019, 340/341: 223-238.
DOI URL |
[19] | ZHU K Y, LI Z X, XU X S, et al. Early Mesozoic ferroan (A-type) and magnesian granitoids in eastern South China: tracing the influence of flat-slab subduction at the western Pacific margin[J]. Lithos, 2016, 240/241/242/243: 371-381. |
[20] |
LIU L, XU X, ZOU H. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: petrogenesis and implications for the geodynamics of paleo-Pacific subduction[J]. Lithos, 2012, 154: 166-180.
DOI URL |
[21] | XIA Y, XU X S, ZHU K Y. Paleoproterozoic S- and A-type granites in southwestern Zhejiang: magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement[J]. Precambrian Research, 2012, 216/217/218/219: 177-207. |
[22] |
LIN J W, LEE C Y, CHEN C H, et al. Exotic origin of Pingtan island in the Pingtan-Dongshan metamorphic belt (SE China): zircon U-Pb age and Hf isotope evidences[J]. Lithos, 2020, 374/375: 105701.
DOI URL |
[23] |
CHEN J Y, YANG J H, JI W Q. Ages and petrogenesis of Jurassic and Cretaceous intrusive rocks in the Matsu islands: implications for lower crust modification beneath southeastern China[J]. Journal of Asian Earth Sciences, 2017, 150: 14-24.
DOI URL |
[24] |
YAN L L, HE Z Y, JAHN B M, et al. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation[J]. Lithos, 2016, 266/267: 287-308.
DOI URL |
[25] |
HE Z Y, XU X S, NIU Y. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China[J]. Lithos, 2010, 119: 621-641.
DOI URL |
[26] |
HUANG H Q, LI X H, LI Z X, et al. Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong province, SE China[J]. Journal of Asian Earth Sciences, 2013, 74: 280-302.
DOI URL |
[27] |
HUANG H Q, LI X H, LI Z X, et al. Formation of the Jurassic South China large granitic province: insights from the genesis of the Jiufeng pluton[J]. Chemical Geology, 2015, 401: 43-58.
DOI URL |
[28] |
JIANG S H, BAGAS L, LIANG Q L. New insights into the petrogenesis of volcanic rocks in the Shanghang Basin in the Fujian province, China[J]. Journal of Asian Earth Sciences, 2015, 105: 48-67.
DOI URL |
[29] |
LI B, JIANG S Y, ZHANG Q, et al. Geochemistry, geochronology and Sr-Nd-Pb-Hf isotopic compositions of Middle to Late Jurassic syenite-granodiorites-dacite in South China: petrogenesis and tectonic implications[J]. Gondwana Research, 2016, 35: 217-237.
DOI URL |
[30] |
YUAN W, YANG Z, ZHAO X, et al. Early Jurassic granitoids from deep drill holes in the East China Sea Basin: implications for the initiation of palaeo-Pacific tectono-magmatic cycle[J]. International Geology Review, 2018, 60: 813-824.
DOI URL |
[31] | ZHU W, CUI Y, SHAO L, et al. Reinterpretation of the northern South China Sea pre-Cenozoic basement and geodynamic implications of the South China continent: constraints from combined geological and geophysical records[J]. Acta Oceanologica Sinica, 2021, 40: 13-28. |
[32] |
林鹤鸣, 张青林, 张向涛, 等. 南海北部潮汕坳陷mz-1井硅质岩放射虫组合、 地球化学特征及构造古地理意义[J]. 石油学报, 2019, 40(S1): 188-196.
DOI |
[33] | 张青林, 张航飞, 张向涛, 等. 南海北部潮汕坳陷上白垩统盆地原型及其大地构造背景分析[J]. 地球物理学报, 2018, 61(10): 4308-4321. |
[34] | 冯晓杰, 蔡东升, 王春修, 等. 东海陆架盆地中新生代构造演化特征[J]. 中国海上油气地质, 2003: 35-39. |
[35] | 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报(地球科学版), 2019, 49(1): 139-153. |
[36] | 张勇, 姚永坚, 李学杰, 等. 中生代以来东亚洋陆汇聚带多圈层动力下的中国海及邻区构造演化及资源环境效应[J]. 中国地质, 2020, 47(5): 1271-1309. |
[37] |
YANG C, SUN J, YANG Y, et al. Key factors controlling Mesozoic hydrocarbon accumulation in the southern East China Sea basin[J]. Marine and Petroleum Geology, 2020, 118: 104436.
DOI URL |
[38] | 王可德, 王建平, 徐国庆, 等. 东海陆架盆地西南部中生代地层的发现[J]. 地层学杂志, 2000, 24(2): 129-131. |
[39] | 周蒂. 台西南盆地和北港隆起的中生界及其沉积环境[J]. 热带海洋学报, 2002, 2: 50-57. |
[40] | 吴国瑄, 王汝建, 郝沪军, 等. 南海北部海相中生界发育的微体化石证据[J]. 海洋地质与第四纪地质, 2007, 27(1): 79-85. |
[41] | 张素芳, 张向涛, 张青林, 等. 南海北部白垩系发育特征及构造意义[J]. 海洋地质与第四纪地质, 2015, 35(6): 81-86. |
[42] | 王学寅, 胡文瑄, 胡广, 等. 浙江石浦下白垩统灰岩微相分析与锆石U-Pb年代学研究[J]. 地质论评, 2012, 58(4): 614-626. |
[43] | TAYLOR B, HAYES D E. The tectonic evolution of the South China Basin. The tectonic and geologic evolution of Southeast Asian seas and islands[J]. Geophysical Monograph, 1980: 89-104. |
[44] | 胡文博. 东海陆架盆地南部中生界沉积体系研究[D]. 北京: 中国地质大学(北京), 2012. |
[45] | 邵磊, 尤洪庆, 郝沪军, 等. 南海东北部中生界岩石学特征及沉积环境[J]. 地质论评, 2007, 53(2): 164-169. |
[46] | 张金虎, 金春爽, 徐立明, 等. 福建黄塘晚侏罗世长林组硅质岩地球化学特征及其沉积环境意义[J]. 地学前缘, 2019, 12(3): 190-201. |
[47] |
SCHLÜTER H, HINZ K, BLOCK M J M G. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu sea[J]. Marine Geology, 1996, 130: 39-78.
DOI URL |
[48] |
HU G, HU W, CAO J, et al. Fluctuation of organic carbon isotopes of the Lower Cretaceous in coastal southeastern China: terrestrial response to the oceanic anoxic events (oae1b)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 352-362.
DOI URL |
[49] | 王长势, 朱伟林, 钟锴, 等. 南海北部陆坡晚白垩世构造逆冲及其成因[J]. 地球科学: 中国地质大学学报, 2015, 40(9): 1505-1516. |
[50] | 马永生, 陈洪德, 王国力. 中国南方构造-层序岩相古地理图集[M]. 北京: 科学出版社, 2009. |
[51] |
CUI Y, SHAO L, LI Z X, et al. A Mesozoic Andean-type active continental margin along coastal South China: new geological records from the basement of the northern South China Sea[J]. Gondwana Research, 2021, 99: 36-52.
DOI URL |
[52] | 刘凯, 徐维光, 叶海敏, 等. 华南中生代岩浆岩时空分布和迁移与古太平洋板块俯冲过程[J]. 矿物岩石地球化学通报, 2016, 35(6): 1141-1155. |
[53] | 杨宗永, 何斌. 华南侏罗纪构造体制转换: 碎屑锆石U-Pb年代学证据[J]. 大地构造与成矿学, 2013, 37(4): 580-591. |
[54] |
CUI J, ZHANG Y, DONG S, et al. Zircon U-Pb geochronology of the Mesozoic metamorphic rocks and granitoids in the coastal tectonic zone of SE China: constraints on the timing of late Mesozoic orogeny[J]. Journal of Asian Earth Sciences, 2013, 62: 237-252.
DOI URL |
[55] |
ZHOU Z, MA C, XIE C, et al. Genesis of highly fractionated I-type granites from Fengshun complex: implications to tectonic evolutions of South China[J]. Journal of Earth Science, 2016, 27: 444-460.
DOI URL |
[56] |
YUI T F, OKAMOTO K, USUKI T, et al. Late Triassic-Late Cretaceous accretion/subduction in the Taiwan region along the eastern margin of South China: evidence from zircon SHRIMP dating[J]. International Geology Review, 2009, 51: 304-328.
DOI URL |
[57] | 付晓伟, 朱伟林, 陈春峰, 等. 丽水—椒江凹陷西斜坡明月峰组上段碎屑锆石物源[J]. 地球科学: 中国地质大学学报, 2015, 40(12): 1987-2001. |
[58] |
WEILIN Z, KAI Z, XIAOWEI F, et al. The formation and evolution of the East China Sea shelf basin: a new view[J]. Earth-Science Reviews, 2019, 190: 89-111.
DOI URL |
[59] |
LI C F, ZHOU Z, GE H, et al. Rifting process of the Xihu Depression, East China Sea basin[J]. Tectonophysics, 2009, 472: 135-147.
DOI URL |
[60] |
XU G Q, WU S H, ZHANG L, et al. Stratigraphic division and depositional processes for the Mesozoic basin in northern South China Sea[J]. Marine Geophysical Research, 2013, 34: 175-194.
DOI URL |
[61] | 陈虹宇, 胡广, 胡文瑄, 等. 浙江石浦下白垩统石浦群沉积相、 层序及相对海平面变化[J]. 沉积学报, 2018, 36(2): 243-256. |
[62] |
MÜLLER D R, SDROLIAS M, GAINA C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics[J]. Science, 2008, 319(5868): 1357-1362.
DOI PMID |
[63] |
NIU Y, LIU Y, XUE Q, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60: 1598-1616.
DOI URL |
[64] |
LI Y, MA C Q, XING G F, et al. The Early Cretaceous evolution of SE China: insights from the Changle-Nan'ao metamorphic belt[J]. Lithos, 2015, 230: 94-104.
DOI URL |
[65] |
WEI X, DING W, CHRISTESON G L, et al. Mesozoic suture zone in the East China Sea: evidence from wide-angle seismic profiles[J]. Tectonophysics, 2021, 820: 229116.
DOI URL |
[66] |
HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian ocean[J]. Tectonophysics, 2012, 570/571: 1-41.
DOI URL |
[1] | ZHANG Jinjiang, ZHENG Jianlei, WANG Haibin, GUO Lei, LIU Jiang, QI Guowei. Late Mesozoic-Early Cenozoic tectonic events in Daqingshan and Panyangshan, Inner Mongolia, and its implication for the tectonic evolution of the northern margin of the North China Craton [J]. Earth Science Frontiers, 2024, 31(1): 127-141. |
[2] | REN Jishun, LIU Jianhui, ZHU Junbin. Mesozoic superposed orogenic system in eastern China [J]. Earth Science Frontiers, 2024, 31(1): 142-153. |
[3] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[4] | YANG Fengli, XU Mingchen, ZHUANG Yuan, ZHAO Xixi, HU Yuyang, YANG Ruiqing. Paleozoic paleogeographic reconstruction and evolution of the three continental blocks of central and western China [J]. Earth Science Frontiers, 2022, 29(6): 265-276. |
[5] | YE Tao, NIU Chengmin, WANG Deying, WANG Qingbin, DAI Liming, CHEN Anqing. Mesozoic tectonic evolution of the southwestern Bohai Sea and its dynamic mechanism: Implications for the destruction of the North China Craton [J]. Earth Science Frontiers, 2022, 29(5): 133-146. |
[6] | YANG Yajun, YANG Xiaoping, JIANG Bing, WANG Yan, PANG Xuejiao. Spatio-temporal distribution of Mesozoic volcanic strata in the Great Xing’an Range: Response to the subduction of the Mongol-Okhotsk Ocean and Paleo-Pacific Ocean [J]. Earth Science Frontiers, 2022, 29(2): 115-131. |
[7] | WANG Mingjian, PAN Jun, GAO Hongfang, HUANG Long, LI Xia. Mesozoic basin evolution and hydrocarbon potential in the northern South China Sea and southern East China Sea [J]. Earth Science Frontiers, 2022, 29(2): 294-302. |
[8] | WAN Xiaoqiao. Dynamic response of Mesozoic-Cenozoic foraminiferal paleogeography to the Tibetan Tethys evolution [J]. Earth Science Frontiers, 2020, 27(6): 116-127. |
[9] | CHEN Guochao, PEI Xianzhi, LI Ruibao, LI Zuochen, PEI Lei, LIU Chengjun, CHEN Youxin, WANG Meng, GAO Feng, WEI Junqi. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt [J]. Earth Science Frontiers, 2020, 27(4): 33-48. |
[10] | HU Ruizhong, CHEN Wei, BI Xianwu, FU Shanling, YIN Runsheng, XIAO Jiafei. Control of the Precambrian basement on the formation of the Mesozoic large-scale low-temperature mineralization in the Yangtze Craton [J]. Earth Science Frontiers, 2020, 27(2): 137-150. |
[11] | DU Yangsong, CAO Yi, QIN Xinlong, PANG Zhenshan, DU Yilun, WANG Gongwen. A review on the Mesozoic crust-mantle interaction and metallogeny of various skarn deposits in the Jiangxi-Anhui segment along the Yangtze River [J]. Earth Science Frontiers, 2020, 27(2): 165-181. |
[12] | LI Gang, JIANG Zhiquan, SHAO Xuefeng, GAO Wanli, LIU Zhenghong. [J]. Earth Science Frontiers, 2019, 26(2): 72-91. |
[13] | ZHU Dicheng,WANG Qing,ZHAO Zhidan,NIU Yaoling,HOU Zengqian,PAN Guitang,MO Xuanxue. Magmatic origin of continental arcs and continental crust formation. [J]. Earth Science Frontiers, 2018, 25(6): 67-77. |
[14] | WAN Tianfeng. On the dynamic mechanics of global lithosphere plate tectonics. [J]. Earth Science Frontiers, 2018, 25(2): 320-335. |
[15] | YAN Danping,QIU Liang,CHEN Feng,LI Lin,ZHAO Lei,YANG Wenxin,ZHANG Yixi. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block [J]. Earth Science Frontiers, 2018, 25(1): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||