Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 401-409.DOI: 10.13745/j.esf.sf.2021.9.60
Previous Articles Next Articles
ZHANG Mengqi1(), SUN Jianqi1,2,3,*(
), GAO Yongqi1
Received:
2021-07-15
Revised:
2021-08-12
Online:
2022-09-25
Published:
2022-08-24
Contact:
SUN Jianqi
CLC Number:
ZHANG Mengqi, SUN Jianqi, GAO Yongqi. Possible influence and predictive value of preceding winter sea ice anomalies in the Davis Strait-Baffin Bay for spring extreme precipitation frequency in eastern China[J]. Earth Science Frontiers, 2022, 29(5): 401-409.
Fig.2 Regressions of Arctic sea ice cover (SIC) anomalies (%) in (a) preceding winter and (b) spring against the PC1 of eastern China spring extreme precipitation frequency during 1979-2017
Fig.4 Regressions of atmospheric circulation anomalies in preceding winter (left panel) and spring (right panel) against the preceding winter DSBB SICI during 1979-2017.
Fig.6 Regressions of spring 500 hPa geopotential height (m) and wave activity flux (m2/s2) (a) and 850 hPa geopotential height (m) and wind (m/s) (b) against the spring MNA SSTI during 1979-2017.
Fig.7 Regressions of spring 925 hPa specific humidity (10-2 g/kg) (a) and 500 hPa vertical velocity (10-3 Pa/s) (b) against the preceding winter DSBB SICI during 1979-2017.
Fig.9 Time series of PC1 of eastern China spring extreme precipitation frequency in observation during 1979-2017 (bars) and the hindcasted PC1 by the preceding winter DSBB SICI, based on the leave-one-out cross-validation method (line).
[1] | ALEXANDER L V, ZHANG X, PETERSON T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D5): D05109. |
[2] |
PAPALEXIOU S M, MONTANARI A. Global and regional increase of precipitation extremes under global warming[J]. Water Resources Research, 2019, 55(6): 4901-4914.
DOI URL |
[3] |
ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7): 1096-1108.
DOI URL |
[4] |
ZHANG D Q, FENG G L, HU J G. Trend of extreme precipitation events over China in last 40 years[J]. Chinese Physics B, 2008, 17(2): 736-742.
DOI URL |
[5] |
WANG H J, SUN J Q, CHEN H P, et al. Extreme climate in China: facts, simulation and projection[J]. Meteorologische Zeitschrift, 2012, 21(3): 279-304.
DOI URL |
[6] |
WANG F, YANG S, HIGGINS W, et al. Long-term changes in total and extreme precipitation over China and the United States and their links to oceanic-atmospheric features[J]. International Journal of Climatology, 2014, 34(2): 286-302.
DOI URL |
[7] | 孙建奇, 敖娟. 中国冬季降水和极端降水对变暖的响应[J]. 科学通报, 2013, 58(8): 674-679. |
[8] | 张永领, 丁裕国. 我国东部夏季极端降水与北太平洋海温的遥相关研究[J]. 南京气象学院学报, 2004, 27(2): 244-252. |
[9] | 龚志强, 封国林. 中国近1000年旱涝的持续性特征研究[J]. 物理学报, 2008, 57(6): 3920-3931. |
[10] | 杨金虎, 江志红, 王鹏祥, 等. 太平洋SSTA同中国东部夏季极端降水事件变化关系的研究[J]. 海洋学报(中文版), 2010, 32(1): 23-33. |
[11] |
WANG Y, YAN Z W. Changes of frequency of summer precipitation extremes over the Yangtze River in association with large-scale oceanic-atmospheric conditions[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1118-1128.
DOI URL |
[12] | 李明刚, 管兆勇, 韩洁, 等. 近50 a华东地区夏季极端降水事件的年代际变化[J]. 大气科学学报, 2012, 35(5): 591-602. |
[13] | 余锦华, 祁淼, 孙齐颖, 等. 中国东部夏季极端降水统计特征及其与El Niño的联系[J]. 大气科学学报, 2018, 41(1): 77-84. |
[14] |
CAO F Q, GAO T, DAN L, et al. Synoptic-scale atmospheric circulation anomalies associated with summertime daily precipitation extremes in the middle-lower reaches of the Yangtze River Basin[J]. Climate Dynamics, 2019, 53(5/6): 3109-3129.
DOI URL |
[15] | 杨涵洧, 龚志强, 王晓娟, 等. 中国东部夏季极端降水年代际变化特征及成因分析[J]. 大气科学, 2021, 45(3): 683-696. |
[16] | 刘明竑, 任宏利, 张文君, 等. 超强厄尔尼诺事件对中国东部春夏季极端降水频率的影响[J]. 气象学报, 2018, 76(4): 539-553. |
[17] | 沈迪桑, 陈海山. 中国东部春季极端降水与同期欧亚大陆地表感热的可能联系[J]. 气候与环境研究, 2018, 23(1): 103-112. |
[18] |
LI F, WANG H J. Relationship between Bering Sea ice cover and East Asian winter monsoon year-to-year variations[J]. Advances in Atmospheric Sciences, 2013, 30(1): 48-56.
DOI URL |
[19] |
WANG H J, HE S P. The North China/northeastern Asia severe summer drought in 2014[J]. Journal of Climate, 2015, 28(17): 6667-6681.
DOI URL |
[20] |
FAN K, XIE Z M, WANG H J, et al. Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea[J]. Climate Dynamics, 2018, 51(11/12): 4439-4450.
DOI URL |
[21] |
LI X X, SUN J Q, ZHANG M Q, et al. Possible connection between declining Barents sea ice and interdecadal increasing Northeast China precipitation in May[J]. International Journal of Climatology, 2021, 41(14): 6270-6282.
DOI URL |
[22] |
TIAN B Q, FAN K, YANG H Q. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system[J]. Climate Dynamics, 2018, 51(7/8): 2793-2805.
DOI URL |
[23] |
DAI H X, FAN K. Skilful two-month-leading hybrid climate prediction for winter temperature over China[J]. International Journal of Climatology, 2020, 40(11): 4922-4943.
DOI URL |
[24] |
KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.
DOI URL |
[25] |
RAYNER N A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research Atmospheres, 2003, 108(D14): 4407.
DOI URL |
[26] | 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003, 58(S1): 1-10. |
[27] |
TAKAYA K, NAKAMURA H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 2001, 58(6): 608-627.
DOI URL |
[28] |
NORTH G R, BELL T L, CAHALAN R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699-706.
DOI URL |
[29] |
WU Z W, LI X X, LI Y J, et al. Potential influence of Arctic Sea ice to the interannual variations of East Asian spring precipitation[J]. Journal of Climate, 2016, 29(8): 2797-2813.
DOI URL |
[30] |
WALLACE J M, GUTZLER D S. Teleconnections in the geopotential height field during the northern hemisphere winter[J]. Monthly Weather Review, 1981, 109(4): 784-812.
DOI URL |
[31] |
CAI M, YANG S, VAN DEN DOOL H M, et al. Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective[J]. Tellus A: Dynamic Meteorology and Oceanography, 2007, 59(1): 127-140.
DOI URL |
[32] |
MARSHALL J, KUSHNIR Y, BATTISTI D, et al. North Atlantic climate variability: phenomena, impacts and mechanisms[J]. International Journal of Climatology, 2001, 21(15): 1863-1898.
DOI URL |
[33] |
HU Z Z, HUANG B H. Air-sea coupling in the North Atlantic during summer[J]. Climate Dynamics, 2006, 26(5): 441-457.
DOI URL |
[34] |
KWON Y O, ALEXANDER M A, BOND N A, et al. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review[J]. Journal of Climate, 2010, 23(12): 3249-3281.
DOI URL |
[35] |
WILLS S M, THOMPSON D W J, CIASTO L M. On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic[J]. Journal of Climate, 2016, 29(10): 3719-3730.
DOI URL |
[36] |
MATSUMURA S, UEKI S, HORINOUCHI T. Contrasting responses of midlatitude jets to the North Pacific and North Atlantic warming[J]. Geophysical Research Letters, 2019, 46(7): 3973-3981.
DOI URL |
[37] |
PENG S L, MYSAK L A, DEROME J, et al. The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the Northwest Atlantic[J]. Journal of Climate, 1995, 8(2): 137-157.
DOI URL |
[38] |
SMALL R J, TOMAS R A, BRYAN F O. Storm track response to ocean fronts in a global high-resolution climate model[J]. Climate Dynamics, 2014, 43(3/4): 805-828.
DOI URL |
[1] | CHEN Yun-Tai. From SumatraAndaman to Tohoku, Japan: Lessons from the great earthquakes and the earthquakegenerated megatsunamis. [J]. Earth Science Frontiers, 20140101, 21(1): 120-131. |
[2] | ZHOU Qi, WU Chonglong. Experimental research on big data-based intelligent exploration models and advance [J]. Earth Science Frontiers, 2024, 31(6): 350-367. |
[3] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[4] | YUAN Feng, LI Xiaohui, TIAN Weidong, ZHOU Guanqun, WANG Jinju, GE Can, GUO Xianzheng, ZHENG Chaojie. Key issues in three-dimensional predictive modeling of mineral prospectivity [J]. Earth Science Frontiers, 2024, 31(4): 119-128. |
[5] | YE Yuxin, LIU Jiawen, ZENG Wanxin, YE Shuisheng. Ontology-guided knowledge graph construction for mineral prediction [J]. Earth Science Frontiers, 2024, 31(4): 16-25. |
[6] | ZHU Fujie, QU Longze, LI Ping, WEI Wenxia, LI Peizhong, WANG Lifu, LI Benhang, WANG Jiao, REN Gengbo, WU Zhineng, MA Xiaodong. Odor measurement methods and prediction models: A review [J]. Earth Science Frontiers, 2024, 31(2): 13-19. |
[7] | ZHANG Juan, XIE Runcheng, YANG Min, GAO Zhiqian, WANG Ming, ZHANG Changjian, WANG Hong. Formation mechanism and distribution prediction of fine-fracture pores in the Lower Ordovician in Tahe oilfield [J]. Earth Science Frontiers, 2023, 30(4): 51-64. |
[8] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[9] | REN Ruijun, MIAO Yongkang, WANG Yanguang. Seismic identification and attribute prediction of polyhalite in the 4th and 5th members of the Jialingjiang Formation in Northeast Sichuan [J]. Earth Science Frontiers, 2021, 28(6): 125-133. |
[10] | ZENG Zuoxun, CHEN Zhigeng, LU Chengdong, YANG Yu, CHEN Kangli, XIANG Shimin, DAI Qingqin, ZHANG Jun, DENG Yanting, FU Yan, DU Qiujiao, LIU Lilin, YANG Weiran. Earth system science research on earthquake mechanisms: Theory and validation of a new model [J]. Earth Science Frontiers, 2021, 28(6): 263-282. |
[11] | CHEN Ningsheng, TIAN Shufeng, ZHANG Yong, WANG Zheng. Soil mass domination in debris-flow disasters and strategy for hazard mitigation [J]. Earth Science Frontiers, 2021, 28(4): 337-348. |
[12] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[13] | XIA Qinglin, ZHAO Mengyu, WANG Xiaochen, LENG Shuai, LI Tongfei, XIONG Shuangcai. Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies [J]. Earth Science Frontiers, 2021, 28(3): 56-66. |
[14] | ZHOU Yongzhang, ZHANG Qianlong, HUANG Yongjian, YANG Wei, XIAO Fan, JI Junjie, HAN Feng, TANG Lei, OUYANG Chong, SHEN Wenjie. Constructing knowledge graph for the porphyry copper deposit in the Qingzhou-Hangzhou Bay area: Insight into knowledge graph based mineral resource prediction and evaluation [J]. Earth Science Frontiers, 2021, 28(3): 67-75. |
[15] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||