Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 190-201.DOI: 10.13745/j.esf.sf.2020.5.18
Previous Articles Next Articles
ZHANG Qin1,2(), ZHU Xiaomin1,2, MAO Ling3, SUN Zuyu1, ZHOU Chen1, SU Kang1, YANG Ligan4
Received:
2019-12-05
Revised:
2020-05-19
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
ZHANG Qin, ZHU Xiaomin, MAO Ling, SUN Zuyu, ZHOU Chen, SU Kang, YANG Ligan. Pore evolution and genesis of secondary pores in the Paleogene Dainan Formation, Jinhu Sag, Subei Basin[J]. Earth Science Frontiers, 2021, 28(1): 190-201.
孔隙类型 | 成因 | ||
---|---|---|---|
原生孔隙 | 压缩原生粒间孔 | 原始粒间孔隙经压实收缩而成 | |
胶结剩余粒间孔 | 原始粒间孔隙经胶结后剩余的 粒间孔隙 | ||
杂基微孔隙 | 杂基晶间微孔隙 | ||
次 生 孔 隙 | 溶蚀作用 | 粒间溶孔 | 粒间杂基或胶结物溶蚀形成 |
粒内溶孔 | 颗粒内部部分溶蚀形成 | ||
铸模孔 | 整个颗粒溶蚀形成 | ||
收缩作用 | 贴粒孔 | 沿颗粒边缘溶解形成的线状孔缝 | |
构造作用 | (微)裂缝 | 构造作用形成 |
Table 1 Classification of pore types of the Dainan Formation in the Jinhu Sag
孔隙类型 | 成因 | ||
---|---|---|---|
原生孔隙 | 压缩原生粒间孔 | 原始粒间孔隙经压实收缩而成 | |
胶结剩余粒间孔 | 原始粒间孔隙经胶结后剩余的 粒间孔隙 | ||
杂基微孔隙 | 杂基晶间微孔隙 | ||
次 生 孔 隙 | 溶蚀作用 | 粒间溶孔 | 粒间杂基或胶结物溶蚀形成 |
粒内溶孔 | 颗粒内部部分溶蚀形成 | ||
铸模孔 | 整个颗粒溶蚀形成 | ||
收缩作用 | 贴粒孔 | 沿颗粒边缘溶解形成的线状孔缝 | |
构造作用 | (微)裂缝 | 构造作用形成 |
Fig.14 Schematic diagram showing hydrocarbon migration from the Funing Formation directly upward along the fault to the Dainan Formation in promoting dissolution
[1] | 邱旭明. 苏北盆地断块圈闭分类及油气成藏特征[J]. 石油与天然气地质, 2003, 24(4):371-374. |
[2] | 杨立干. 金湖凹陷古近系戴一段成藏条件和成藏模式研究[J]. 岩性油气藏, 2008, 20(3):34-38. |
[3] | 刘世丽, 徐焕友, 李翔. 金湖凹陷戴南组成藏主控因素及成藏模式研究[J]. 小型油气藏, 2007, 12(3):1-5. |
[4] | 陈安定. 苏北下第三系源岩“浅”熟的构造背景[J]. 石油勘探与开发, 1996, 23(4):6-10. |
[5] | 汪本善, 范善发, 史继扬, 等. 苏北盆地高邮凹陷下第三系生油岩的有机地化特征和生油门槛研究[J]. 石油与天然气地质, 1985, 6(1):60-70. |
[6] | 巢越. 金湖凹陷三河次凹戴南组油气藏烃源条件分析[J]. 复杂油气藏, 2019, 12(2):28-35. |
[7] | 毛凤鸣, 陈安定, 严元锋, 等. 苏北盆地复杂小断块油气成藏特征及地震识别技术[J]. 石油与天然气地质, 2006, 27(6):60-70. |
[8] |
LI L Y, WEI J C, YIN H Y, et al. Influence of sedimentary facies on reservoir quality and distribution of diagenetic features in the Funing Formation, Wanglongzhuang Oilfield, Subei Basin, Eastern China[J]. Arabian Journal of Geosciences, 2018, 11(15):1-14.
DOI URL |
[9] | 张琴, 朱筱敏, 董国栋, 等. 苏北盆地金湖凹陷戴南组成岩阶段划分及其油气地质意义[J]. 石油实验地质, 2013, 35(1):53-59. |
[10] | 邱旭明, 刘玉瑞, 傅强. 苏北盆地上白垩系—第三系层序地层与沉积演化[M]. 北京: 地质出版社, 2006. |
[11] | 张喜林, 朱筱敏, 杨俊生. 苏北盆地高邮凹陷古近系戴南组地震相研究[J]. 西安石油大学学报(自然科学版), 2005, 20(3):44-47. |
[12] | 张喜林, 朱筱敏, 钟大康, 等. 苏北盆地高邮凹陷古近系戴南组沉积相及其对隐蔽油气藏的控制[J]. 古地理学报. 2005, 7(2):207-218. |
[13] |
ZHOU X, JIANG Z, QUAYE J A, et al. Ichnology and sedimentology of the trace fossil-bearing fluvial red beds from the lowermost member of the Paleocene Funing Formation in the Jinhu Depression, Subei Basin, East China[J]. Marine and Petroleum Geology, 2019, 99:393-415.
DOI URL |
[14] | 张琴, 朱筱敏, 陈祥, 等. 南华北盆地谭庄凹陷下白垩统成岩相分布及优质储层预测[J]. 石油与天然气地质, 2010, 31(4):472-480. |
[15] | LIU X P, LAI J, FAN X C, et al. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China[J]. Marine and Petroleum Geology, 2020, 114:1-19. |
[16] | 汪孝敬, 李维锋, 袁晓光, 等. 金湖凹陷戴南组成岩相定量表征与孔隙演化模式[J]. 科学技术与工程, 2014, 14(29):143-150. |
[17] |
LI X, ZHANG J L, LIU L L, et al. Three-dimensional reservoir architecture modeling by geostatistical techniques in BD block, Jinhu depression, northern Jiangsu Basin, China[J]. Arabian Journal of Geosciences, 2016, 9(15):654-671.
DOI URL |
[18] |
QUAYE J A, JIANG Z, ZHOU X. Bioturbation influence on reservoir rock quality: a case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag, Subei Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 172:1165-1173.
DOI URL |
[19] | 吴东胜. 金湖凹陷戴南组隐蔽油气藏研究[J]. 西南石油学院学报, 2005, 27(4):16-19, 6. |
[20] | 龚永杰, 何胜, 鲁雪松. 金湖凹陷烃源岩“浅熟”原因探讨[J]. 特种油气藏, 2008, 15(1):36-39. |
[21] | 刘喜欢, 杨芝文, 杨立干. 金湖凹陷构造特征及圈闭类型[J]. 复杂油气藏, 2018, 11(3):6-11, 51. |
[22] | 陈安定. 苏北第三系成熟演化指标与深度关系的3种模式[J]. 石油实验地质, 2003, 25(1):58-63. |
[23] | 鲁东升, 薛建华. 苏北金湖凹陷生油岩热演化研究[J]. 石油实验地质, 1999, 21(2):180-183. |
[24] | 姚合法, 侯建国, 林承焰, 等. 多旋回沉积盆地地温场与烃源岩演化-以苏北盆地为例[J]. 西北大学学报(自然科学版), 2005, 35(2):195-199. |
[25] | 陈丽华, 赵澄林. 碎屑岩天然气储集层次生孔隙三种成因机理[J]. 石油勘探与开发, 1999, 26(5):77-79. |
[26] | CATHER M E, MORROW N R, KLICH I. Characterization of porosity and pore quality in sedimentary rocks[J]. Studies in Surface Science and Catalysis, 1991, 62:727-736. |
[27] |
CHEN S Y, ZHANG S, WANG Y S, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rock Dongying Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2016, 43(2):218-229.
DOI URL |
[28] |
ZHANG M M, ZHAO L. The lithofacies and reservoir characteristics of the fine-grained sedimentary rocks of the Permian Lucaogou Formation at the northern foot of Bogda Mountains, Junggar Basin (NW China)[J]. Journal of Petroleum Science and Engineering, 2018, 170:21-39.
DOI URL |
[29] | WANG J, CAO Y C, LIU K Y, et al. Fractal characteristics of the pore structures of fine-grained, mixed sedimentary rocks from the Jimsar Sag, Junggar Basin: implications for lacustrine tight oil accumulations[J]. Journal of Petroleum Science and Engineering, 2019, 182:1-11. |
[30] |
VERGÉS E, TOST D, AYALA D, et al. 3D pore analysis of sedimentary rocks[J]. Sedimentary Geology, 2011, 234(1): 109-115. 30
DOI URL |
[31] |
KITTY L M, MARK E C. Imaging pores in sedimentary rocks: foundation of porosity prediction[J]. Marine and Petroleum Geology, 2016, 73:590-608.
DOI URL |
[32] |
CHEN J F, YAO J L, MAO Z G, et al. Sedimentary and diagenetic controls on reservoir quality of low-porosity and low-permeability sandstone reservoirs in Chang101, Upper Triassic Yanchang Formation in the Shanbei area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 105:204-221.
DOI URL |
[33] |
LIU Z, SUN D, LI W L, et al. Research advances in the formation pore dynamics of sedimentary basins[J]. Petroleum Research, 2017, 2:107-130.
DOI URL |
[34] |
OKAZAKI K, NODA H, UEHARA S, et al. Permeability, porosity and pore geometry evolution during compaction of Neogene sedimentary rocks[J]. Journal of Structural Geology. 2014, 62:1-12.
DOI URL |
[35] |
SHAPIRO A M, EVANS C E, HAYES E C. Porosity and pore size distribution in a sedimentary rock: implications for the distribution of chlorinated solvents[J]. Journal of Contaminant Hydrology, 2017, 203:70-84.
DOI URL |
[36] | 代金友, 张一伟, 熊琦华, 等. 成岩作用对储集层物性贡献比率研究[J]. 石油勘探与开发, 2003, 30(4):54-55. |
[37] | 刘鑫金, 冯阵东, 李聪, 等. 近源湖盆砂砾岩储层次生溶孔成因探讨: 以查干凹陷祥6井区为例[J]. 吉林大学学报(地球科学版), 2017, 47(2):393-404. |
[38] |
ZHANG Q, ZHU X M, RONALD J S, et al. Variation and mechanisms of clastic reservoir quality in the Paleogene Shahejie Formation of the Dongying Sag, Bohai Bay Basin, China[J]. Petroleum Science, 2014, 11(2):200-210.
DOI URL |
[39] | 张琴, 朱筱敏, 刘畅, 等. 周口坳陷谭庄凹陷下白垩统低孔低渗碎屑岩储层特征及成因分析[J]. 岩性油气藏, 2014, 26(4):66-49. |
[40] |
ZHANG C C, WU C D, ZHANG S, et al. Sedimentary and diagenetic control on the porosity and permeability in Lower-Middle Jurassic reservoirs, northern margin of Tianshan, China[J]. Journal of Petroleum Science and Engineering, 2018, 165:873-889.
DOI URL |
[41] | 马永平, 王国栋, 张献文, 等. 粗粒沉积次生孔隙发育模式: 以准噶尔盆地西北缘二叠系夏子街组为例[J]. 岩性油气藏, 2019, 31(6):1-10. |
[42] | 师晶, 黄文辉, 汪远征, 等. 鄂尔多斯盆地西部盒8段-山1段砂岩次生孔隙特征与成因[J]. 煤炭学报, 2018, 43(12):3461-3470. |
[43] |
FUN C Y, TANG X L, ZHANG Y Y, et al. Characteristics and origin of the pore structure of the lacustrine tight oil reservoir in the northwestern Jiuquan Basin, China[J]. Interpretation, 2019, 7(3):T625-T636.
DOI URL |
[44] |
YUAN G H, CAO Y C, QIU L W, et al. Genetic mechanism of high quality reservoirs in Permian tight fan delta conglomerates at the northwestern margin of the Junggar Basin, northwestern China[J]. AAPG Bulletin, 2017, 101(12):1995-2019.
DOI URL |
[45] | MENG W, NIU Z C, HU Y, et al. Genesis of authigenic kaolinite and its indicative significance to secondary pores in petroliferous basins: a case study in the Dongying Sag, Bohai Bay Basin, Eastern China[J]. Journal of Petroleum Science and Engineering, 2020, 186:1-16. |
[46] | 李佳思, 付磊, 张金龙, 等. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(5):1-13. |
[47] |
WU D, LIU X T, DU Y S, et al. Predictive distribution of high-quality tight reservoirs of coarse clastic rocks by linking diagenesis to sedimentary facies: evidence from the upper Sha 4 Member in the northern Bonan Sag, Bohai Bay Basin, eastern China[J]. Interpretation, 2019, 6(2):T413-T429.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||