

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 369-383.DOI: 10.13745/j.esf.sf.2025.10.28
收稿日期:2025-08-21
修回日期:2025-10-15
出版日期:2026-11-25
发布日期:2025-11-10
作者简介:蒲俊兵(1982—),男,研究员,博士生导师,主要从事岩溶水文环境地质研究。E-mail: junbingpu@163.com
基金资助:Received:2025-08-21
Revised:2025-10-15
Online:2026-11-25
Published:2025-11-10
摘要:
全球岩溶分布面积约2 000万km2,其地下水资源约占全球地下水资源量的26.4%。在岩溶区CO2-H2O-CaCO3相互作用的系统中,碳酸盐岩的溶蚀(风化)成为地球表层快速且大量吸收大气CO2的重要表生地质过程,大量的CO2被吸收进入岩溶地下水系统,成为表层地球系统固碳的重要环节。岩溶碳循环受水循环过程的驱动,水体赋存位置及水文状态在一定程度上决定了岩溶碳循环的途径、效率、强度以及碳汇效应。本文在总结岩溶地下水系统基本特征的基础上,围绕碳的来源、碳的动态和碳的固定三个关键过程,分析了近年来岩溶地下水系统碳循环的进展。岩溶地下水系统具有多空间维度的非均质性、含水层结构的不稳定性、水文状态的高度变异性、地下水地表水转换频繁、防污性能弱、易受污染等特征,形成了特殊的水循环过程,并控制了系统的碳循环过程。岩溶地下水系统中碳主要有溶解无机碳(DIC)、颗粒无机碳(PIC)、溶解有机碳(DOC)和颗粒有机碳(POC)4种,它们的含量是内源碳和外源碳动态平衡的结果,其来源和贡献比受区域气候、地质、水文、生态等条件和生物活动等过程的共同影响。岩溶地下水系统DIC的动态变化受到CO2效应、稀释效应、活塞效应的影响,并且受水文地质条件和水-岩-气相互作用程度的影响存在显著的空间变化,而OC的变化主要取决于源效应和水文效应。自养微生物的碳同化作用、生物碳泵效应、微型生物碳泵效应是岩溶地下水系统中的主要固碳机制,具有较大的固碳潜力。未来,应进一步关注分布式水-碳耦合循环模型构建、岩溶地下河系统吸碳-稳碳-固碳-储碳全流程的监测及分析技术体系构建和岩溶地下水系统固碳增汇的人工调控模式等方面的问题,可为深入理解岩溶地下水系统的碳循环过程,准确评价岩溶区的碳收支,维护岩溶区生态安全及实现“碳中和”目标提供新的科学认知。
中图分类号:
蒲俊兵. 岩溶地下水系统的碳循环[J]. 地学前缘, 2026, 33(1): 369-383.
PU Junbing. Carbon cycling in the karst groundwater system[J]. Earth Science Frontiers, 2026, 33(1): 369-383.
图2 流域岩溶碳循环过程示意图 DIC—溶解无机碳;DOC—溶解有机碳;POC—颗粒有机碳;PIC—颗粒无机碳;LDOC—活性溶解有机碳;SLDOC—半活性溶解有机碳;RDOC—惰性溶解有机碳;AOC—内源有机碳;BCP—生物碳泵;MCP—微型生物碳泵。
Fig.2 Schematic diagram of carbon cycle in karst catchment
| [1] | 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘, 1997, 4(1/2): 17-25. |
| [2] |
GOLDSCHEIDER N, CHEN Z, AULER A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677.
DOI |
| [3] |
LIU Z, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
DOI URL |
| [4] | ROMERO-MUJALLI G, HARTMANN J, BöRKER J. Temperature and CO2 dependency of global carbonate weathering fluxes: implications for future carbonate weathering research[J]. Chemical Geology, 2019, 527: 11887. |
| [5] |
蒲俊兵, 蒋忠诚, 袁道先, 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
DOI |
| [6] |
GOMBERT P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 2002, 33(1/2): 177-184.
DOI URL |
| [7] | 杜朝超, 白晓永, 李阳兵, 等. 中国碳酸盐岩地区岩溶无机碳汇格局及影响因素[J]. 中国科学: 地球科学, 2024, 54(3): 745-759. |
| [8] | 李明会, 谭秋, 罗光杰, 等. 中国喀斯特生态系统碳汇对气候变化和人类活动的响应[J]. 科学通报, 2025, 70(30): 5196-5212. |
| [9] | 章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5): 190-198. |
| [10] |
MARTIN J B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 2017, 449: 58-72.
DOI URL |
| [11] | YUAN D. The carbon cycle in karst[J]. Zeitschrift Fur Geomorphologie, 1997, 108 (Suppl): 91-102. |
| [12] |
曹建华, 杨慧, 黄芬, 等. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376.
DOI |
| [13] |
LI H, WANG S, BAI X, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170.
DOI URL |
| [14] |
LIU Z, ZHAO J. Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology, 2000, 39(9): 1053-1058.
DOI URL |
| [15] |
HARRIS N L, GIBBS D A, BACCINI A, et al. Global maps of twenty-first century forest carbon fluxes[J]. Nature Climate Change, 2021, 11(3): 234-240.
DOI |
| [16] |
BOSSIO D A, COOK-PATTON S C, ELLIS P W, et al. The role of soil carbon in natural climate solutions[J]. Nature Sustainability, 2020, 3(5): 391-398.
DOI |
| [17] |
SMITH P. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology, 2016, 22(3): 1315-24.
DOI PMID |
| [18] | CIAIS P, SABINE C, BALA G, et al. Carbon and other biogeochemical cycles[M]//STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press, 2013: 465-570. |
| [19] |
STEVANOVIĆ Z. Karst waters in potable water supply: a global scale overview[J]. Environmental Earth Sciences, 2019, 78: 662.
DOI |
| [20] | 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994. |
| [21] | 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015. |
| [22] | 李汇文, 王世杰, 白晓永, 等. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 2019, 49(6): 986-1003. |
| [23] |
JIANG Z, YUAN D. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22: 33-35.
DOI URL |
| [24] | 袁道先, 章程. 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3): 355-365. |
| [25] | FORD D, WILLIAMS P D. Karst hydrogeology and geomorphology[M]. England: John Wiley & Sons Ltd, 2007. |
| [26] |
HARTMANN A, GOLDSCHEIDER N, WAGENER T, et al. Karst water resources in a changing world: review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242.
DOI URL |
| [27] | ÇALLK Ö, CHIOGNA G, BITTNER D, et al. Karst water resources in a changing world: review of solute Transport modeling approaches[J]. Reviews of Geophysics, 2025, 63(1): e2023RG000811. |
| [28] | 袁道先: 论岩溶水的不均匀性[C]//中国地质学会. 岩溶地区水文地质及工程地质工作经验汇编. 北京: 地质出版社, 1978: 1-19. |
| [29] | GRUND V A: Die karsthydrographie: studien aus westbosnien[C]//PENCK A, TEUBNER B G. Geographischen abhandlungen. Leipzig, Berlin, Germany: Pencks Geographische Abhand, 1903: 103-200. |
| [30] | KATZER F. Karst und Karsthydrograph. Zur Kunde der Balkan halbinsel[M]. Kajon, Sarajevo: Daniel A. Kajon Press, 1909: 156. |
| [31] |
ATKINSON T C. Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain)[J]. Journal of Hydrology, 1977, 35(1): 93-110.
DOI URL |
| [32] | PALMER A N. Cave geology[M]. Dayton, OH, USA: Cave Research Foundation, 2007. |
| [33] | PALMER A N: Hydrogeologic control of cave patterns[C]//KLIMCHOUK A V, FORD D C, PALMER A N, et al. Speleogenesis: evolution of karst aquifers, Huntsville. AL, USA: National Speleological Society of America, 2000: 77-90. |
| [34] | WHITE W B. A brief history of karst hydrogeology: contributions of the NSS[J]. Journal of Cave and Karst Studies, 2007, 69(1): 13-26. |
| [35] | HARTMANN A, JASECHKO S, GLEESON T, et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2024492118. |
| [36] | MUSGROVE M, JURGENS B C, OPSAHL S P. Karst groundwater vulnerability determined by modeled age and residence time tracers[J]. Geophysical Research Letters, 2023, 50(18): e2023GL102853. |
| [37] |
LUO M, ZHOU Z, CHEN J, et al. Identifying solute loss from karst conduit to fissures under concentrated recharge conditions[J]. Journal of Hydrology, 2025, 647: 132370.
DOI URL |
| [38] |
JEANNIN P Y, ARTIGUE G, BUTSCHER C, et al. Karst modelling challenge 1: results of hydrological modelling[J]. Journal of Hydrology, 2021, 600: 126508.
DOI URL |
| [39] |
GABROVŠEK F, DREYBRODT W. A model of the early evolution of karst aquifers in limestone in the dimensions of length and depth[J]. Journal of Hydrology, 2001, 240: 206-224.
DOI URL |
| [40] |
SCREATON E, MARTIN J B, GINN B, et al. Conduit properties and karstification in the unconfined Floridan aquifer[J]. Ground Water, 2004, 42(3): 338-346.
PMID |
| [41] |
LIU Z, GROVES C, YUAN D, et al. Hydrochemical variations during flood pulses in the south-west China peak cluster karst: impacts of CaCO3-H2O-CO2 interactions[J]. Hydrological Processes, 2004, 18(13): 2423-2437.
DOI URL |
| [42] |
YANG P, YUAN D, YE X, et al. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin, 2013, 58(20): 2488-2496.
DOI URL |
| [43] | VESPER D, WHITE W. Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA[J]. Hydrogeology Journal, 2003, 12(2): 135-143. |
| [44] |
HERMAN E K, TORAN L, WHITE W B. Quantifying the place of karst aquifers in the groundwater to surface water continuum: a time series analysis study of storm behavior in Pennsylvania water resources[J]. Journal of Hydrology, 2009, 376(1-2): 307-317.
DOI URL |
| [45] |
LIU Z, LI Q, SUN H, et al. Seasonal,diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: soil CO2 and dilution effects[J]. Journal of Hydrology, 2007, 337(1/2): 207-223.
DOI URL |
| [46] |
PU J, YUAN D, ZHAO H, et al. Hydrochemical and PCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: piston effects, dilution effects, soil CO2 and buffer effects[J]. Environmental Earth Sciences, 2014, 71(9): 4039-4049.
DOI URL |
| [47] |
HESS J W, WHITE W B. Storm response of the karstic carbonate aquifer of southcentral Kentucky[J]. Journal of Hydrology, 1988, 99: 235-252.
DOI URL |
| [48] |
YANG P, YUAN D, YUAN W, et al. Formations of groundwater hydrogeochemistry in a karst system during storm events as revealed by PCA[J]. Chinese Science Bulletin, 2010, 55(14): 1412-1422.
DOI URL |
| [49] |
ZENG C, LIU Z, ZHAO M, et al. Hydrologically-driven variations in the karst-related carbon sink fluxes: insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533: 74-90.
DOI URL |
| [50] | STEVANOVIĆ Z, GUNN J, GOLDSCHEIDER N, et al. Karst: environment and management of auqifers[R]. Guelph, Ontaria, Canada: The Groundwater Project, 2024. |
| [51] |
KAçAROGLU F. Review of groundwater pollution and protection in karst areas[J]. Water, Air, and Soil Pollution, 1999, 113: 337-356.
DOI URL |
| [52] |
PENG G, GAO X, NASEEM A, et al. Karst water quality, source of pollution, and health risk assessment in China[J]. Science of the Total Environment, 2025, 973: 179120.
DOI URL |
| [53] |
MARX A, DUSEK J, JANKOVEC J, et al. A review of CO2 and associated carbon dynamics in headwater streams: a global perspective[J]. Reviews of Geophysics, 2017, 55(2): 560-585.
DOI URL |
| [54] | 刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(增刊1): 95-102. |
| [55] | 李桂静, 仇乐川, 何欢, 等. 岩溶生态系统碳汇过程研究进展及展望[J]. 中国水土保持科学, 2025, 23 (3): 14-22. |
| [56] | 刘再华, DREYBRODT W, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52 (20): 2418-2422. |
| [57] | 曹敏, 蒋勇军, 蒲俊兵, 等. 重庆南山老龙洞地下河流域岩溶地下水DIC和δ13CDIC及其流域碳汇变化特征[J]. 中国岩溶, 2012, 31(2): 145-153. |
| [58] | 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19 (4): 3-10. |
| [59] | 李思亮, 刘丛强, 陶发祥, 等. 碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J]. 地球化学, 2004, 33 (2): 165-170. |
| [60] | 吴路华, 白晓永, 李朝君, 等. 外源酸作用下碳酸盐岩化学风化碳汇评估方法、进展与展望[J]. 中国科学: 地球科学, 2025, 55(6): 1837-1855. |
| [61] |
YANG R, LIU Z, ZENG C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468-469: 151-158.
DOI URL |
| [62] | 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528-540. |
| [63] |
CHAPLOT V, MUTEMA M. Sources and main controls of dissolved organic and inorganic carbon in river basins: a worldwide meta-analysis[J]. Journal of Hydrology, 2021, 603: 126941.
DOI URL |
| [64] |
XU Y, JIN Z, ZHANG F, et al. Intensified carbonate weathering during storm events in a highly-erosion river catchment[J]. Journal of Hydrology, 2024, 642: 131860.
DOI URL |
| [65] |
LI Y, ZHU D, NIU L, et al. Carbon-fixing bacteria in diverse groundwater of karst area: distribution patterns, ecological interactions, and driving factors[J]. Water Research, 2024, 261: 121979.
DOI URL |
| [66] |
HE H B, WANG Y, LIU Z H, et al. Lake metabolic processes and their effects on the carbonate weathering CO2 sink: insights from diel variations in the hydrochemistry of a typical karst lake in SW China[J]. Water Research, 2022, 222: 118907.
DOI URL |
| [67] | NEWSON M D. A model of subterranean limestone erosion in the British Isles based on hydrology[J]. Transactions of the Institute of British Geographers, 1971, 54: 55-70. |
| [68] | RAYLOR R L. Particulate inorganic carbon flux and sediment transport dynamics in karst: significance to landscape evolution and the carbon cycle[D]. Baton Rouge, Louisiana: Louisiana State University, 2016: 160. |
| [69] | 孟凡勇. 乌江梯级水库颗粒无机碳的地球化学行为及其影响因素[D]. 天津: 天津大学, 2020: 102. |
| [70] | 聂铭, 杨裕然, 李振轮. 微生物胞内外pH稳态维持机制研究进展[J]. 微生物学报, 2024, 64(1): 1-13. |
| [71] | 吴庆余. 藻类生物与自然界CO2循环的生物地球化学[J]. 大自然探索, 1987(3): 43-47. |
| [72] |
AUCOUR A-M, SHEPPARD S M F, GUYOMAR O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system[J]. Chemical Geology, 1999, 159(1): 87-105.
DOI URL |
| [73] |
LI Y, MENG F, WANG B, et al. Regulation of particulate inorganic carbon by phytoplankton in hydropower reservoirs: evidence from stable carbon isotope analysis[J]. Chemical Geology, 2021, 579: 120366.
DOI URL |
| [74] | HILLAIRE-MARCEL C, KIM S T, LANDAIS A, et al. A stable isotope toolbox for water and inorganic carbon cycle studies[J]. Nature Reviews Earth & Environment, 2021, 2(10): 699-719. |
| [75] |
CERLING T E, SOLOMON D K, QUADE J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3403-3405.
DOI URL |
| [76] |
LIU J, HAN G. Effects of chemical weathering and CO2 outgassing on δ13CDIC signals in a karst watershed[J]. Journal of Hydrology, 2020, 589: 125192.
DOI URL |
| [77] | 武恩鹏, 孙会国, 刘文景, 等. 河流溶解无机碳稳定碳同位素示踪技术及其在中国河流碳循环研究中的应用[J]. 水生态学杂志, 2024, 45(4): 9-18. |
| [78] | 罗明明, 陈静, 季怀松, 等. 岩溶管道与裂隙介质间溶质交换研究进展[J]. 地球科学, 2023, 48(11): 4202-4213. |
| [79] |
OBERHELMAN A, MARTIN J B, FLINT M K. Groundwater-surface water interaction, dissolved organic carbon oxidation and dissolution in carbonate aquifers[J]. Earth Surface Processes and Landforms, 2024, 49(8): 2311-2325.
DOI URL |
| [80] | 任坤, 潘晓东, 曾洁, 等. 岩溶区不同土地利用下地下水碳同位素地球化学特征及生态意义[J]. 环境科学, 2019, 40(10): 4523-4531. |
| [81] | 崔荣阳, 陈安强, 刘刚才, 等. 高原湖泊周边浅层地下水: 溶解性碳时空分布及驱动因素[J]. 环境科学, 2024, 45(8): 4589-4599. |
| [82] |
ZHAO M, LI D, LIU Z, et al. Karst carbon sink mechanism and its contribution to carbon neutralization under land-use management[J]. Science of the Total Environment, 2024, 937: 173381.
DOI URL |
| [83] | 王翠. 喀斯特流域外源酸对碳酸盐岩溶蚀及碳汇效应影响研究[D]. 贵阳: 贵州师范大学, 2024: 103. |
| [84] | 刘朋雨, 张连凯, 黄奇波, 等. 外源水和外源酸对万华岩地下河系统岩溶碳汇效应的影响[J]. 中国岩溶, 2020, 39(1): 17-23. |
| [85] |
ZHANG Y, JIANG Y, YUAN D, et al. Source and flux of anthropogenically enhanced dissolved inorganic carbon: a comparative study of urban and forest karst catchments in Southwest China[J]. Science of the Total Environment, 2020, 725: 138255.
DOI URL |
| [86] | 黄奇波, 覃小群, 刘朋雨, 等. 山西柳林泉域岩溶地下水溶解无机碳特征及控制因素[J]. 地质论评, 2019, 65(4): 961-972. |
| [87] | 刘再华, GROVES C, 袁道先, 等. 水-岩-气相互作用引起的水化学动态变化研究: 以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003(4): 13-18. |
| [88] |
DREYBRODT W. Kinetics of the dissolution of calcite and its applications to karstification[J]. Chemical Geology, 1980, 31: 245-269.
DOI URL |
| [89] | 刘再华, 袁道先. 中国典型表层岩溶系统的地球化学动态特征及其环境意义[J]. 地质论评, 2000(3): 324-327. |
| [90] | CLARK I, FRITZ P. Environmental isotopes in hydrogeology[M]. NewYork: Lewis Publishers, 1997. |
| [91] | DE MONTETY V, MARTIN J, COHEN M, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283(1/2): 31-43. |
| [92] | 刘再华, 李强, 汪进良, 等. 桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J]. 中国岩溶, 2004(3): 3-10. |
| [93] | TORAN L, TANCREDI J H, HERMAN E K, et al. Conductivity and sediment variation during storms as evidence of pathways to karst springs[C]//HARMON R S, WICKS C M. Perspectives on karst geomorphology, hydrology, and geochemistry:a tribute volume to Derek C. Ford and William B. White: Geological Society of America, 2006: 169-176. |
| [94] |
QIN C, LI S L, YUE F J, et al. Spatiotemporal variations of dissolved inorganic carbon and controlling factors in a small karstic catchment, Southwestern China[J]. Earth Surface Processes and Landforms, 2019, 44(12): 2423-2436.
DOI URL |
| [95] |
KHADKA M B, MARTIN J B, JIN J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment[J]. Journal of Hydrology, 2014, 513: 391-402.
DOI URL |
| [96] | 苟鹏飞, 蒋勇军, 扈志勇, 等. 典型岩溶地下河系统暴雨条件下水文水化学动态变化研究[J]. 水文地质工程地质, 2010, 37(5): 20-25. |
| [97] | 詹兆君, 陈峰, 杨平恒, 等. 西南典型岩溶地下河系统水文地球化学特征对比: 以重庆市青木关、老龙洞为例[J]. 环境科学, 2016, 37(9): 3365-3374. |
| [98] | 覃彤, 汤庆佳, 张强, 等. 桂西大型岩溶地下河系统离子来源及碳稳定同位素信息: 以坡心地下河流域为例[J]. 中国地质, 2019, 46(2): 302-315. |
| [99] |
LI X D, LIU C Q, HARUE M, et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: a case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry, 2010, 25(12): 1924-1936.
DOI URL |
| [100] | BAUER J E, BIANCHI T S. Dissolved organic carbon cycling and transformation[C]// WOLANSKI E, MCLUSKY D S. Treatise on estuarine and coastal science. Waltham: Academic Press, 2011: 7-67. |
| [101] | BIANCHI T S, BAUER J E. Particulate organic carbon cycling and transformation[C]// WOLANSKI E, MCLUSKY D S. Treatise on estuarine and coastal science. Waltham: Academic Press, 2011: 69-117. |
| [102] |
QIN C, LI S L, WALDRON S, et al. High-frequency monitoring reveals how hydrochemistry and dissolved carbon respond to rainstorms at a karstic critical zone, Southwestern China[J]. Science of the Total Environment, 2020, 714: 136833.
DOI URL |
| [103] |
JIN J, ZIMMERMAN A R, MOORE P J, et al. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(3): 340-357.
DOI URL |
| [104] |
GULLEY J D. B.MARTIN J, BROWN A. Organic carbon inputs, common ions and degassing: rethinking mixing dissolution in coastal eogenetic carbonate aquifers[J]. Earth Surface Processes and Landforms, 2016, 41(14): 2098-2110.
DOI URL |
| [105] | MOSTOFA K M G, LIU C Q, MOTTALEB M A, et al. Dissolved organic matter in natural waters[C]//MOSTOFA K M G, YOSHIOKA T, MOTTALEB A, et al. Photobiogeochemistry of organic matter. Berlin, Heidelberg: Springer, 2013: 1-137. |
| [106] |
MCCALLISTER S L, ISHIKAWA N F, KOTHAWALA D N. Biogeochemical tools for characterizing organic carbon in inland aquatic ecosystems[J]. Limnology and Oceanography Letters, 2018, 3(6): 444-457.
DOI URL |
| [107] |
LI G, LI G K. Fossil organic carbon weathering: a nexus in global biogeochemical cycles[J]. Science China Earth Sciences, 2024, 67(6): 2068-2072.
DOI |
| [108] |
HEINZE B M, SCHWAB V F, TRUMBORE S E, et al. Old but not ancient: rock-leached organic carbon drives groundwater microbiomes[J]. Science of the Total Environment, 2025, 959: 178212.
DOI URL |
| [109] |
JIANG Y, ZHANG C, YUAN D, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China: a case study of the Xiaojiang watershed, Yunnan Province[J]. Hydrogeology Journal, 2008, 16(4): 727-735.
DOI URL |
| [110] |
于奭, 蒲俊兵, 刘凡, 等. 岩溶碳汇效应对植被的响应研究进展[J]. 地学前缘, 2023, 30(4): 418-428.
DOI |
| [111] |
OVERHOLT W A, TRUMBORE S, XU X, et al. Carbon fixation rates in groundwater similar to those in oligotrophic marine systems[J]. Nature Geoscience, 2022, 15(7): 561-567.
DOI |
| [112] |
SCHMID R. Photosynthesis of Ectocarpus siliculosus in red light and after pulses of blue light at high pH: evidence for bicarbonate uptake[J]. Plant, Cell & Environment, 2002, 21(5): 523-529.
DOI URL |
| [113] |
LARSSON C, AXELSSON L. Bicarbonate uptake and utilization in marine macroalgae[J]. European Journal of Phycology, 2010, 34(1): 79-86.
DOI URL |
| [114] |
WANG C, LI W, SHEN T, et al. Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area[J]. Geoderma, 2018, 313: 17-24.
DOI URL |
| [115] |
BURLACOT A, DAO O, AUROY P, et al. Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism[J]. Nature, 2022, 605(7909): 366-371.
DOI |
| [116] |
ALFREIDER A, VOGT C, HOFFMANN D, et al. Diversity of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms[J]. Microbial Ecology, 2003, 45: 317-328.
DOI URL |
| [117] |
HEINZE B M, KüSEL K, JEHMLICH N, et al. Metabolic versatility enables sulfur-oxidizers to dominate primary production in groundwater[J]. Water Research, 2023, 244: 120426.
DOI URL |
| [118] |
DICK G J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally[J]. Nature Reviews Microbiology, 2019, 17: 271-283.
DOI PMID |
| [119] |
SHU W S, HUANG L N. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20: 219-235.
DOI |
| [120] | VOLK T, HOFFERT M I. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[C]//SUNDQUIST E T, BROECKER W S. The carbon cycle and atmospheric CO2: natural variations archean to present. USA: American Geophysical Union, 1985: 99-110. |
| [121] |
CHISHOLM S W. Stirring times in the Southern Ocean[J]. Nature, 2000, 407(6805): 685-686.
DOI |
| [122] |
ZHAO M, SUN H, LIU Z, et al. Organic carbon source tracing and the BCP effect in the Yangtze River and the Yellow River: insights from hydrochemistry, carbon isotope, and lipid biomarker analyses[J]. Science of The Total Environment, 2022, 812: 152429.
DOI URL |
| [123] |
SHAO M, LIU Z, ZENG S, et al. Carbon sinks associated with biological carbon pump in karst surface waters: progress, challenges, and prospects[J]. Environmental Research, 2025, 267: 120712.
DOI URL |
| [124] |
孙彩云, 郑冰清, 李俊, 等. 沉水植物对岩溶碳汇稳定性影响研究[J]. 地学前缘, 2024, 31 (5): 430-439.
DOI |
| [125] |
XIA F, LIU Z, ZHAO M, et al. High stability of autochthonous dissolved organic matter in karst aquatic ecosystems: evidence from fluorescence[J]. Water Research, 2022, 220: 118723.
DOI URL |
| [126] |
HE Q, XIAO Q, FAN J, et al. Excitation-emission matrix fluorescence spectra of chromophoric dissolved organic matter reflected the composition and origination of dissolved organic carbon in Lijiang River, Southwest China[J]. Journal of Hydrology, 2021, 598: 126240.
DOI URL |
| [127] |
XIA F, LIU Z, ZHANG Y, et al. Calcium regulates the interactions between dissolved organic matter and planktonic bacteria in Erhai Lake, Yunnan Province, China[J]. Water Research, 2024, 261: 121982.
DOI URL |
| [128] | 焦念志, 骆庭伟, 张瑶, 等. 海洋微型生物碳泵: 从微型生物生态过程到碳循环机制效应[J]. 厦门大学学报(自然科学版), 2011, 50(2): 387-401. |
| [129] |
JIA Y, SU X, ZHANG T, et al. High carbon fixation during thermal stratification period in a subtropical periodic stratified reservoir: evidences from RDOC conversion efficiency driven by MCP[J]. Water Research, 2025, 278: 123316.
DOI URL |
| [130] |
JIAO N, LUO T, CHEN Q, et al. The microbial carbon pump and climate change[J]. Nature Reviews Microbiology, 2024, 22(7): 408-419.
DOI PMID |
| [131] | 焦念志, 张传伦, 李超, 等. 海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学: 地球科学, 2013, 43(1): 1-18. |
| [132] | LI Q, SONG A, PENG W, et al. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study[J]. FEMS Microbiology Ecology, 2017, 93(6): 1-8. |
| [133] |
HUTCHINS B T, ENGEL A S, NOWLIN W H, et al. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities[J]. Ecology, 2016, 97(6): 1530-1542.
PMID |
| [134] |
HERRMANN M, RUSZNYáK A, AKOB D M, et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds[J]. Applied and Environmental Microbiology, 2015, 81(7): 2384-94.
DOI PMID |
| [135] |
SHEN Y, CHAPELLE F H, STROM E W, et al. Origins and bioavailability of dissolved organic matter in groundwater[J]. Biogeochemistry, 2014, 122(1): 61-78.
DOI URL |
| [136] |
GLEESON T, BEFUS K M, JASECHKO S, et al. The global volume and distribution of modern groundwater[J]. Nature Geoscience, 2016, 9(2): 161-167.
DOI |
| [137] | 赵敏, 夏凡, 蔡冠霞, 等. 喀斯特地下水DOM的来源、转化及识别手段研究[J]. 贵州师范大学学报(自然科学版), 2024, 42(5): 28-38. |
| [138] |
TONG X, BRANDT M, YUE Y, et al. Forest management in southern China generates short term extensive carbon sequestration[J]. Nature Communications, 2020, 11: 129.
DOI PMID |
| [139] |
ZENG S, LIU Z, JIANG Y, et al. A greening Earth has reversed the trend of decreasing carbonate weathering under a warming climate[J]. Nature Communications, 2025, 16: 2583.
DOI |
| [1] | 吴默涵, 苏小四, 宋铁军, 郝源. 水库水位变动影响下消落带沉积物氮磷吸附-解吸行为与释放通量估算[J]. 地学前缘, 2026, 33(1): 14-24. |
| [2] | 韦春伊, 余圣品, 白细民, 刘海燕, 王振, 葛勤, 陈功新, 周仲魁, 孙占学, 郭华明. 离子吸附型稀土矿区水体硝酸盐分布、来源及其转化过程:以江西足洞稀土矿为例[J]. 地学前缘, 2026, 33(1): 121-134. |
| [3] | 张一帆, 刘海燕, 董姝, 郭华明, 王振, 孙占学, 周仲魁. 相山铀矿尾矿区酸性矿山排水和沉积物稀土元素地球化学特征[J]. 地学前缘, 2025, 32(2): 412-429. |
| [4] | 谌宏伟, 朱智超, 李正最, 喻娓厚, 周慧, 于莎莎, 彭向训. 极端气候下洞庭湖河水-地下水相互作用:以资江洞庭湖河段为例[J]. 地学前缘, 2025, 32(2): 445-455. |
| [5] | 王威, 程行, 高旭波, 田振环, 刘春华, 武占辉, 李成城, 孔淑琼. 黄河三角洲地区地下水水质成因研究:以山东省东营市孤岛镇为例[J]. 地学前缘, 2025, 32(2): 469-483. |
| [6] | 李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157. |
| [7] | 刘玲霞, 路睿, 谢文苹, 刘博, 王亚茹, 姚海慧, 蔺文静. 青藏高原东北部温泉分布及水文地球化学特征[J]. 地学前缘, 2024, 31(6): 173-195. |
| [8] | 陈发家, 肖琼, 胡祥云, 郭永丽, 孙平安, 张宁. 典型岩溶小流域碳酸盐岩风化过程及其碳汇效应[J]. 地学前缘, 2024, 31(5): 449-459. |
| [9] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
| [10] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
| [11] | 张广禄, 刘海燕, 郭华明, 孙占学, 王振, 吴通航. 华北平原典型山前冲洪积扇高硝态氮地下水分布特征及健康风险评价[J]. 地学前缘, 2023, 30(4): 485-503. |
| [12] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
| [13] | 邢世平, 吴萍, 胡学达, 郭华明, 赵振, 袁有靖. 化隆-循化盆地含水层沉积物地球化学特征及其对地下水氟富集的影响[J]. 地学前缘, 2023, 30(2): 526-538. |
| [14] | 刘海燕, 刘茂涵, 张卫民, 孙占学, 王振, 吴通航, 郭华明. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144. |
| [15] | 李海明, 李梦娣, 肖瀚, 刘学娜. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
