地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 369-383.DOI: 10.13745/j.esf.sf.2025.10.28

• 特殊地貌地下水 • 上一篇    下一篇

岩溶地下水系统的碳循环

蒲俊兵()   

  1. 重庆师范大学 地理与旅游学院 山区生态系统碳循环与碳调控重庆市重点实验室, 重庆 401331
  • 收稿日期:2025-08-21 修回日期:2025-10-15 出版日期:2026-11-25 发布日期:2025-11-10
  • 作者简介:蒲俊兵(1982—),男,研究员,博士生导师,主要从事岩溶水文环境地质研究。E-mail: junbingpu@163.com
  • 基金资助:
    国家自然科学基金项目(42577087);国家“万人计划”青年拔尖人才项目(2022);重庆市自然科学基金项目(CSTB2022NSCQ-LZX0022)

Carbon cycling in the karst groundwater system

PU Junbing()   

  1. Chongqing Key Laboratory of Carbon Cycle and Carbon Regulation of Mountain Ecosystem, School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
  • Received:2025-08-21 Revised:2025-10-15 Online:2026-11-25 Published:2025-11-10

摘要:

全球岩溶分布面积约2 000万km2,其地下水资源约占全球地下水资源量的26.4%。在岩溶区CO2-H2O-CaCO3相互作用的系统中,碳酸盐岩的溶蚀(风化)成为地球表层快速且大量吸收大气CO2的重要表生地质过程,大量的CO2被吸收进入岩溶地下水系统,成为表层地球系统固碳的重要环节。岩溶碳循环受水循环过程的驱动,水体赋存位置及水文状态在一定程度上决定了岩溶碳循环的途径、效率、强度以及碳汇效应。本文在总结岩溶地下水系统基本特征的基础上,围绕碳的来源、碳的动态和碳的固定三个关键过程,分析了近年来岩溶地下水系统碳循环的进展。岩溶地下水系统具有多空间维度的非均质性、含水层结构的不稳定性、水文状态的高度变异性、地下水地表水转换频繁、防污性能弱、易受污染等特征,形成了特殊的水循环过程,并控制了系统的碳循环过程。岩溶地下水系统中碳主要有溶解无机碳(DIC)、颗粒无机碳(PIC)、溶解有机碳(DOC)和颗粒有机碳(POC)4种,它们的含量是内源碳和外源碳动态平衡的结果,其来源和贡献比受区域气候、地质、水文、生态等条件和生物活动等过程的共同影响。岩溶地下水系统DIC的动态变化受到CO2效应、稀释效应、活塞效应的影响,并且受水文地质条件和水-岩-气相互作用程度的影响存在显著的空间变化,而OC的变化主要取决于源效应和水文效应。自养微生物的碳同化作用、生物碳泵效应、微型生物碳泵效应是岩溶地下水系统中的主要固碳机制,具有较大的固碳潜力。未来,应进一步关注分布式水-碳耦合循环模型构建、岩溶地下河系统吸碳-稳碳-固碳-储碳全流程的监测及分析技术体系构建和岩溶地下水系统固碳增汇的人工调控模式等方面的问题,可为深入理解岩溶地下水系统的碳循环过程,准确评价岩溶区的碳收支,维护岩溶区生态安全及实现“碳中和”目标提供新的科学认知。

关键词: 岩溶地下水系统, 碳来源, 碳动态, 碳固定

Abstract:

Karst terrain covers approximately 20 million km2 globally, with karst groundwater accounting for about 26.4% of the world’s groundwater resources. In karst regions, the CO2-H2O-CaCO3 system drives carbonate rock dissolution, a key surface process that facilitates substantial atmospheric CO2 uptake. A significant portion of this absorbed CO2 enters karst aquifers, making these systems a critical component of carbon sequestration within the Earth’s surface system. The karst carbon cycle is fundamentally driven by hydrological processes, where the spatial distribution and regimes of water bodies significantly influence its pathways, efficiency, and ultimate sink effect. This paper synthesizes the fundamental characteristics of karst groundwater systems and reviews recent advances in understanding their carbon cycle, focusing on three key aspects: carbon sources, carbon dynamics, and carbon sequestration. Karst groundwater systems are characterized by multi-spatial-scale heterogeneity, structural instability of aquifers, high hydrological variability, frequent groundwater-surface water exchange, low self-purification capacity, and high vulnerability to contamination. These features collectively give rise to unique hydrological processes that control the pathways and efficiency of the system’s carbon cycle. Carbon within these systems exists primarily in four forms: Dissolved Inorganic Carbon (DIC), Particulate Inorganic Carbon (PIC), Dissolved Organic Carbon (DOC), and Particulate Organic Carbon (POC). The concentrations of these carbon species result from a dynamic equilibrium between endogenous and exogenous sources. Their relative contributions are co-determined by regional climatic, geological, and hydrological conditions, as well as ecological and biological factors. The dynamics of DIC are modulated by the CO2 effect, dilution effect, and piston effect, exhibiting significant spatial variability due to differences in hydrogeological conditions and the intensity of water-rock-gas interactions. In contrast, variations in Organic Carbon (OC) are primarily governed by source effects and hydrological effects. Key carbon sequestration mechanisms within karst groundwater systems include carbon assimilation by autotrophic microorganisms, the Biological Carbon Pump (BCP) effect, and the Microbial Carbon Pump (MCP) effect, all of which show considerable potential for long-term carbon storage. Future research should prioritize developing distributed coupled water-carbon cycle models, establishing comprehensive monitoring and analytical frameworks for the entire carbon pathway (including uptake, transformation, and sequestration) within karst subterranean river systems, and formulating artificial regulation strategies to enhance the carbon sequestration capacity of karst groundwater systems. Addressing these challenges will provide essential scientific insights for deepening our understanding of karst carbon cycling, accurately assessing regional carbon budgets, safeguarding karst ecosystem security, and supporting global “carbon neutrality” goals.

Key words: karst groundwater system, carbon source, carbon dynamics, carbon fixation

中图分类号: