地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 224-244.DOI: 10.13745/j.esf.sf.2025.7.12

• 成矿过程新论 • 上一篇    下一篇

中国甘肃金川铜镍(铂)硫化物矿床中金云母类型、成因及其意义

于祥惠1(), 刘翠1,*(), 苏尚国1, 刘继旭1, 王淼1, 郭旭2, 周成号3, 高亚林4,5   

  1. 1.中国地质大学(北京) 地球科学与资源学院, 北京 100083
    2.山西省地质勘查局 二一七地质队有限公司, 山西 大同 037008
    3.核工业二一六大队, 新疆 乌鲁木齐 830011
    4.镍钴共伴生资源开发与综合利用全国重点实验室, 甘肃 金昌 737100
    5.金川集团股份有限公司, 甘肃 金昌 737102
  • 收稿日期:2025-06-14 修回日期:2025-07-03 出版日期:2025-11-25 发布日期:2025-11-12
  • 通信作者: 刘翠
  • 作者简介:于祥惠(2000—),女,硕士研究生,资源与环境专业。E-mail: Yuxh27@163.com
  • 基金资助:
    国家自然科学基金重大项目“甘肃金川铜镍(铂)硫化物矿床铂族、钴和铬等战略性关键金属富集过程及富集机制”(9216220018);中国地质调查局项目“中国区域地质志和系列图件编制(DD20221645)子课题:中国典型地区岩浆弧综合调查与图件编制”

Types, genesis, and implications of phlogopite in the Jinchuan Cu-Ni (Pt) sulfide deposit, Gansu Province, China

YU Xianghui1(), LIU Cui1,*(), SU Shangguo1, LIU Jixu1, WANG Miao1, GUO Xu2, ZHOU Chenghao3, GAO Yalin4,5   

  1. 1. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
    2. No.217 Geological Team Co., Ltd., Shanxi Geological Exploration Bureau, Datong 037008, China
    3. No.216 Nuclear Industry Brigade, Ürümqi 830011, China
    4. State Key Laboratory of Ni&Co Associated Minerals Resources Development and Comprehensive Utilization,Jinchang 737100, China
    5. Jinchuan Group Corporation, Ltd., Jinchang 737102, China
  • Received:2025-06-14 Revised:2025-07-03 Online:2025-11-25 Published:2025-11-12
  • Contact: LIU Cui

摘要:

中国金川铜镍(铂)硫化物矿床是世界第三、亚洲第一的铜镍硫化物矿床,是重要的战略性资源宝库。关于该矿床的成因、机制等目前还存在很多的争议。金云母是金川岩石、矿石中常见的含水矿物,其与造岩矿物、金属矿物的关系可以指示岩浆作用、成矿作用以及流体作用的相互关系。本文通过对金云母的系统镜下观察,结合元素地球化学特征,划分了金川矿床中金云母的2种类型:A型金云母和B型金云母。A型金云母多呈半自形-自形结构,深黄褐色-无色的多色性明显,多产出于贫矿或无矿的岩石中,与橄榄石、辉石等颗粒呈共结结构,应为同时从幔源超基性岩浆中结晶的产物。元素分析显示,其与美国、南非等金伯利岩、煌斑岩中的金云母类似,属于重平衡金云母,不属于岩浆型金云母,表明其受到了幔源熔体-流体流的轻微改造;B型金云母亦多呈半自形-自形,但无多色性,产于较富的矿石和蚀变较重的岩石中,发育于造岩矿物之间,有时呈共结结构,常与金属矿物共生或被金属矿物穿切交代,与其周围的橄榄石、辉石呈共结结构,这些橄榄石、辉石通常已发生蛇纹石化或绿泥石化,推测B型金云母亦为岩浆结晶生成。元素分析显示其与南非的部分橄榄岩中的金云母类似,属于新生金云母,受幔源熔体-流体流改造较强,与成矿主期相关。A型金云母形成于相对贫硅、贫镁、贫钠,富铁、富铝的高温、高钛、高氧逸度的环境,利于Fe等金属元素的富集。B型金云母是A型金云母经改造后形成的,其元素特点可能说明改造B型金云母的是来自幔源的富含(Cl)挥发分的富镁、富硅、富钠,贫钛、贫铁、贫铝的熔体-流体流,在此过程中,造岩矿物吸收Mg,析出Fe,形成矿床。利用Ti计算了金云母的结晶温度,其温度的连续性垂直变化可能代表了长期持续的熔体-流体作用,说明金川超基性岩体更可能是熔体-流体的长期通道,这可能是导致金属元素不断富集从而成矿的原因。

关键词: 金川铜镍(铂)硫化物矿床, 金云母, 元素地球化学, 熔体-流体流

Abstract:

The Jinchuan Cu-Ni-(PGE) sulfide deposit in China ranks as the world’s third largest and Asia’s largest deposit of its type, constituting a vital strategic resource reservoir. Significant debate persists regarding the genesis and metallogenic mechanisms of this deposit. Phlogopite is a common hydrous mineral within the rocks and ores of Jinchuan, and its relationships with rock-forming and metallic minerals can elucidate the interconnections between magmatism, mineralization, and fluid activity. Based on systematic microscopic observations of phlogopite coupled with elemental geochemical characteristics, this study identifies two distinct types within the Jinchuan deposit: Type A and Type B phlogopite. Type A phlogopite typically exhibits subhedral to euhedral habits with prominent deep yellowish-brown to colorless pleochroism. It predominantly occurs in barren to low-grade rocks, displaying symplectite/symplectic intergrowth with grains of olivine and pyroxene, indicating crystallization contemporaneously with these minerals from the mantle-derived ultramafic magma. Elemental analysis reveals its similarity to phlogopite found in kimberlites and lamprophyres from regions like the USA and South Africa. It was classified as ‘re-equilibrated’ phlogopite rather than primary magmatic phlogopite, signifying slight modification by mantle-derived melt-fluid flux. Type B phlogopite also commonly exhibits subhedral to euhedral habits but lacks pleochroism. It occurs in relatively higher-grade ores and more intensely altered rocks, developing between rock-forming minerals, sometimes in symplectite/symplectic intergrowth, and is often associated with metallic minerals or crosscut/replaced by them. It similarly displays symplectite/symplectic intergrowth with surrounding olivine and pyroxene grains, which are typically serpentinized or chloritized. Type B phlogopite was presumably also generated from magmatic crystallization. Elemental analysis indicates its resemblance to phlogopite in certain South African peridotites, classifying it as ‘neocrystallized’ phlogopite, which experienced stronger modification by mantle-derived melt-fluid flux and is associated with the main mineralization stage. Type A phlogopite formed under relatively high-temperature, high-Ti, and high-oxygen fugacity conditions characterized by low Si, Mg, and Na, but enrichment in Fe and Al, favoring the enrichment of metallic elements like Fe. Type B phlogopite formed through the modification of Type A phlogopite. Consistent with this, its elemental signature suggested that the modifying agent was a mantle-derived, Mg-, Si-, and Na-enriched, but Ti-, Fe-, and Al-depleted melt-fluid flux rich in volatile components such as Cl. During this process, rock-forming minerals absorbed Mg while releasing Fe, contributing to ore formation. The crystallization temperatures of phlogopite were calculated using Ti geothermometry. The continuous vertical variation in these crystallization temperatures likely represents prolonged, sustained melt-fluid flux, indicating that the Jinchuan ultramafic intrusion functioned primarily as a long-term conduit for melt-fluid flux. This persistent flux may be the key factor enabling the progressive enrichment of metallic elements and the formation of the deposit.

Key words: Jinchuan Cu-Ni(Pt) sulfide deposit, phlogopite, elemental geochemistry, melt-fluid flow

中图分类号: