

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 224-244.DOI: 10.13745/j.esf.sf.2025.7.12
于祥惠1(
), 刘翠1,*(
), 苏尚国1, 刘继旭1, 王淼1, 郭旭2, 周成号3, 高亚林4,5
收稿日期:2025-06-14
修回日期:2025-07-03
出版日期:2025-11-25
发布日期:2025-11-12
通信作者:
刘翠
作者简介:于祥惠(2000—),女,硕士研究生,资源与环境专业。E-mail: Yuxh27@163.com
基金资助:
YU Xianghui1(
), LIU Cui1,*(
), SU Shangguo1, LIU Jixu1, WANG Miao1, GUO Xu2, ZHOU Chenghao3, GAO Yalin4,5
Received:2025-06-14
Revised:2025-07-03
Online:2025-11-25
Published:2025-11-12
Contact:
LIU Cui
摘要:
中国金川铜镍(铂)硫化物矿床是世界第三、亚洲第一的铜镍硫化物矿床,是重要的战略性资源宝库。关于该矿床的成因、机制等目前还存在很多的争议。金云母是金川岩石、矿石中常见的含水矿物,其与造岩矿物、金属矿物的关系可以指示岩浆作用、成矿作用以及流体作用的相互关系。本文通过对金云母的系统镜下观察,结合元素地球化学特征,划分了金川矿床中金云母的2种类型:A型金云母和B型金云母。A型金云母多呈半自形-自形结构,深黄褐色-无色的多色性明显,多产出于贫矿或无矿的岩石中,与橄榄石、辉石等颗粒呈共结结构,应为同时从幔源超基性岩浆中结晶的产物。元素分析显示,其与美国、南非等金伯利岩、煌斑岩中的金云母类似,属于重平衡金云母,不属于岩浆型金云母,表明其受到了幔源熔体-流体流的轻微改造;B型金云母亦多呈半自形-自形,但无多色性,产于较富的矿石和蚀变较重的岩石中,发育于造岩矿物之间,有时呈共结结构,常与金属矿物共生或被金属矿物穿切交代,与其周围的橄榄石、辉石呈共结结构,这些橄榄石、辉石通常已发生蛇纹石化或绿泥石化,推测B型金云母亦为岩浆结晶生成。元素分析显示其与南非的部分橄榄岩中的金云母类似,属于新生金云母,受幔源熔体-流体流改造较强,与成矿主期相关。A型金云母形成于相对贫硅、贫镁、贫钠,富铁、富铝的高温、高钛、高氧逸度的环境,利于Fe等金属元素的富集。B型金云母是A型金云母经改造后形成的,其元素特点可能说明改造B型金云母的是来自幔源的富含(Cl)挥发分的富镁、富硅、富钠,贫钛、贫铁、贫铝的熔体-流体流,在此过程中,造岩矿物吸收Mg,析出Fe,形成矿床。利用Ti计算了金云母的结晶温度,其温度的连续性垂直变化可能代表了长期持续的熔体-流体作用,说明金川超基性岩体更可能是熔体-流体的长期通道,这可能是导致金属元素不断富集从而成矿的原因。
中图分类号:
于祥惠, 刘翠, 苏尚国, 刘继旭, 王淼, 郭旭, 周成号, 高亚林. 中国甘肃金川铜镍(铂)硫化物矿床中金云母类型、成因及其意义[J]. 地学前缘, 2025, 32(6): 224-244.
YU Xianghui, LIU Cui, SU Shangguo, LIU Jixu, WANG Miao, GUO Xu, ZHOU Chenghao, GAO Yalin. Types, genesis, and implications of phlogopite in the Jinchuan Cu-Ni (Pt) sulfide deposit, Gansu Province, China[J]. Earth Science Frontiers, 2025, 32(6): 224-244.
图2 金川铜镍矿床地质简图及典型剖面图(a)及金川主要矿体三维图截图(b)(a据文献[19]修改;b据文献[28]修改)
Fig.2 Geological sketch map with representative cross-section of the Jinchuan Cu-Ni deposit (a) and graphical capture of the 3D model of main orebodies (b). a modified after [19]; b modified after [28].
图5 金川矿床岩(矿)石镜下照片 a-c—ZK1-2,网脉状镍黄铁矿矿石;d-f—Ⅱ-6-7-1,纯橄岩;g-i—23-4-11-8,二辉橄榄岩;j-l—Ⅱ-1-06,二辉橄榄岩;m-o—JC2-240611-3,橄榄辉石岩。Ol—橄榄石;Cpx—单斜辉石;Opx—斜方辉石;Pl—斜长石;MM—金属矿物;Po—磁黄铁矿;Pn—镍黄铁矿;Ccp—黄铜矿;Mag—磁铁矿;Vil—紫硫镍矿。a,d,g,j,m—透射光(-)镜下照片;b,e,h,k,n—透射光(+)镜下照片;c,f,i,l,o—反射光(-)镜下照片。
Fig.5 Photomicrographs of rock and ore samples from the Jinchuan deposit
图6 金川矿床中多色性明显的金云母照片(第一类金云母) Phl—金云母;Ol—橄榄石;Px—辉石;Srp—蛇纹石;Tlc—滑石;Mag—磁铁矿;Ccp—黄铜矿。a,c,e,g,j—单偏光镜下照片;b,d,f,h,k—正交偏光镜下照片;i,l—背散射照片。
Fig.6 Photographs of phlogopite with distinct pleochroism in the Jinchuan deposit
图7 金川矿床中无多色性的金云母照片(第二类金云母) Phl—金云母;Amp—角闪石; Srp—蛇纹石;Chl—绿泥石。a,d,f,h—单偏光镜下照片;b,e,g,i—正交偏光镜下照片;c—背散射照片。
Fig.7 Photographs of phlogopite lacking pleochroism in the Jinchuan deposit
图8 两类多色性共存金云母照片(第三类金云母) Phl—金云母;Px—辉石;Ccp—黄铜矿。a,d—单偏光镜下照片;b,e—正交偏光镜下照片;c—背散射照片。
Fig.8 Photographs of phlogopite exhibiting transitional pleochroism in the Jinchuan deposit
图12 镁铁云母(Fe2++Fe3+)-Mg图解(底图据文献[48]) Ⅰ—高铁低镁黑云母;Ⅱ1—低铁中镁黑云母;Ⅱ2—高铁中镁黑云母;Ⅲ—低铁高镁金云母。
Fig.12 Discrimination diagram of (Fe2++Fe3+)-Mg for ferromagnesian micas. Base map adapted from [48].
| [1] | CHAI G, NALDRETT A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China[J]. Economic Geology, 1992, 87(6): 1475-1495. |
| [2] | 汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 1-209. |
| [3] | 宋谢炎, 康健, 隆廷茂, 等. 甘肃金川超大型Ni-Cu-PGE硫化物矿床岩浆通道分枝构造及其深部找矿意义[J]. 地球科学与环境学报, 2023, 45(5): 1049-1062. |
| [4] | 汤中立. 中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J]. 地学前缘, 2004, 11(1): 113-119. |
| [5] | 汤中立, 焦建刚, 闫海卿, 等. 小岩体成(大)矿理论体系[J]. 中国工程科学, 2015(2): 4-18. |
| [6] | NALDRETT AJ. World-class Ni-Cu-PGE deposits: key factors in their genesis[J]. Mineralium Deposita, 1999, 34(3): 227-240. |
| [7] | 罗照华, 卢欣祥, 陈必河. 透岩浆流体成矿作用导论[M]. 北京: 地质出版社, 2009. |
| [8] | LI C S, RIPLEY E M, NALDRETT A J. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts[J]. Economic Geology, 2009, 104(2): 29-301. |
| [9] | EVANS-LAMSWOOD D M, BUTT D P, JACKSON R S, et al. Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu-Co deposit, Labrador[J]. Economic Geology, 2000, 95: 749-770. |
| [10] | LIGHTFOOT P C, KEAYS R R. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk region: implications for the origin of the Ni-Cu-PGE sulfide ores[J]. Economic Geology, 2005, 100(3): 439-462. |
| [11] | 苏尚国, 汤中立, 罗照华, 等. 岩浆通道成矿系统[J]. 岩石学报, 2014, 30(11): 3120-3130. |
| [12] | 苏尚国, 汤中立. 岩浆通道成矿系统的理论与实践[J]. 矿床地质, 2010, 29(增刊1): 885-886. |
| [13] | 陈学根, 苏尚国, 施南, 等. 金川岩浆铜镍(铂)硫化物矿床铂族金属富集过程及富集机制[J]. 地质学报, 2023, 97(11): 3715-3744. |
| [14] | HEDENQUIST J W, LOWENSTERN J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519-527. |
| [15] | 汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 4(4): 55-64. |
| [16] | LI L J, MAO X C, LIU Z K, et al. Variation of chalcophile elements in base metal sulfide minerals from the Jinchuan magmatic Ni-Cu sulfide deposit, NW China: implications for mineral exploration[J]. Journal of Geochemical Exploration, 2024, 259: 107440. |
| [17] | 甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984. |
| [18] | 高亚林. 金川矿区地质特征、时空演化及深边部找矿研究[D]. 兰州: 兰州大学, 2009. |
| [19] | SONG X Y, DANYUSHEVSKY L V, KEAYS R R, et al. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 2012, 47: 277-297. |
| [20] | SONG X Y, KEAYS R R, ZHOU M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424. |
| [21] | 闫海卿, 范超鹏, 丁孝存, 等. 金川岩浆铜镍硫化物矿床围岩的成矿贡献[J]. 矿物学报, 2015, 35(增刊1): 174. |
| [22] | 徐刚. 金川铜镍矿床铂族元素特征研究[D]. 西安: 长安大学, 2010. |
| [23] | 王守良, 王荆程, 夏明强, 等. 金川铜镍硫化矿床成岩(矿)断裂构造分析[J]. 青海大学学报(自然科学版), 2014, 32(3): 43-50. |
| [24] | 李士彬, 宋谢炎, 胡瑞忠, 等. 甘肃金川Ⅱ号岩体岩相学特征及分离结晶过程探讨[J]. 岩石学报, 2007(10): 2553-2560. |
| [25] | 江金进, 陈列锰, 宋谢炎, 等. 金川铜镍矿床58号矿体亲铜和亲铁元素特征及其地质意义[J]. 矿床地质, 2013, 32(5): 941-953. |
| [26] | 闫海卿, 王强, 胡彦强, 等. 金川铜镍硫化物岩浆矿床前锋岩浆与岩浆通道[J]. 中国地质, 2013, 40(3): 807-819. |
| [27] | 曾认宇, 赖健清, 毛先成, 等. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 2013, 23(9): 2574-2583. |
| [28] | 高亚林, 王珉, 阮俊红. 金川矿床深边部找矿预测区探讨[J]. 铜业工程, 2020(1): 31-34, 60. |
| [29] | 焦建刚, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床中富铜矿石铂族元素特征及矿床成因[J]. 西北地质, 2012, 45(4): 242-253. |
| [30] | FOSTER M D. Interpretation of the composition of trioctahedral micas[J]. United States Geological Survey Professional Paper, 1962, 354(B): 11-49. |
| [31] | CHALAPATHI RA N V, Madhava V. Titanium-rich phlogopites from the Zangamarajupalle kimberlitic rock, Andhra Pradesh, India[J]. Journal Geological Society of India, 1996, 47(3): 355-363. |
| [32] | NEAL C R, TAYLO A. The petrography and composition of phlogopite micas from the Blue Ball kimberlite, Arkansas: a record of chemical evolution during crystallization[J]. Mineralogy and Petrology, 1989, 40(3): 207-224. |
| [33] | DAWSON J B, SMITH J V. Chemistry and origin of phlogopite megacrysts in kimberlite[J]. Nature, 1975, 253(5490): 336-338. |
| [34] | NUGUMANOVA Y N, DOROSHKEVICH A G, STARIKOVA A E, et al. Composition of phlogopite from ultramafic lamprophyres as an indicator of formation conditions (Zima alkaline ultramafic carbonatite complex, Southern Siberian Craton)[J]. Russian Geology and Geophysics, 2024, 65(11): 1285-1301. |
| [35] | JAQUESA L, BOXER G, LUCAS H, et al. Mineralogy and petrology of the Argyle lamproite pipe, western Australia[J]. International Kimberlite Conference: Extended Abstracts, 1986, 4: 48-50. |
| [36] | 傅金宝. 斑岩铜矿中黑云母的化学组成特征[J]. 地质与勘探, 1981(9): 16-19. |
| [37] | 杨文金, 王联魁, 张绍立, 等. 华南两个不同成因系列花岗岩的云母标型特征[J]. 矿物学报, 1986(4): 298-307. |
| [38] | 孙世华, 于洁. Mg-Fe云母化学成分的解释和分类(Ⅱ): Mg-Fe云母的自然分类[J]. 地质科学, 1989(2): 176-189. |
| [39] | ZHU C, SVERJENSKY D A. F-Cl-OH partitioning between biotite and apatite[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3435-3467. |
| [40] | ABDEL-RAHMAN A F M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas[J]. Journal of Petrology, 1994, 35(2): 525-541. |
| [41] | PARSAPOOR A, KHALILI M, TEPLEY F, et al. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran)[J]. Ore Geology Reviews, 2015, 66: 200-218. |
| [42] | SUN K K, DENG J, WANG Q F, et al. Formation of Sn-rich granitic magma: a case study of the highly evolved Kafang granite in the Gejiu tin polymetallic ore district, South China[J]. Mineralium Deposita, 2023, 58(2): 359-378. |
| [43] | RIEDER M, CAVAZZINI G, D’YAKONOV Y S, et al. Nomenclature of the micas[J]. Clays and clay minerals, 1998, 46(5): 586-595. |
| [44] | JACOBS D C, PARRY W T. A comparison of the geochemistry of biotite from some basin and range stocks[J]. Economic Geology, 1976, 71(6): 1029-1035. |
| [45] | JACOBS D C, PARRY W T. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico[J]. Economic Geology, 1979, 74(4): 860-887. |
| [46] | SELBY D, NESBITT B E. Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry[J]. Chemical Geology, 2000, 171(1/2): 77-93. |
| [47] | NACHIT H, IBHI A, ABIA E H, et al. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 2005, 337(16): 1415-1420. |
| [48] | 周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, 1988(3): 63-73. |
| [49] | 周作侠. 湖北丰山洞岩体成因探讨[J]. 岩石学报, 1986(1): 59-70. |
| [50] | 刘翠, 邓晋福, 苏尚国, 等. 北京门头沟地区棋盘岩铁辉长岩的发现及其地质意义[J]. 现代地质, 2007(2): 327-331. |
| [51] | JONES A P, SMITH J V. Petrological significance of mineral chemistry in the Agathla Peak and the Thumb minettes, Navajo volcanic field[J]. The Journal of Geology, 1983, 91(6): 643-656. |
| [52] | PANDEY R, CHALAPATHI R N V, DHOTE P, et al. Rift-associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: tectonomagmatic implications[J]. Geoscience Frontiers, 2018, 9(6): 1883-1902. |
| [53] | 刘秉翔, 张招崇, 程志国. 煌斑岩的分类、特征及成因[J]. 地质学报, 2021, 95(2): 292-316. |
| [54] | KRMíČEK L, CHALAPATHI RAO N V. Lamprophyres, lamproites and related rocks as tracers to supercontinent cycles and metallogenesis[J]. Geological Society, London, Special Publications, 2022, 513(1): 1-16. |
| [55] | MITCHELL R H. Petrology of hypabyssal kimberlites: relevance to primary magma compositions[J]. Journal of Volcanology and Geothermal Research, 2008, 174(1): 1-8. |
| [56] | 董振信. 金伯利岩中的云母[J]. 矿物岩石, 1991(4): 33-43. |
| [57] | HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90(2/3): 316-328. |
| [58] | DAVID R W, HANS P E. Stability of biotite: experiment, theory, and application[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1965, 50(9): 1228-1272. |
| [59] | BEANE R E. Biotite stability in the porphyry copper environment[J]. Economic Geology, 1974, 69(2): 241-256. |
| [60] | YAVUZ F. Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA+[J]. Computers & Geosciences, 2003, 29(10): 1203-1213. |
| [61] | TANG P, CHEN Y C, TANG J X, et al. Advances in research of mineral chemistry of magmatic and hydrothermal biotites[J]. Acta Geologica Sinica (English Edition), 2019, 93(6): 1947-1966. |
| [62] | DE ALBUQUERQUE C A R. Geochemistry of biotites from granitic rocks, northern Portugal[J]. Geochimica et Cosmochimica Acta, 1973, 37(7): 1779-1802. |
| [1] | 陈丽, 汪淑慧, 袁味奇, 顾文智, 叶捷, 周顺桂. 闽江入海口透光层光电效应及微生物响应机制[J]. 地学前缘, 2025, 32(3): 207-217. |
| [2] | 许聿迪, 刘承帅, 高庭, 刘彧, 尹润生, 孙蕗. 贵州草海0.78 Ma以来古环境演化:来自XRF连续扫描的证据[J]. 地学前缘, 2025, 32(3): 168-182. |
| [3] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
| [4] | 吴家望, 姚胜男, Amalia FILIPPIDI, 刘志飞, Gert J. DE LANGE. 全新世东地中海的陆源碎屑输入及其水文气候变化:海盆尺度地球化学分析[J]. 地学前缘, 2022, 29(4): 156-167. |
| [5] | 洪双, 左仁广, 胡浩, 熊义辉, 王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. |
| [6] | 段文晶, 赵甫峰, 任科法, 刘显凡, 邓江红, 杨蜜蜜, 楚亚婷. 滇西六合正长斑岩和花岗岩包体中锆石U-Pb年代和微量元素地球化学研究[J]. 地学前缘, 2020, 27(3): 154-167. |
| [7] | 李声浩,朱赖民,丁乐乐,熊潇,刘凯. 南秦岭夏家店金矿床赋矿黑色岩系元素地球化学及其成矿意义[J]. 地学前缘, 2019, 26(5): 129-145. |
| [8] | 贺聪,吉利明,苏奥,刘颖,李剑锋,吴远东,张明震. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系[J]. 地学前缘, 2017, 24(6): 277-285. |
| [9] | 李关清, 顾雪祥, 程文斌, 章永梅, 张岩, 代鸿章, 吕鹏瑞. 藏南扎西康锑硫盐多金属矿床成矿物质来源分析:兼论北喜马拉雅成矿带主要矿床矿质来源的差异性[J]. 地学前缘, 2014, 21(5): 90-104. |
| [10] | 解洪晶, 武广, 朱明田, 晋建平, 钟伟, 刘军, 糜梅. 西天山喇嘛苏岩体年代学、地球化学及成矿意义[J]. 地学前缘, 2013, 20(1): 190-205. |
| [11] | 戴霜,刘学,赵杰,张明震,刘俊伟,孔立,朱强,黄永波. 陆地沉积物对大洋缺氧事件的响应:六盘山群黑色页岩地球化学特征及其意义[J]. 地学前缘, 2012, 19(4): 255-259. |
| [12] | 刘汉彬,李子颖,秦明宽,孙晔,韩娟,金贵善,李军杰. 鄂尔多斯盆地北部砂岩型铀矿地球化学研究进展[J]. 地学前缘, 2012, 19(3): 139-146. |
| [13] | 赵振华. 条带状铁建造(BIF)与地球大氧化事件[J]. 地学前缘, 2010, 17(2): 1-12. |
| [14] | 陈永清 黄静宁 Xiaoming Zhai 卢映祥 程志中 李建荣. 中缅毗邻区金腊Pb-Zn-Ag多金属矿田花岗岩锆石U-Pb定年与地球化学特征[J]. 地学前缘, 2009, 16(1): 344-362. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||