地学前缘 ›› 2025, Vol. 32 ›› Issue (1): 388-400.DOI: 10.13745/j.esf.sf.2024.2.23
黄宇1,2,3,4(), 钟世华1,2,3,4,*(
), 李三忠1,2,3,4, 赵鸿5, 薛梓萌1,2,3,4, 郭广慧1,2,3,4, 刘嘉情1,2,3,4, 牛警徽1,2,3,4
收稿日期:
2023-12-13
修回日期:
2024-01-31
出版日期:
2025-01-25
发布日期:
2025-01-15
通信作者:
*钟世华(1989—),男,博士,副教授,硕士生导师,主要从事矿床地球化学研究工作。E-mail: zhongshihua@ouc.edu.cn
作者简介:
黄 宇(2002—),男,硕士研究生,地质学专业。E-mail: sz10162019@163.com
基金资助:
HUANG Yu1,2,3,4(), ZHONG Shihua1,2,3,4,*(
), LI Sanzhong1,2,3,4, ZHAO Hong5, XUE Zimeng1,2,3,4, GUO Guanghui1,2,3,4, LIU Jiaqing1,2,3,4, NIU Jinghui1,2,3,4
Received:
2023-12-13
Revised:
2024-01-31
Online:
2025-01-25
Published:
2025-01-15
摘要:
锆石原位微区U-Pb定年和微量元素分析已成为当前地球科学领域常规的分析手段。然而,锆石微区分析结果的解译受到分析点选取、仪器稳定性和采集信号校正等诸多因素的影响,定量揭示这些因素如何影响锆石微区分析结果是准确探讨该结果地质意义的重要前提。本文以来自青海野马泉铁多金属矿床晚三叠世二长花岗斑岩岩体中的锆石为研究对象,开展了LA-ICP-MS锆石原位U-Pb定年和微量元素分析,以探究副矿物包裹体和信号采集时间对锆石微区分析结果产生的影响。研究结果显示,尽管信号采集时间较短时会得到较大的U-Pb定年误差,但它的改变并不会对U-Pb年龄和微量元素分析结果产生明显影响。对比含矿物包裹体和不含矿物包裹体的分析点可知,矿物包裹体的存在同样不会对定年结果产生明显干扰。然而,若选择的锆石分析位置含有磷灰石等副矿物包裹体,得到的分析数据会具有“轻稀土富集”的假象,从而造成诸多误判,如推断出错误的岩浆氧逸度特征等。因此,锆石微区分析前必须首先查明所分析的位置是否存在副矿物包裹体,而在探讨锆石微量元素数据的地质意义前必须将受到矿物包裹体混染的锆石数据予以剔除。
中图分类号:
黄宇, 钟世华, 李三忠, 赵鸿, 薛梓萌, 郭广慧, 刘嘉情, 牛警徽. 副矿物包裹体和信号采集时间对锆石U-Pb年龄和微量元素分析结果的影响[J]. 地学前缘, 2025, 32(1): 388-400.
HUANG Yu, ZHONG Shihua, LI Sanzhong, ZHAO Hong, XUE Zimeng, GUO Guanghui, LIU Jiaqing, NIU Jinghui. Effects of accessory mineral inclusions and signal acquisition time on zircon U-Pb dating and trace element analysis results[J]. Earth Science Frontiers, 2025, 32(1): 388-400.
图1 来自野马泉二长花岗斑岩的富矿物包裹体锆石(a)和ICPMSDataCal软件中对应的锆石采集信号处理界面(b)
Fig.1 Zircons with mineral-rich inclusions from the Yemaquan monzonite granite porphyry (a) and the corresponding zircon signal processing interface in the ICPMSDataCal software (b)
图5 野马泉二长花岗斑岩中典型锆石CL图像、透射光和反射光照片 云母包裹体的晶形呈六方形片状,磷灰石包裹体呈六方柱状,金红石包裹体呈四方柱状或针状。
Fig.5 Typical zircon CL images, transmitted light, and reflected light photographs from the Yemaquan monzonitic granite porphyry
![]() |
表1 野马泉二长花岗斑岩锆石U-Pb同位素分析与年龄结果(信号采集时间45s)
Table 1 U-Pb isotopic analysis and age results of zircon from Yemaquan monzonite granite porphyry (signal acquisition time 45s)
![]() |
图6 ICPMSDataCal软件数字信号采集窗口分析到磷灰石时部分元素曲线呈鼓包状隆起
Fig.6 When analyzing apatite in the digital signal acquisition window of the ICPMSDataCal software, the curves of certain elements exhibit a bulging rise.
图7 不同信号采集时间下野马泉二长花岗斑岩锆石的加权平均年龄图(a-d)和U-Pb同位素谐和图(e-h)
Fig.7 Weighted average age diagrams (a-d) and U-Pb isotope concordia diagrams (e-h) of zircon from the Yemaquan monzonitic granite porphyry under different signal acquisition times.
图8 不同信号采集时间下野马泉二长花岗斑岩锆石球粒陨石标准化REE配分模式(标准化值据文献[30])
Fig.8 REE Distribution patterns of zircon from the Yemaquan monzonitic granite porphyry under different signal acquisition times, standardized to chondrite (normalization values based on [30])
图10 不同信号采集时间下野马泉二长花岗斑岩锆石Eu/Eu*-Ce/Ce*图解
Fig.10 Eu/Eu*-Ce/Ce* diagram of zircons from the Yemaquan monzonitic granite porphyry under different signal acquisition times
图11 不同信号采集时间下野马泉二长花岗斑岩锆石的温度-log f O 2图解(a-d)和温度-ΔFMQ图解(e-h) ΔFMQ=log f O 2-logFMQ,其中FMQ指铁橄榄石-磁铁矿-石英缓冲剂。
Fig.11 Temperature-log f O 2 diagrams (a-d) and temperature-ΔFMQ diagrams (e-h) of zircons from the Yemaquan monzonitic granite porphyry under different signal acquisition times.
[1] | 王岳军, 范蔚茗, 郭锋, 等. 湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J]. 中国科学D辑: 地球科学, 2001, 31(9): 745-751. |
[2] |
王冠, 孙丰月, 李碧乐, 等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6): 381-401.
DOI |
[3] | 杨红章, 陈家富, 刘俊来, 等. 兴安地块东南缘晚石炭世侵入岩的锆石U-Pb年代学、地球化学特征及构造意义[J]. 地质学报, 2019, 93(9): 2226-2244. |
[4] | MUKHERJEE P K, JAIN A K, SINGHAL S, et al. U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications[J]. Gondwana Research, 2019, 75: 282-297. |
[5] | CROW M, ZAW K, THU K, et al. A review of new detrital zircon U-Pb ages from the Mogok area of Myanmar: implications for the stratigraphy and early tectonic evolution of the Mogok metamorphic belt (MMB)[J]. Earth-Science Reviews, 2023, 242: 104441. |
[6] | 简平, 程裕淇, 刘敦一. 变质锆石成因的岩相学研究: 高级变质岩U-Pb年龄解释的基本依据[J]. 地学前缘, 2001, 8(3): 183-191. |
[7] | LIANG X R, LI X H, SUN M, et al. Simultaneously in-situ analysis of trace elements and U-Pb and Pb-Pb ages for single zircons by laser ablation microprobe-inductively coupled plasma mass spectrometry[J]. Chemistry Letters, 1999, 28(7): 639-640. |
[8] | LI X H, LIANG X R, SUN M, et al. Geochronology and geochemistry of single-grain zircons: simultaneous in situ analysis of U-Pb age and trace elements by LAM-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5): 1015-1024. |
[9] | 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286. |
[10] | SMYTHE D J, BRENAN J M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium[J]. Earth and Planetary Science Letters, 2016, 453: 260-266. |
[11] | 瞿泓滢, 毛景文, 周淑敏, 等. 粤北大宝山志留纪次英安斑岩年代学、地球化学特征及其地质意义[J]. 矿床地质, 2019, 38(2): 331-354. |
[12] | DE SOUZA PEREIRA G, DE ASSIS JANASI V, ANDRADE S, et al. Sources, evolution and ages of A-type granites from the post-orogenic itu batholith, SE Brazil: inferences from zircon U-Pb dating, Lu-Hf isotope ratios and trace-element geochemistry[J]. Journal of South American Earth Sciences, 2023, 131: 104619. |
[13] |
钏茂山, 胡乐, 蔺如喜, 等. 扬子板块西缘早中生代“绿豆岩” 成因及构造启示: 锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223.
DOI |
[14] |
朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475.
DOI |
[15] | 刘嘉情, 钟世华, 李三忠, 等. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩-矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 2023, 56(6): 41-56. |
[16] | 郭广慧, 钟世华, 李三忠, 等. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 2023, 56(6): 57-70. |
[17] | ZHAO J F, ZENG X, TIAN J X, et al. Provenance and paleogeography of the Jurassic northwestern Qaidam Basin (NW China): evidence from sedimentary records and detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 2020, 190: 104060. |
[18] | QIU X F, TONG X R, JIANG T, et al. Reworking of Hadean continental crust in the Dabie Orogen: evidence from the muzidian granitic gneisses[J]. Gondwana Research, 2021, 89: 119-130. |
[19] |
支倩, 任蕊, 段丰浩, 等. 西准噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J]. 地学前缘, 2024, 31(3): 40-58.
DOI |
[20] | ZHONG S H, FENG C Y, SELTMANN R, et al. Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition[J]. Lithos, 2018, 314: 646-657. |
[21] | ZHONG S H, LI S Z, FENG C Y, et al. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai-Tibet Plateau: a zircon perspective[J]. Ore Geology Reviews, 2021, 139: 104560. |
[22] | 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678. |
[23] | 丰成友, 李东生, 吴正寿, 等. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J]. 西北地质, 2010, 43(4): 10-17. |
[24] | 徐国端. 青海祁漫塔格多金属成矿带典型矿床地质地球化学研究[D]. 昆明: 昆明理工大学, 2010. |
[25] | 刘光莲, 刘宇宏, 朱传宝, 等. 青海东昆仑西段野马泉铁多金属矿床成矿模式及找矿模型[J]. 矿产勘查, 2019, 10(9): 2162-2170. |
[26] | LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. |
[27] | 胡彩霞, 袁万明. 不同成因类型的锆石特征及年代学意义[J]. 中国矿业, 2021, 30(增刊1): 204-207. |
[28] | LUDWIG K. User’s manual for isoplot 3.00: a geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronological Center Special Publication, 2012: 1-75. |
[29] | GEHRELS G E, VALENCIA V A, RUIZ J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017. |
[30] | SUN S S, MACDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[31] |
赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135.
DOI |
[32] | 雷玮琰, 施光海, 刘迎新. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 2013, 20(4): 273-284. |
[33] | HOSKIN P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2004, 69(3): 637-648. |
[34] | 陈润生. 福建建瓯上房花岗岩热液锆石U-Pb年龄及地质学意义[J]. 福建地质, 2015, 34(2): 87-102. |
[35] | 张望, 王根宝, 张凯, 等. 陕西镇安棋盘沟钨矿床印支期成矿: 来自热液锆石U-Pb年龄证据[J]. 中国地质, 2020, 47(2): 552-554. |
[36] | MURAKAMI T, CHAKOUMAKOS B C, EWING R C, et al. Alpha-decay event damage in zircon[J]. American Mineralogist, 1991, 76(9/10): 1510-1532. |
[37] | CAVOSIE A J, VALLEY J W, WILDE S A. Correlated microanalysis of zircon: trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900Ma detrital grains[J]. Geochimica et Cosmochimica Acta, 2006, 70(22): 5601-5616. |
[38] | CLAESSON S, VETRIN V, BAYANOVA T, et al. U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia: a record of geological evolution from the archaean to the palaeozoic[J]. Lithos, 2000, 51(1/2): 95-108. |
[39] | 宋忠宝, 张雨莲, 贾群子, 等. 青海祁漫塔格地区野马泉花岗闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2016, 35(12): 2006-2013. |
[40] | WHITEHOUSE M J, KAMBER B S. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation[J]. Earth and Planetary Science Letters, 2002, 204(3/4): 333-346. |
[41] | XU B, HOU Z Q, ZHENG Y C, et al. In situ elemental and isotopic study of diorite intrusions: implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet[J]. Ore Geology Reviews, 2017, 90: 1063-1077. |
[42] | WANG R, ZHU D C, WANG Q, et al. Porphyry mineralization in the Tethyan Orogen[J]. Science China: Earth Sciences, 2020, 63(12): 2042-2067. |
[43] | ZHENG Y L, ZHANG C Q, JIA F D, et al. Apatite and zircon geochemistry in Yao’an alkali-rich porphyry gold deposit, Southwest China: implications for petrogenesis and mineralization[J]. Minerals, 2021, 11(11): 1293. |
[44] | 付小锦, 李其在, 刘欢, 等. 北衙地区贫矿和富矿斑岩对比研究: 对斑岩成矿的指示意义[J]. 矿床地质, 2022, 41(4): 751-769. |
[45] | 杨东杰, 彭惠娟, 王天瑞, 等. 云南中甸红牛—红山斑岩—矽卡岩型铜矿床花岗斑岩岩石学特征及成因意义[J]. 矿物岩石, 2023, 43(4): 60-77. |
[46] |
勾宗洋, 于皓丞, 邱昆峰, 等. 西秦岭太阳山斑岩铜-钼矿床岩体氧逸度及成矿意义[J]. 地学前缘, 2019, 26(5): 243-254.
DOI |
[47] | 肖路毅, 杨晓志. 锆石Ce氧逸度计和早期地球的氧化还原状态[J]. 高校地质学报, 2022, 28(4): 484-492. |
[48] | ZHONG S H, SELTMANN R, QU H Y, et al. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method[J]. Mineralogy and Petrology, 2019, 113(6): 755-763. |
[49] | LOUCKS R R, FIORENTINI M L, HENRÍQUEZ G J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 61(3): egaa034. |
[50] |
杨亚楠, 李秋立, 刘宇, 等. 离子探针锆石U-Pb定年[J]. 地学前缘, 2014, 21(2): 81-92.
DOI |
[1] | 刘晓惠, 刘一珉, 丁林, 郭晓玉, 黄兴富, 李蕙琳, 高锐. 中拉萨地体当惹雍措锆石微量元素特征及其对地壳厚度演化的指示[J]. 地学前缘, 2025, 32(1): 343-366. |
[2] | 李方兰, 刘学龙, 周云满, 赵成峰, 李守奎, 王基元, 陆波德, 李庆锐, 张卫文, 王海, 曹振梁, 周杰虎. 滇西保山地块陡崖铁铜多金属矿床石榴子石年代学及其地球化学特征[J]. 地学前缘, 2024, 31(3): 113-132. |
[3] | 尹青青, 唐菊兴, 项新葵, 赵晓彦, 汪方跃, 徐裕敏, 郭虎, 余振东, 谢金玲, 代晶晶, 彭勃. 赣北彭山还原性S型花岗岩成因及其对Sn富集的启示:来自锆石微量元素的证据[J]. 地学前缘, 2024, 31(3): 133-149. |
[4] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[5] | 钏茂山, 胡乐, 蔺如喜, 毛崇祯, 李仕忠, 李锁明, 袁永盛. 扬子板块西缘早中生代“绿豆岩”成因及构造启示:锆石U-Pb年龄、微量元素及Hf同位素约束[J]. 地学前缘, 2024, 31(2): 204-223. |
[6] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[7] | 杨双, 王瑞. 铌钽分异富集成矿机制及铌钽矿物测试新技术研究进展[J]. 地学前缘, 2023, 30(5): 151-170. |
[8] | 孙文博, 李欢. 伟晶岩中锆石研究进展及其对稀有金属成矿的启示[J]. 地学前缘, 2023, 30(5): 171-184. |
[9] | 陈雷, 聂潇, 刘凯, 庞绪勇, 张英利. 东秦岭官坡地区火炎沟伟晶岩型锡铌钽矿床矿物学和年代学特征[J]. 地学前缘, 2023, 30(5): 40-58. |
[10] | 徐大良, 邓新, 彭练红, 田洋, 金巍, 金鑫镖. 大别山碰撞造山带俯冲盘陆壳基底组成:白垩纪脉岩捕获/继承锆石的证据[J]. 地学前缘, 2023, 30(4): 299-316. |
[11] | 何陈诚, 陈红汉, 肖雪薇, 刘秀岩, 苏奥. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析[J]. 地学前缘, 2023, 30(3): 44-65. |
[12] | 赵晓燕, 杨竹森, 杨洋, 曹煜, 范建彪, 赵苗. 西藏雅拉香波早白垩世变质基性岩和斜长角闪岩的发现及其地质意义[J]. 地学前缘, 2023, 30(2): 163-182. |
[13] | 王璐琳, 刘晓鸿, 张志光. 香港世界地质公园东平洲平洲组新发现火山岩的锆石U-Pb测年、地球化学及地质意义[J]. 地学前缘, 2023, 30(2): 239-258. |
[14] | 朱紫怡, 周飞, 王瑀, 周统, 侯照亮, 邱昆峰. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(5): 464-475. |
[15] | 张良, 张恒, 龚成强, 丁孝忠, 张传恒, 刘勇, 高林志, 刘燕学. 滇中南中元古代撮科蛇绿混杂岩地质特征及构造背景[J]. 地学前缘, 2022, 29(2): 180-197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||