地学前缘 ›› 2024, Vol. 31 ›› Issue (6): 145-157.DOI: 10.13745/j.esf.sf.2024.7.15
收稿日期:
2024-03-05
修回日期:
2024-05-16
出版日期:
2024-11-25
发布日期:
2024-11-25
通信作者:
*蔺文静(1978—),男,博士,研究员,博士生导师,主要从事地热资源勘察与利用方面的研究工作。E-mail: linwenjing@mail.cgs.gov.cn
作者简介:
李洁祥(1989—),男,讲师,硕士生导师,主要从事地热流体水文地球化学方面的研究工作。E-mail: jiexiangli@hpu.edu.cn
基金资助:
LI Jiexiang1,2(), XU Yadong1, LIN Wenjing3,4,*(
)
Received:
2024-03-05
Revised:
2024-05-16
Online:
2024-11-25
Published:
2024-11-25
摘要:
水化学地热温度计是估算水热型地热系统热储温度的一种重要手段,为了厘清传统水化学地热温度计的局限性和有效性,此次将对水化学地热温度计展开全面分析。结果表明:部分水化学平衡体系受区域地质条件的影响,致使对应的水化学地热温度计(Na-Li地热温度计、Li-Mg地热温度计、Ca-Mg地热度计和SO4-F地热温度计等)缺乏普适性,而Na-K-Ca地热温度计(β=1/3)可能受多种水化学因素的制约,在中低温地热系统中应谨慎使用;Na-K地热温度计、K-Mg地热温度计和SiO2温度计更适用于水热型热储温度的计算,高温热储层(>200 ℃)中水岩相互作用强烈,Na-K地热温度计的计算结果相对准确,在估算中低温热储层温度时,K-Mg地热温度计和SiO2温度计则更为合适,而在沉积盆地型地热系统,不建议使用水化学地热温度计直接估算地热水的平衡温度。除此之外,判识热储层的存在和地热水水岩平衡状态的分析是选取水化学地热温度计的前提条件,然而即使在水化学地热温度计的适用范围内,对水化学地热温度计计算结果的对比验证仍然必不可少;高温地热系统中地热水的混合过程可用于验证水化学地热温度计的准确性,而在中低温地热系统,随着水岩相互作用程度降低,水化学地热温度计估算结果的不确定性也随之增加,综合多种方法对热储温度值的分析验证就显得更为重要。此次研究可为合理选取水化学地热温度计提供一定的理论参考。
中图分类号:
李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157.
LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers[J]. Earth Science Frontiers, 2024, 31(6): 145-157.
Na/K地热温度计表达式 | 参考文献 |
---|---|
t(℃)=856/[lg(CNa/CK)+0.857]-273.15 | [ |
t(℃)=883/[lg(CNa/CK)+0.780]-273.15 | [ |
t(℃)=933/[lg(CNa/CK)+0.993]-273.15 (25~250 ℃) | [ |
t(℃)=1 319/[lg(CNa/CK)+1.699]-273.15 (250~350 ℃) | [ |
t(℃)=1 217/[lg(CNa/CK)+1.483]-273.15 | [ |
t(℃)=1 178/[lg(CNa/CK)+1.470]-273.15 | [ |
t(℃)=1 390/[lg(CNa/CK)+1.750]-273.15 | [ |
t(℃)=(1 289±76)/[(lg(CNa/CK)+1.615(±0.179)]-273.15 | [ |
t(℃)=733.6-770.511lg(CNa/CK)+378.189lg(CNa/CK)2-95.753lg(CNa/CK)3+9.544lg(CNa/CK)4 | [ |
t(℃)=1 052/{1+exp[1.714lg(CNa/CK)]+0.252}+76 | [ |
t(℃)=1 273.2tanh{[-0.414 4lg(CNa/CK)]-0.564 2}+1 156.9 | [ |
t(℃)=(883±15)/[lg(CNa/CK)+0.894(±0.032)]-273.15 | [ |
表1 Na/K地热温度计的数学式(CNa和CK为质量分数,mg/kg)
Table 1 Equations for Na-K geothermometers
Na/K地热温度计表达式 | 参考文献 |
---|---|
t(℃)=856/[lg(CNa/CK)+0.857]-273.15 | [ |
t(℃)=883/[lg(CNa/CK)+0.780]-273.15 | [ |
t(℃)=933/[lg(CNa/CK)+0.993]-273.15 (25~250 ℃) | [ |
t(℃)=1 319/[lg(CNa/CK)+1.699]-273.15 (250~350 ℃) | [ |
t(℃)=1 217/[lg(CNa/CK)+1.483]-273.15 | [ |
t(℃)=1 178/[lg(CNa/CK)+1.470]-273.15 | [ |
t(℃)=1 390/[lg(CNa/CK)+1.750]-273.15 | [ |
t(℃)=(1 289±76)/[(lg(CNa/CK)+1.615(±0.179)]-273.15 | [ |
t(℃)=733.6-770.511lg(CNa/CK)+378.189lg(CNa/CK)2-95.753lg(CNa/CK)3+9.544lg(CNa/CK)4 | [ |
t(℃)=1 052/{1+exp[1.714lg(CNa/CK)]+0.252}+76 | [ |
t(℃)=1 273.2tanh{[-0.414 4lg(CNa/CK)]-0.564 2}+1 156.9 | [ |
t(℃)=(883±15)/[lg(CNa/CK)+0.894(±0.032)]-273.15 | [ |
锂地热温度计 | 适用地质条件 | 来源 |
---|---|---|
T(K)=1 000/[lg(MNa/MLi)+0.38] | 火山型和花岗岩地热区(MCl < 0.3 mol/L) | [ |
T(K)=1 195/[lg(MNa/MLi)-0.13] | 火山型和花岗岩地热区(MCl > 0.3 mol/L) | [ |
T(K)=1 040/[lg(MNa/MLi)+0.43] | 花岗岩地热区 | [ |
T(K)=1 049/[lg(MNa/MLi)+0.44] | 火山型和花岗岩地热区(MCl< 0.3 mol/L) | [ |
T(K)=1 267/[lg(MNa/MLi)+0.07] | 火山型和花岗岩地热区(MCl > 0.3 mol/L) | [ |
T(K)=1 590/[lg(MNa/MLi)+1.299] | 沉积盆地 | [ |
T(K)=855/[lg(MNa/MLi)-1.275] | 裂谷地热区 | [ |
T(K)=1 967/[lg(MNa/MLi)+1.267] | 玄武岩地热区 (200~325 ℃) | [ |
T(K)=920/[lg(MNa/MLi)-1.105] | 裂谷地热区 | [ |
T(K)=2 002/[lg(MNa/MLi)+1.322] | 玄武岩地热区 (200~325 ℃) | [ |
T(K)=2 200/[(lgCLi/ | 沉积盆地 | [ |
表2 锂地热温度计的数学方程式(MNa、 M L i 、MCl为物质的量浓度,mol/L;CLi、 C M g为质量分数,mg/kg)
Table 2 Equations for Li geothermometers
锂地热温度计 | 适用地质条件 | 来源 |
---|---|---|
T(K)=1 000/[lg(MNa/MLi)+0.38] | 火山型和花岗岩地热区(MCl < 0.3 mol/L) | [ |
T(K)=1 195/[lg(MNa/MLi)-0.13] | 火山型和花岗岩地热区(MCl > 0.3 mol/L) | [ |
T(K)=1 040/[lg(MNa/MLi)+0.43] | 花岗岩地热区 | [ |
T(K)=1 049/[lg(MNa/MLi)+0.44] | 火山型和花岗岩地热区(MCl< 0.3 mol/L) | [ |
T(K)=1 267/[lg(MNa/MLi)+0.07] | 火山型和花岗岩地热区(MCl > 0.3 mol/L) | [ |
T(K)=1 590/[lg(MNa/MLi)+1.299] | 沉积盆地 | [ |
T(K)=855/[lg(MNa/MLi)-1.275] | 裂谷地热区 | [ |
T(K)=1 967/[lg(MNa/MLi)+1.267] | 玄武岩地热区 (200~325 ℃) | [ |
T(K)=920/[lg(MNa/MLi)-1.105] | 裂谷地热区 | [ |
T(K)=2 002/[lg(MNa/MLi)+1.322] | 玄武岩地热区 (200~325 ℃) | [ |
T(K)=2 200/[(lgCLi/ | 沉积盆地 | [ |
SiO2地热温度计表达式 | 参考文献 | |
---|---|---|
石英 | t(℃)=1 309/(5.19-lg | [ |
t(℃)=1 522/(5.75-lg | [ | |
t(℃)= -42.198+0.288 31 | [ | |
t(℃)= -53.5+0.112 36 | [ | |
t(℃)= -55.3+0.365 9 | [ | |
t(℃)= -44.119+0.244 69 | [ | |
t(℃)= 140.82+0.235 17 | [ | |
t(℃)= 1 175.7/(4.88- lg | [ | |
玉髓 | t(℃)= 1 032/(4.69- lg | [ |
t(℃)= 1 112/(4.91- lg | [ | |
t(℃)= 1 264/(5.31- lg | [ |
表3 SiO2地热温度计的数学方程式( C S i O 2为质量分数,mg/kg)
Table 3 Equations of SiO2 geothermometers
SiO2地热温度计表达式 | 参考文献 | |
---|---|---|
石英 | t(℃)=1 309/(5.19-lg | [ |
t(℃)=1 522/(5.75-lg | [ | |
t(℃)= -42.198+0.288 31 | [ | |
t(℃)= -53.5+0.112 36 | [ | |
t(℃)= -55.3+0.365 9 | [ | |
t(℃)= -44.119+0.244 69 | [ | |
t(℃)= 140.82+0.235 17 | [ | |
t(℃)= 1 175.7/(4.88- lg | [ | |
玉髓 | t(℃)= 1 032/(4.69- lg | [ |
t(℃)= 1 112/(4.91- lg | [ | |
t(℃)= 1 264/(5.31- lg | [ |
[1] | NICHOLSON K. Geothermal fluids: chemistry and exploration techniques[M]. Berlin: Springer-Verlag, 1993. |
[2] | REED M, SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1479-1492. |
[3] | PANG Z H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091. |
[4] | SPYCHER N, PEIFFER L, SONNENTHAL E L, et al. Integrated multicomponent solute geothermometry[J]. Geothermics, 2014, 51: 113-123. |
[5] | PALMER C D, SMITH R W, NEUPANE G, et al. The Reservoir Temperature Estimator (RTEst): a multicomponent geothermometry tool[J]. Geothermics, 2024, 119: 102926. |
[6] | PEIFFER L, WANNER C, SPYCHER N, et al. Optimized multicomponent vs. classical geothermometry: insights from modeling studies at the Dixie Valley geothermal area[J]. Geothermics, 2014, 51: 154-169. |
[7] | PÉREZ-ZÁRATE D, SANTOYO E, GUEVARA M, et al. Geochemometric modeling and geothermal experiments of Water/Rock Interaction for the study of alkali-feldspars dissolution[J]. Applied Thermal Engineering, 2015, 75: 1244-1261. |
[8] | NITSCHKE F, HELD S, NEUMANN T, et al. Geochemical characterization of the Villarrica geothermal system, Southern Chile, part II: site-specific re-evaluation of SiO2 and Na-K solute geothermometers[J]. Geothermics, 2018, 74: 217-225. |
[9] | BOSCHETTI T. A revision of lithium minerals thermodynamics: possible implications for fluids geochemistry andgeothermometry[J]. Geothermics, 2022, 98: 102286. |
[10] | BOSCHETTI T. An update on lithium mica thermodynamics and its geothermometrical application[J]. Geothermics, 2023, 109: 102661. |
[11] | NITSCHKE F, HELD S, VILLALÓN I, et al. Geochemical reservoir exploration and temperature determination at the Mt. villarrica geothermal system, Chile[C]// Proceedings of European Geothermal Congress, European Geothermal Energy Council, Strasbourg, France, 2016: 19-24. |
[12] | PEPIN J, PERSON M, PHILLIPS F, et al. Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system[J]. Geofluids, 2015, 15(1/2): 139-160. |
[13] | HARVEY C, BEARDSMORE G, MOECK I, et al. Geothermal exploration: global strategies and applications[M]. Bochum: IGA-Academy, 2016. |
[14] | GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Cageoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. |
[15] | 李洁祥, 郭清海, 余正艳. 高温地热系统中黏土矿物形成对Na-K和K-Mg地球化学温标准确性的影响[J]. 地球科学, 2017, 42(1): 142-154. |
[16] | DÍAZ-GONZÁLEZ L, SANTOYO E, REYES-REYES J. Tres nuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos[J]. Revista Mexicana de Ciencias Geológicas, 2008, 25(3): 465-482. |
[17] | ARNORSSON S. The quartz-and Na/K geothermometers. I. New thermodynamic calibration[C]// Proceedings of the World Geothermal Congress, International Geothermal Association, Kyushu-Tohoku, Japan, 2000: 929-934. |
[18] | TRUESDELL A H. Summary of section III geochemical techniques in exploration[C]//Proceedings of the 2nd UN Symposium on the Development and Use of Geothermal Resources. Washington, DC: Government Printing Office, 1976:liii-lxxix. |
[19] | TONANI F B. Some remarks on the application of geochemical techniques in geothermal exploration[M]//Advances in European Geothermal Research. Dordrecht: Springer, 1980: 428-443. |
[20] | ARNÓRSSON S. Chemical equilibria in Icelandic geothermal systems: implications for chemical geothermometry investigations[J]. Geothermics, 1983, 12(2/3): 119-128. |
[21] | FOURNIER R O. A revised equation for Na/K geothermometer[C]// GRC Transactions, Geothermal Resources Council, Davis, California, 1979, 3: 221-224. |
[22] | NIEVA D, NIEVA R. Developments in geothermal energy in Mexico: Part twelve. A cationic geothermometer for prospecting of geothermal resources[J]. Heat Recovery Systems and CHP, 1987, 7(3): 243-258. |
[23] | VERMA S P, SANTOYO E. New improved equations for Na K, Na Li and SiO2 geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research, 1997, 79(1/2): 9-23. |
[24] | CAN I. A new improved Na/K geothermometer by artificial neural networks[J]. Geothermics, 2002, 31(6): 751-760. |
[25] | STEFÁNSSON A, ARNÓRSSON S. Feldspar saturation state in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(15): 2567-2584. |
[26] | FOURNIER O. Interpretation of Na-K-Mg relations in geothermal waters[C]// GRC Transactions, Geothermal Resources Council, Davis, California, 1990, 14: 1421-1425. |
[27] | LI J X, SAGOE G, LI Y L. Applicability and limitations of potassium-related classical geothermometers for crystalline basement reservoirs[J]. Geothermics, 2020, 84: 101728. |
[28] | FOURNIER R O, TRUESDELL A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275. |
[29] | POPE L A, HAJASH A, POPP R K. An experimental investigation of the quartz, Na-K, Na-K-Ca geothermometers and the effects of fluid composition[J]. Journal of Volcanology and Geothermal Research, 1987, 31(1/2): 151-161. |
[30] | FOURNIER R O. Lectures on geochemical interpretation of hydrothermal waters[C]//Geothermal Training in Iceland, UNU Geothermal Training Programme, Iceland, 1989: 10. |
[31] | PAČES T. A systematic deviation from Na-K-Ca geothermometer below 75 ℃ and above 10-4 atm P C O 2[J]. Geochimica et Cosmochimica Acta, 1975, 39(4): 541-544. |
[32] | FOURNIER R O, POTTER II R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta, 1979, 43(9): 1543-1550. |
[33] | CHIODINI G, CIONI R, GUIDI M, et al. Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: a theoretical investigation based on a mineral-solution equilibrium model[J]. Geochimica et Cosmochimica Acta, 1991, 55(10): 2709-2727. |
[34] | LI J X, ZHANG L, RUAN C X, et al. Estimates of reservoir temperatures for non-magmatic convective geothermal systems: insights from the Ranwu and Rekeng geothermal fields, western Sichuan Province, China[J]. Journal of Hydrology, 2022, 609: 127668. |
[35] | KOGA A. Geochemistry of the waters discharged from drillholes in the Otake and hatchobaru areas[J]. Geothermics, 1970, 2: 1422-1425. |
[36] | FOUILLAC C, MICHARD G. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs[J]. Geothermics, 1981, 10(1): 55-70. |
[37] | SANJUAN B, MILLOT R, BRACH M. Use of a new sodium/lithium (Na/Li) geothermometric relationship for high-temperature dilute geothermal fluids from Iceland[C]//Proceedings of the World Geothermal Congress, International Geothermal Association, Bali, Indonesia, 2010: 12. |
[38] | KHARAKA Y K, MARINER R H. Chemical geothermometers and their application to formation waters from sedimentary basins[M]//NAESER N D, MCCUIIOH T H. Thermal history of sedimentary basins. New York: Springer, 1989: 99-117. |
[39] | SANJUAN B, MILLOT R, ÁSMUNDSSON R, et al. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments[J]. Chemical Geology, 2014, 389: 60-81. |
[40] | GIL M. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitic areas[J]. Chemical Geology, 1990, 89(1/2): 117-134. |
[41] | KHARAKA Y K, LICO M S, LAW L M. Chemical geothermometers applied to formation waters, gulf of Mexico and California Basins[J]. AAPG Bulletin, 1982, 66(5): 588-588 |
[42] | KHARAKA Y K, HULL R W, CAROTHERS W W. Water-rock interactions in sedimentary basins[M]//Relationship of organic matter and mineral diagenesis. McLean: SEPM (Society for Sedimentary Geology), 1985: 79-176. |
[43] | MINISSALE A A, DUCHI V. Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy[J]. Journal of Volcanology and Geothermal Research, 1988, 35(3): 237-252. |
[44] | REYES A G, TROMPETTER W J. Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand[J]. Chemical Geology, 2012, 314: 96-112. |
[45] | LI J X, SAGOE G, WANG X Y, et al. Assessing the suitability of lithium-related geothermometers for estimating the temperature of felsic rock reservoirs[J]. Geothermics, 2021, 89: 101950. |
[46] | MAHON W A J. Silica in hot water discharged from drillholes at Wairakei, New Zealand[J]. New Zealand Journal of Science, 1966, 9: 135-144. |
[47] | FOURNIER R O. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 1977, 5(1/2/3/4): 41-50. |
[48] | FOURNIER R O, POTTER R W. An equation correlating the solubility of quartz in water from 25 ℃ to 900 ℃ at pressures up to 10000 bars[J]. Geochimica et Cosmochimica Acta, 1982, 46(10): 1969-1973. |
[49] | VERMA M P. Chemical thermodynamics of silica: a critique on its geothermometer[J]. Geothermics, 2000, 29(3): 323-346. |
[50] | MARINI L, CHIODINI G, CIONI R. New geothermometers for carbonate: evaporite geothermal reservoirs[J]. Geothermics, 1986, 15(1): 77-86. |
[51] | HOLLAND T J B, POWELL R. An internally consistent thermodynamic data set for phases of petrological interest[J]. Journal of Metamorphic Geology, 1998, 16(3): 309-343. |
[52] | HYEONG K, CAPUANO R M. Ca/Mg of brines in Miocene/Oligocene clastic sediments of the Texas Gulf Coast: buffering by calcite/disordered dolomite equilibria[J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3065-3080. |
[53] | VESPASIANO G, APOLLARO C, MUTO F, et al. Chemical and isotopic characteristics of the warm and cold waters of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework[J]. Applied Geochemistry, 2014, 41: 73-88. |
[54] | LI J X, WU Z H, TIAN G H, et al. Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in North China[J]. Applied Geochemistry, 2022, 138: 105211. |
[55] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[56] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[57] | GUO Q H, WANG Y X. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology and Geothermal Research, 2012, 215: 61-73. |
[58] | GIGGENBACH W, SHEPPARD D, ROBINSON B, et al. Geochemical structure and position of the Waiotapu geothermal field, New Zealand[J]. Geothermics, 1994, 23(5/6): 599-644. |
[59] | LI J X, YANG G, SAGOE G, et al. Major hydrogeochemical processes controlling the composition of geothermal waters in the Kangding geothermal field, western Sichuan Province[J]. Geothermics, 2018, 75: 154-163. |
[60] | WANG X, WANG G L, LU C, et al. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J]. Geothermics, 2018, 71: 118-131. |
[61] | ARNÓRSSON S, GUNNLAUGSSON E, SVAVARSSON H. The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 547-566. |
[62] | 李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例[J]. 地球科学: 中国地质大学学报, 2015, 40(9): 1576-1584. |
[63] | TRUESDELL A H, NATHENSON M, RYE R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research, 1977, 82(26): 3694-3704. |
[64] | TIAN J, PANG Z H, GUO Q, et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74: 92-105. |
[65] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[66] | LI J X, SAGOE G, YANG G, et al. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: a comparative study in Yangbajing geothermal field and Guangdong geothermal fields[J]. Journal of Volcanology and Geothermal Research, 2018, 352: 92-105. |
[67] | 张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2): 255-268. |
[68] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[1] | 石鸿蕾, 王婉丽, 王贵玲, 邢林啸, 陆川, 赵佳怡, 刘禄, 宋嘉佳. 典型高温地热系统水热循环及锂同位素分馏过程模拟研究[J]. 地学前缘, 2024, 31(6): 104-119. |
[2] | 赵增锋, 王楚尤, 邱小琮, 周瑞娟, 杨强强, 赵睿智. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J]. 地学前缘, 2024, 31(6): 462-473. |
[3] | 张春来, 杨慧, 黄芬, 邱成, 朱同彬. 亚热带季风区边缘坡立谷河流水化学特征及外源水的增汇效应:以广西马山县清波河流域为例[J]. 地学前缘, 2024, 31(5): 377-386. |
[4] | 贾国栋, 徐胜, 刘丛强. 江西龙南花岗岩风化壳形成和演化的铀系不平衡约束[J]. 地学前缘, 2024, 31(4): 366-379. |
[5] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[6] | 王鹏寿, 许民, 韩海东, 李振中, 宋轩宇, 周卫永. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446. |
[7] | 江南萱, 燕青, 王会军. 末次间冰期全球气候瞬变模拟与平衡态模拟的对比研究[J]. 地学前缘, 2024, 31(1): 486-499. |
[8] | 徐蓉桢, 魏世博, 李成业, 程旭学, 周翔宇. 基于水化学与环境同位素的额济纳平原区域地下水循环规律解析[J]. 地学前缘, 2023, 30(4): 440-450. |
[9] | 张园, 张敏, 刘仁静, 陈俊杰. 考虑微纳米限域效应对相平衡影响的CO2驱油机理研究[J]. 地学前缘, 2023, 30(2): 306-315. |
[10] | 邢世平, 郭华明, 吴萍, 胡学达, 赵振, 袁有靖. 化隆—循化盆地不同类型含水层组高氟地下水的分布及形成过程[J]. 地学前缘, 2022, 29(3): 115-128. |
[11] | 侯国华, 高茂生, 叶思源, 赵广明. 黄河三角洲浅层地下水盐分来源及咸化过程研究[J]. 地学前缘, 2022, 29(3): 145-154. |
[12] | 李海明, 李梦娣, 肖瀚, 刘学娜. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178. |
[13] | 曾成, 何春, 肖时珍, 刘再华, 陈旺光, 何江湖. 湿润亚热带典型白云岩流域的岩溶无机碳汇强度[J]. 地学前缘, 2022, 29(3): 179-188. |
[14] | 林聪业, 孙占学, 高柏, 华恩祥, 张海阳, 杨芬, 高杨, 蒋文波, 姜心月. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 2021, 28(5): 49-58. |
[15] | 王文祥, 李文鹏, 蔡月梅, 安永会, 邵新民, 吴玺, 尹德超. 黑河流域中游盆地水文地球化学演化规律研究[J]. 地学前缘, 2021, 28(4): 184-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||