地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 284-298.DOI: 10.13745/j.esf.sf.2023.5.33
刘超1,2,3(), 付晓飞1,3,*(
), 李扬成4, 王海学1,3, 孙冰1, 郝炎1, 胡慧婷1, 杨子成1,3, 李依霖1,3, 谷社峰4, 周爱红4, 马成龙5
收稿日期:
2023-01-26
修回日期:
2023-04-27
出版日期:
2024-03-25
发布日期:
2024-04-18
通信作者:
*付晓飞(1973—),男,教授,博士生导师,主要从事断层封闭性及与流体运移研究工作。E-mail: 作者简介:
刘 超(1985—),男,副教授,主要从事油气地球化学、油气成藏、油铀共存机理研究工作。E-mail: lcyxdz@163.com
基金资助:
LIU Chao1,2,3(), FU Xiaofei1,3,*(
), LI Yangcheng4, WANG Haixue1,3, SUN Bing1, HAO Yan1, HU Huiting1, YANG Zicheng1,3, LI Yilin1,3, GU Shefeng4, ZHOU Aihong4, MA Chenglong5
Received:
2023-01-26
Revised:
2023-04-27
Online:
2024-03-25
Published:
2024-04-18
摘要:
烃源岩与砂岩型铀矿通常同盆共生,除了提供矿化剂之外,烃源岩能否成为铀源岩对砂岩型铀矿的勘探范围向盆地纵深部位拓展具有重要意义。研究针对烃源岩能否成为铀源岩所涉及的三个关键问题,即“铀从烃源岩中迁出的比例、如何随地层流体运移、在何种条件下沉淀和聚集”,梳理了国内外相关研究进展,指出了有必要加强研究的薄弱环节。结果表明:热模拟实验证实烃源岩中的铀能够迁出,迁出的铀很可能以U(IV)/U(VI)混合的形式随含烃地层水和石油运移,温度、压力的降低以及pH、Eh变化会导致铀溶解度的下降和铀运移载体的分解而发生铀沉淀,沉淀物也可能重新被含氧的地层水溶解。问题与建议包括:(1)铀从烃源岩中迁出的比例存在不确定性,迁出的机制以及地质规律尚不清楚,需要开展进一步的生烃-排铀模拟实验及排铀动力学表征研究;(2)铀在低温、含烃、还原性热液中的赋存状态是研究其迁移机制的基础,目前对与铀结合的优势配体的类型、产物热力学性质、铀在含烃地下水与石油中的分布比例所知甚少,有必要开展基于热模拟实验的原位测试研究;(3)携铀流体向浅部运移的过程中温度、压力、pH、Eh、有机-无机组分的变化控制铀的迁移/沉淀,不同组合条件下铀赋存形式的转化规律、主控因素尚不清楚,有待开展多因素、多变量的烃-铀运移模拟实验进行揭示。
中图分类号:
刘超, 付晓飞, 李扬成, 王海学, 孙冰, 郝炎, 胡慧婷, 杨子成, 李依霖, 谷社峰, 周爱红, 马成龙. 烃源岩作为铀源岩的可能性:研究现状与展望[J]. 地学前缘, 2024, 31(2): 284-298.
LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives[J]. Earth Science Frontiers, 2024, 31(2): 284-298.
图1 砂岩铀矿“渗入+渗出”双重铀源成矿模式图
Fig.1 Metallogenic model of sandstone-hosted uranium deposit characterized by dual uranium sources consisting of supergene altered rocks and uranium-bearing hydrocarbon source rocks
盆地/地区 | 烃源岩层 | 铀含量/10-6 | 文献来源 |
---|---|---|---|
鄂尔多斯盆地铜川地区 | 长7段暗色泥岩 | 5.40~140.00/(51.10) | [ |
鄂尔多斯盆地东胜-准格尔旗 | 直罗组含泥煤岩 | 15.33~30.99/(21.49) | [ |
江西省修水地区 | 观音堂组、王音铺组黑色页岩 | 9.37~202.00/(47.47) | [ |
中国华南地区 | 牛蹄塘组黑色页岩 | 0.84~97.9/(13.10) | [ |
塔里木盆地北部 | 玉尔吐斯组黑色页岩 | 21.10~194.90/(61.90) | [ |
修武盆地 | 下寒武统黑色页岩 | 0.57~48.60/(11.89) | [ |
中国湘西地区 | 上震旦—下寒武统黑色页岩 | 2.29~138.07/38.09) | [ |
松辽盆地钱家店地区 | 姚家组灰色泥岩 | 4.75~5.00/(4.88) | [ |
中国赣北地区 | 震旦系和寒武系碳硅泥岩 | 8.11~61.56/(30.05) | [ |
瑞典 | Upper Alum | 100.00~300.00/(118.00) | [ |
伊利诺斯盆地 | New Albany | 6.79~63.88/(24.20) | [ |
阿巴拉契亚盆地 | Woodford (George) | 8.10~61.80/(29.36) | [ |
阿巴拉契亚盆地 | Cleveland | 1.00~22.60/(9.10) | [ |
威利斯顿盆地 | Upper Bakken | 21.40~70.60/(42.50) | [ |
威利斯顿盆地 | Lower Bakken | 22.20~176.30/(77.50) | [ |
摩洛哥 | Timahdit | (41.00) | [ |
英国谢菲尔德地区 | Parkhouse | 5.00~199.00/(35.75) | [ |
阿巴拉契亚盆地 | Marcellus | 1.90~470/(14.07) | [ |
爱尔兰西部 | 石炭系页岩 | 5.86~158.00/9.52 | [ |
表1 烃源岩层含铀量统计表
Table 1 A summary of uranium content in source rocks
盆地/地区 | 烃源岩层 | 铀含量/10-6 | 文献来源 |
---|---|---|---|
鄂尔多斯盆地铜川地区 | 长7段暗色泥岩 | 5.40~140.00/(51.10) | [ |
鄂尔多斯盆地东胜-准格尔旗 | 直罗组含泥煤岩 | 15.33~30.99/(21.49) | [ |
江西省修水地区 | 观音堂组、王音铺组黑色页岩 | 9.37~202.00/(47.47) | [ |
中国华南地区 | 牛蹄塘组黑色页岩 | 0.84~97.9/(13.10) | [ |
塔里木盆地北部 | 玉尔吐斯组黑色页岩 | 21.10~194.90/(61.90) | [ |
修武盆地 | 下寒武统黑色页岩 | 0.57~48.60/(11.89) | [ |
中国湘西地区 | 上震旦—下寒武统黑色页岩 | 2.29~138.07/38.09) | [ |
松辽盆地钱家店地区 | 姚家组灰色泥岩 | 4.75~5.00/(4.88) | [ |
中国赣北地区 | 震旦系和寒武系碳硅泥岩 | 8.11~61.56/(30.05) | [ |
瑞典 | Upper Alum | 100.00~300.00/(118.00) | [ |
伊利诺斯盆地 | New Albany | 6.79~63.88/(24.20) | [ |
阿巴拉契亚盆地 | Woodford (George) | 8.10~61.80/(29.36) | [ |
阿巴拉契亚盆地 | Cleveland | 1.00~22.60/(9.10) | [ |
威利斯顿盆地 | Upper Bakken | 21.40~70.60/(42.50) | [ |
威利斯顿盆地 | Lower Bakken | 22.20~176.30/(77.50) | [ |
摩洛哥 | Timahdit | (41.00) | [ |
英国谢菲尔德地区 | Parkhouse | 5.00~199.00/(35.75) | [ |
阿巴拉契亚盆地 | Marcellus | 1.90~470/(14.07) | [ |
爱尔兰西部 | 石炭系页岩 | 5.86~158.00/9.52 | [ |
体系 | 样品 类型 | TOC 含量/% | 有机质 类型 | 铀含量/ 10-6 | 实验条件 (T为温度,p为压力,t为加热时间) | EasyRo/ % | 活化铀 比例或 迁出率/% | 文献 来源 |
---|---|---|---|---|---|---|---|---|
高压釜封闭 体系,搅拌 | 泥岩 粉末 | 16.38 | II2 | 180 | T=200 ℃,p=2、3、4、5 MPa,t=72 h | 0.35 | 59.5~77.8 | [ |
p=2 MPa,T=30、100、150、200 ℃,t=72 h | 0.2~0.35 | 12.5~59.5 | ||||||
煤岩 粉末 | III | 60 | T=260 ℃,p=2、3、4、5 MPa,t=72 h | 0.57 | 79.1~95.5 | |||
p=3 MPa,T=220、260、300、340 ℃,t=72 h | 0.4~1.10 | 90.3~97.7 | ||||||
高压釜+黄金 管封闭体系 | 页岩 粉末 | 18.48 | II | 124.5 | T=350 ℃,p=70 MPa,t=24 h | 0.92 | 0 | [ |
高压釜 半封闭体系 | 人工 样品 | III | 50 | T=120 ℃,p=7 MPa,t=144 h | 0.21 | [ | ||
T=200 ℃,p=7 MPa,t=144 h | 0.34 | |||||||
T=200 ℃,p=28 MPa,t=48 h | 0.31 | |||||||
T=200 ℃,p=28 MPa,t=144 h | 0.34 | |||||||
T=300 ℃,p=28 MPa,t=144 h | 0.68 |
表2 烃源岩排铀热模拟实验
Table 2 A summary of simulation experiments of uranium emitted from source rocks
体系 | 样品 类型 | TOC 含量/% | 有机质 类型 | 铀含量/ 10-6 | 实验条件 (T为温度,p为压力,t为加热时间) | EasyRo/ % | 活化铀 比例或 迁出率/% | 文献 来源 |
---|---|---|---|---|---|---|---|---|
高压釜封闭 体系,搅拌 | 泥岩 粉末 | 16.38 | II2 | 180 | T=200 ℃,p=2、3、4、5 MPa,t=72 h | 0.35 | 59.5~77.8 | [ |
p=2 MPa,T=30、100、150、200 ℃,t=72 h | 0.2~0.35 | 12.5~59.5 | ||||||
煤岩 粉末 | III | 60 | T=260 ℃,p=2、3、4、5 MPa,t=72 h | 0.57 | 79.1~95.5 | |||
p=3 MPa,T=220、260、300、340 ℃,t=72 h | 0.4~1.10 | 90.3~97.7 | ||||||
高压釜+黄金 管封闭体系 | 页岩 粉末 | 18.48 | II | 124.5 | T=350 ℃,p=70 MPa,t=24 h | 0.92 | 0 | [ |
高压釜 半封闭体系 | 人工 样品 | III | 50 | T=120 ℃,p=7 MPa,t=144 h | 0.21 | [ | ||
T=200 ℃,p=7 MPa,t=144 h | 0.34 | |||||||
T=200 ℃,p=28 MPa,t=48 h | 0.31 | |||||||
T=200 ℃,p=28 MPa,t=144 h | 0.34 | |||||||
T=300 ℃,p=28 MPa,t=144 h | 0.68 |
图3 含铀煤岩样品在不同条件下的排烃-排铀曲线(据文献[41]) a—实验装置及取样位置示意图;b—各测试点有机碳丰度曲线;c—各测试点含铀量;d—各测试点铀与有机碳含量的关系。A:120 ℃, 7 MPa, 144 h; B:200 ℃, 7 MPa, 144 h; C:200 ℃, 28 MPa, 48 h; D:200 ℃, 28 MPa, 144 h; E:300 ℃, 28 MPa, 144 h。
Fig.3 Simulation experiment of hydrocarbon generation and uranium expulsion of uranium-bearing coal under different temperature and pressure. Adapted from [41].
图5 Witwatersrand盆地沥青中铀矿物的微观图像(据文献[4]) a—碎屑铀矿物被有机质部分溶蚀和置换:b—沥青中次棱角状铀矿物聚合体;c—具有“海绵状”结构的次生铀矿物集合体;d—沥青脉中原位形成的自形铀矿物。
Fig.5 Uraninite grains with variable morphology in Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Adapted from [4].
图6 排铀率与生烃量、EasyRo关系(数据据文献[12])
Fig.6 The relationship between uranium-expulsion rate and hydrocarbon-generation content and EasyRo. Data adapted from [12].
[1] | 欧光习, 纪玉峰, 张敏, 等. 石油-热卤水与砂岩型铀矿化流体的关系[C]. 中国地球物理学会第22届年会, 2006. |
[2] | LESHER E K, HONEYMAN B D, RANVILLE J F. Detection and characterization of uranium-humic complexes during 1D transport studies[J]. Geochimica et Cosmochimica Acta, 2013, 109: 127-142. |
[3] | FUCHS S, SCHUMANN D, WILLIAMS-JONES A E. The growth and concentration of uranium and titanium minerals in hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa[J]. Chemical Geology, 2015, 393: 55-66. |
[4] | FUCHS S, WILLIAMS-JONES A E, JACKSON S E. Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: evidence for liquid hydrocarbon ore fluids[J]. Chemical Geology, 2016, 426: 45-59. |
[5] | FUCHS S H, SCHUMANN D, WILLIAMS-JONES A E, et al. Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader Reef, Witwatersrand Supergroup, South Africa[J]. Precambrian Research, 2017, 293: 39-55. |
[6] | RALLAKIS D, MICHELS R, BROUAND M, et al. The role of organic matter on uranium precipitation in Zoovch Ovoo, Mongolia[J]. Minerals, 2019, 9(5): 310. |
[7] | SAINTILAN N J, SPANGENBERG J E, CHIARADIA M, et al. Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization[J]. Scientific Reports, 2019, 9: 8283. |
[8] | 李怀渊, 张守鹏, 李海明. 铀-油相伴性探讨[J]. 地质论评, 2000, 46(4): 355-361. |
[9] | 黄贤芳, 刘德长, 杜乐天, 等. 一种新的砂岩铀矿成矿类型: 构造-油气型[J]. 世界核地质科学, 2005, 22(3): 141-146. |
[10] | 金若时, 黄澎涛, 苗培森, 等. 准噶尔盆地东缘侏罗系砂岩型铀矿成矿条件与找矿方向[J]. 地质通报, 2014, 33(2): 359-369. |
[11] | 宫文杰, 张振强, 于文斌, 等. 松辽盆地地浸砂岩型铀成矿铀源分析[J]. 世界核地质科学, 2010, 27(1): 25-30. |
[12] | 李艳青. 鄂尔多斯盆地深部烃源岩生烃过程的油或气-铀关系实验及地质意义[D]. 西安: 西北大学, 2018. |
[13] | 张龙. 鄂尔多斯盆地北部天然气逸散与铀成矿效应[D]. 西安: 西北大学, 2017. |
[14] | 张万良. 烃源岩=铀源岩: 砂岩铀矿成矿物质来源新思考[J]. 矿产与地质, 2018, 32(1): 1-7. |
[15] | 李建国, 张博, 金若时, 等. 钱家店铀矿床表生含氧含铀流体与深层酸性含烃流体的耦合成矿作用: 来自岩心蚀变矿物填图的证据[J]. 大地构造与成矿学, 2020, 44(4): 576-589. |
[16] | 丁波, 贺锋, 刘红旭, 等. 四川盆地北部砂岩型铀矿成矿作用与成矿模式及对找矿方向的启示[J]. 铀矿地质, 2021, 37(6): 1027-1036. |
[17] | 李子颖, 刘武生, 李伟涛, 等. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用[J]. 中国地质, 2022, 49(4): 1009-1047. |
[18] | 蔡郁文, 王华建, 王晓梅, 等. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208. |
[19] | YANG H, ZHANG W Z, WU K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4): 285-293. |
[20] | 薛伟, 薛春纪, 涂其军, 等. 鄂尔多斯盆地东北缘侏罗系铀矿化与有机质的某些关联[J]. 地质论评, 2009, 55(3): 361-369. |
[21] | 薛玮玮, 凌洪飞, 李达, 等. 修水地区下寒武统富铀地层特征及其铀富集机制研究[J]. 高校地质学报, 2018, 24(2): 210-221. |
[22] | 刘安, 李旭兵, 王传尚, 等. 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J]. 沉积学报, 2013, 31(6): 1122-1132. |
[23] | 于炳松, 陈建强, 李兴武, 等. 塔里木盆地下寒武统底部黑色页岩地球化学及其岩石圈演化意义[J]. 中国科学D辑: 地球科学, 2002, 32(5): 374-382. |
[24] | 王运, 胡宝群, 高海东, 等. 修武盆地下寒武统黑色岩系铀矿物赋存特征及富集机理[J]. 铀矿地质, 2014, 30(1): 1-6. |
[25] | 吴朝东, 储著银. 黑色页岩微量元素形态分析及地质意义[J]. 矿物岩石地球化学通报, 2001, 20(1): 14-20. |
[26] | 刘继顺. 华南碳硅泥岩型铀矿床的地质特征分析[J]. 地质找矿论丛, 1992, 7(1): 103-110. |
[27] | LECOMTE A, CATHELINEAU M, MICHELS R, et al. Uranium mineralization in the Alum Shale Formation (Sweden): evolution of a U-rich marine black shale from sedimentation to metamorphism[J]. Ore Geology Reviews, 2017, 88: 71-98. |
[28] | LAZAR O R. Redefinition of the New Albany Shale of the Illinois Basin: an integrated, stratigraphic, sedimentologic, and geochemical study[D]. Bloomington: Indiana University, 2007. |
[29] | ABSHIRE M L, RIEDINGER N, CLYMER J M, et al. Reconstructing the paleoceanographic and redox conditions responsible for variations in uranium content in North American Devonian black shales[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 587: 110763. |
[30] | GALINDO C, MOUGIN L, FAKHI S, et al. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco)[J]. Journal of environmental Radioactivity, 2007, 92(1): 41-54. |
[31] | FISHER Q J, WIGNALL P B. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England[J]. Chemical Geology, 2001, 175(3/4): 605-621 |
[32] | PHAN T T, CAPO R C, STEWART B W, et al. Trace metal distribution and mobility in drill cuttings and produced waters from Marcellus Shale gas extraction: uranium, arsenic, barium[J]. Applied Geochemistry, 2015, 60: 89-103. |
[33] | ARMSTRONG J G, PARNELL J, BULLOCK L A, et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in west Ireland[J]. Applied Geochemistry, 2019, 109: 104401. |
[34] | BIAN LB, SCHOVSBO NH, CHAPPAZ A, et al. Molybdenum-uranium-vanadium geochemistry in the lower Paleozoic Alum Shale of Scandinavia: implications for vanadium exploration[J]. International Journal of Coal Geology, 2021, 239: 103730. |
[35] | LEVENTHAL J S. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition[J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 133-137. |
[36] | LIU B, MASTALERZ M, SCHIEBER J, et al. Association of uranium with macerals in marine black shales: insights from the Upper Devonian New Albany Shale, Illinois Basin[J]. International Journal of Coal Geology, 2020, 217: 103351. |
[37] | NXUMALO V, KRAMERS J, MONGWAKETSI N et al. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017, 404: 114-120. |
[38] | CUMBERLAND S A, ETSCHMANN B, BRUGGER J, et al. Characterization of uranium redox state in organic-rich Eocene sediments[J]. Chemosphere, 2018, 194: 602-613. |
[39] | 秦艳, 张文正, 彭平安, 等. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理[J]. 岩石学报, 2009, 25(10): 2469-2476. |
[40] | JEW A D, BESANÇON C J, ROYCROFT S J, et al. Chemical speciation and stability of uranium in unconventional shales: impact of hydraulic fracture fluid[J]. Environmental Science & Technology, 2020, 54(12): 7320-7329. |
[41] | 修晓茜, 王文全, 张玉燕, 等. 砂岩型铀矿床成矿过程中有机质与铀的运移实验[C]. 中国地球科学联合学术年会, 2016. |
[42] | 刘武生, 赵兴齐, 史清平, 等. 中国北方砂岩型铀矿成矿作用与油气关系研究[J]. 中国地质, 2017, 44(2): 279-287. |
[43] | VAZQUEZ G J, DODGE C J, FRANCIS A J. Interactions of uranium with polyphosphate[J]. Chemosphere, 2007, 70 (2), 263-269. |
[44] | SHVAREVA T Y, MAZEINA L, GORMAN-LEWIS D, et al. Thermodynamic characterization of boltwoodite and uranophane: enthalpy of formation and aqueous solubility[J]. Geochimica et Cosmochimica. Acta, 2011, 75 (18): 5269-5282. |
[45] | ZHAO D L, WANG X B, YANG S T, et al. Impact of water quality parameters on the sorption of U(VI) onto hematite[J]. Journal of Environmental Radioactivity, 2012, 103(1): 20-29. |
[46] | 惠淑君, 杨冰, 郭华明, 等. 不同因素对砂岩含水层介质吸附铀的影响[J]. 地学前缘, 2021, 28(5): 68-78. |
[47] | CUMBERLAND S A, DOUGLAS G, GRICE K, et al. Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159: 160-185. |
[48] | CHOPPIN G R. The role of natural organics in radionuclide migration in natural aquifer systems[J]. Radiochimica Acta, 1992, 58(1): 113-120. |
[49] | YANG Y, SAIERS J E, XU N, et al. Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale[J]. Environmental Science & Technology, 2012, 46: 5391-5398. |
[50] | NOVOTNIK B, CHEN W, EVANS R D, et al. Uranium bearing dissolved organic matter in the porewaters of uranium contaminated lake sediments[J]. Applied Geochemistry, 2018, 91: 36-44. |
[51] | 崔迪, 杨冰, 郭华明, 等. 砂岩含水介质中铀的吸附和迁移行为研究[J]. 地学前缘, 2022, 29(3): 217-226. |
[52] | KŘEPELOVA A, SACHS S, BERNHARD G. Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid[J]. Radiochimica Acta, 2006, 94(12): 825-833. |
[53] | TINNACHER R M, NICO P S, DAVIS J A. et al. Effects of fulvic acid on uranium (VI) sorption kinetics[J]. Environmental Science & Technology, 2013, 47(12): 6214-6222. |
[54] | YU S J, MA J, SHI Y M, et al. Uranium (VI) adsorption on montmorillonite colloid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2): 541-549. |
[55] | ARTINGER R, RABUNG T, KIM J I, et al. Humic colloid-borne migration of uranium in sand columns[J]. Journal of Contaminant Hydrology, 2002, 58(1/2): 1-12. |
[56] | MIBUS J, SACHS S, PFINGSTEN W, et al. Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study[J]. Journal of Contaminant Hydrology, 2007, 89(3/4): 199-217. |
[57] | CRANÇON P, PILI E, CHARLET L. Uranium facilitated transport by water-dispersible colloids in field and soil columns[J]. Science of the Total Environment, 2010, 408(9): 2118-2128. |
[58] | READ D D, ROSS D, SIMS R J. The migration of uranium through Clashach Sandstone: the role of low molecular weight organics in enhancing radionuclide transport[J]. Journal of Contaminant Hydrology, 1998, 35: 235-248. |
[59] | BURGOS W D, SENKO J M, DEMPSEY B A, et al. Soil humic acid decreases biological uranium (VI) reduction by Shewanella putrefaciens CN32[J]. Environmental Engineering Science, 2007, 24(6): 755-761. |
[60] | GU B H, YAN H, ZHOU P, et al. Natural humics impact uranium bioreduction and oxidation[J]. Environmental Science & Technology, 2005, 39(14): 5268-5275. |
[61] | SUZUKI Y, TANAKA K, KOZAI N, et al. Effects of citrate, NTA, and EDTA on the reduction of U (VI) by Shewanella putrefaciens[J]. Geomicrobiology Journal, 2010, 27(3): 245-250. |
[62] | LUO W S, GU B H. Dissolution and mobilization of uranium in a reduced sediment by natural humic substances under anaerobic conditions[J]. Environmental Science & Technology, 2009, 43(1): 152-156. |
[63] | ALAM M S, CHENG T. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms[J]. Journal of Contaminant Hydrology, 2014, 164: 72-87. |
[64] | BERNIER-LATMANI R, VEERAMANI H, VECCHIA E D, et al. Non-uraninite products of microbial U (VI) reduction[J]. Environmental Science & Technology, 2010, 44(24): 9456-9462. |
[65] | BOYANOV M I, FLETCHER K E, KWON M J, et al. Solution and microbial controls on the formation of reduced U (IV) species[J]. Environmental Science & Technology, 2011, 45(19): 8336-8344. |
[66] | SHARP J O, LEZAMA-PACHECO J S, SCHOFIELD E J, et al. Uranium speciation and stability after reductive immobilization in aquifer sediments[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6497-6510. |
[67] | BONE S E, DYNES J J, CLIFF J, et al. Uranium (IV) adsorption by natural organic matter in anoxic sediments[J]. Proceedings of the National Academy of Sciences, 2017, 114(4): 711-716. |
[68] | NOVIKOV A P, KALMYKOV S N, UTSUNOMIYA S, et al. Colloid transport of plutonium in the far-field of the Mayak production association[J]. Russia Science, 2006, 314(5799): 638-641. |
[69] | WANG Y H, FRUTSCHI M, SUVOROVA E, et al. Mobile uranium(IV)-bearing colloids in a mining-impacted wetland[J]. Nature Communications, 2013, 4(1): 1-9. |
[70] | MEUNIER J D, LANDAIS P, PAGEL M. Experimental evidence of uraninite formation from diagenesis of uranium-rich organic matter[J]. Geochimica et Cosmochimica Acta, 1990, 54(3): 809-817. |
[71] | 许强. 新疆准噶尔盆地西北缘砂岩型铀矿化类型[J]. 地质论评, 2015, 61(增刊1): 569-570. |
[72] | 刘正义, 许强, 刘红旭, 等. 巴什布拉克含铀地沥青铀矿床矿化特征和成矿机理[J]. 西北地质, 2021, 54(1): 109-124. |
[73] | KŘEPELOV'A A, SACHS S, BERNHARD G. Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid[J]. Radiochimica Acta, 2006, 94(12): 825-833. |
[74] | MURPHY E M, ZACHARA J M. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in groundwater[J]. Geoderma, 1995, 67(1/2): 103-124. |
[75] | GHOSH S, MASHAYEKHI H, PAN B, et al. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter[J]. Langmuir, 2008, 24(21): 12385-12391. |
[76] | NAKASHIMA S, DISNAR J R, PERRUCHOT A. Precipitation kinetics of uranium by sedimentary organic matter under diagenetic and hydrothermal conditions[J]. Economic Geology, 1999, 94(7): 993-1006. |
[77] | 刘正邦, 焦养泉, 薛春纪, 等. 内蒙古东胜地区侏罗系砂岩铀矿体与煤层某些关联性[J]. 地学前缘, 2013, 10(1): 146-153. |
[78] | 郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75. |
[79] | 吴柏林, 魏安军, 刘池洋, 等. 鄂尔多斯盆地北部延安组白色砂岩形成的稳定同位素示踪及其地质意义[J]. 地学前缘, 2015, 22(3): 205-214 |
[80] | 刘章月, 秦明宽, 蔡根庆, 等. 新疆巴什布拉克地区有机地球化学特征及其对铀成矿的控制[J]. 地学前缘, 2015, 22(4): 212-222. |
[81] | ZHAO L, CAI C F, JIN R S, et al. Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China[J]. Ore Geology Reviews, 2018, 101: 273-292. |
[82] | 蔡义各. 煤、气、 油在铀成矿中作用的成矿过程实验模拟[D]. 西安: 西北大学, 2008. |
[83] | 王苗, 吴柏林, 李艳青, 等. 鄂尔多斯盆地深部富铀烃源岩提供铀源可能性的实验研究[J]. 地球科学, 2022, 47(1): 224-239. |
[84] | 孟佑婷, 张丰收, 王平, 等. 细菌还原U(Ⅵ)分子生物学机理的研究进展[J]. 中国环境科学, 2020, 40(1): 422-430. |
[85] | JIANG S H, KIM M G, KIM S J, et al. Bacterial formation of extracellular U(VI) nanowires[J]. Chemical Communications, 2011, 47(28): 8076-8078. |
[86] | BARGAR J R, WILLIAMS K H, CAMPBELL K M, et al. Uranium redox transition pathways in acetate-amended sediments[J]. Proceedings of the National Academy of Sciences, 2013, 110(12): 4506-4511. |
[87] | ALESSI D S, LEZAMA-PACHECO J S, STUBBS J E, et al. The product of microbial uranium reduction includes multiple species with U (IV)-phosphate coordination[J]. Geochimica et Cosmochimica Acta, 2014, 131: 115-127. |
[88] | LONG P E, WILLIAMS K H, DAVIS J A, et al. Bicarbonate impact on U (VI) bioreduction in a shallow alluvial aquifer[J]. Geochimica et Cosmochimica Acta, 2015, 150: 106-124. |
[89] | SAFONOV A, LAVRINOVICH E, EMEL’YANOV A, et al. Risk of colloidal and pseudo-colloidal transport of actinides in nitrate contaminated groundwater near a radioactive waste repository after bioremediation[J] Scientific Report, 2022(12): 4557. |
[90] | 毛光周, 刘池洋, 刘宝泉, 等. 铀对Ⅰ型低熟烃源岩生烃演化的影响[J]. 中国石油大学学报(自然科学版), 2012, 36(2): 172-181. |
[91] | BASTRAKOV E N, JAIRETH S, MERNAGH T P. Solubility of uranium in hydrothermal fluids at 25 to 300 ℃. Implications for the formation of uranium deposits[J]. Geoscience Australia Record, 2010, 29: 1-91. |
[92] | POST V E, VASSOLO S I, TIBERGHIEN C, et al. Weathering and evaporation controls on dissolved uranium concentrations in groundwater: a case study from northern Burundi[J]. Science of the Total Environment, 2017, 607: 281-293. |
[93] | KALINTSEV A, MIGDISOV A, ALCORN C, et al. Uranium carbonate complexes demonstrate drastic decrease in stability at elevated temperatures[J]. Communications Chemistry, 2021, 4(1): 1-8. |
[94] | 张祖还, 赵懿英, 章邦桐. 铀地球化学[M]. 北京: 原子能出版社, 1984. |
[95] | MIGDISOV A A, BOUKHALFA H, TIMOFEEV A, et al. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 ℃[J]. Geochimica et Cosmochimica Acta, 2018, 222: 130-145. |
[96] | TIMOFEEV A, MIGDISOV A A, WILLIAMS-JONES A E, et al. Uranium transport in acidic brines under reducing conditions[J]. Nature Communications, 2018, 9(1): 1-7. |
[97] | HARTESVELDT N V. Uranium solubility in high temperature, reduced systems[M]. Starkville: Mississippi State University, 2020. |
[98] | GÖTZ C, GEIPEL G, BERNHARD G. The influence of the temperature on the carbonate complexation of uranium (VI): a spectroscopic study[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287(3): 961-969. |
[99] | BAILEY E H, RAGNARSDOTTIR K V. Uranium and thorium solubilities in subduction zone fluids[J]. Earth and Planetary Science Letters, 1994, 124(1/2/3/4): 119-129. |
[100] | 王飞飞. 油气煤铀同盆共存全球特征与中国典型盆地剖析[D]. 西安: 西北大学, 2018. |
[101] | GUILLAUMONT R, FANGHÄNEL T, FUGER J, et al. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium[M]. Amsterdam: Elsevier: 2003: 157-292. |
[102] | 杜乐天, 欧光习. 盆地形成及成矿与地幔流体间的成因联系[J]. 地学前缘, 2007, 14(2): 217-226. |
[103] | 胡瑞忠, 金景福. 上升热液浸取成矿过程中铀的迁移沉淀机制探讨[J]. 地质论评, 1990: 36(4): 317-325. |
[104] | 王鲲, 邓江洪, 郝锡荦. 铀的地球化学性质与成矿: 以华南铀成矿省为例[J]. 岩石学报, 2020, 36(1): 35-43. |
[105] | SULLIVAN A P, KILPATRICK P K. The effects of inorganic solid particles on water and crude oil emulsion stability[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3389-3404. |
[106] | QIU L F, LI X D, LIU W S, et al. Uranium deposits of Erlian Basin (China): role of carbonaceous debris organic matter and hydrocarbon fluids on uranium Mineralization[J]. Minerals, 2021, 11(5): 532. |
[1] | 童晓光, 郭建宇, 王兆明. 非常规油气地质理论与技术进展[J]. 地学前缘, 20140101, 21(1): 9-20. |
[2] | 刘池洋, 赵俊峰, 马艳萍, 王建强, 熊林芳, 陈建军, 毛光周, 张东东, 邓煜. 富烃凹陷特征及其形成研究现状与问题[J]. 地学前缘, 20140101, 21(1): 75-88. |
[3] | 徐长贵, 高阳东, 刘军, 彭光荣, 陈兆明, 李洪博, 蔡俊杰, 马庆佑. 南海陆缘“拆离—核杂岩型”盆地发现与油气地质条件:以南海北部开平凹陷为例[J]. 地学前缘, 2024, 31(6): 381-404. |
[4] | 谷雨, 吴俊, 樊太亮, 吕峻岭. 塔北-塔中地区中、下寒武统岩性组合与变形特征及其对油气输导影响[J]. 地学前缘, 2024, 31(5): 313-331. |
[5] | 曹建华, 杨慧, 黄芬, 张春来, 张连凯, 朱同彬, 周孟霞, 袁道先. 岩溶碳汇原理、过程与计量[J]. 地学前缘, 2024, 31(5): 358-376. |
[6] | 窦立荣, 黄文松, 孔祥文, 汪萍, 赵子斌. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205. |
[7] | 李凤磊, 林承焰, 任丽华, 张国印, 关宝珠. 塔里木盆地塔北地区多期断裂差异匹配控制下超深岩溶缝洞储层成藏特征[J]. 地学前缘, 2024, 31(4): 219-236. |
[8] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[9] | 田述军, 温宇航, 伍文洽, 李凯. 岷江上游坡断型裂点迁移速率与构造隆升历史研究[J]. 地学前缘, 2024, 31(4): 314-325. |
[10] | 刘烨, 韩雨伯, 朱文瑞. 矿物组分识别与智能解释在不同岩性之间的信息共享与迁移学习[J]. 地学前缘, 2024, 31(4): 95-111. |
[11] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[12] | 郑嘉睿, 冷文鹏, 王佳佳, 智丽琴, 王硕, 李佳斌, 郭鹏, 魏文侠, 宋云. 氯代烃污染场地微生物修复技术研究进展[J]. 地学前缘, 2024, 31(2): 157-172. |
[13] | 徐兆辉, 胡素云, 曾洪流, 马德波, 罗平, 胡再元, 石书缘, 陈秀艳, 陶小晚. 塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J]. 地学前缘, 2024, 31(2): 343-358. |
[14] | 何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 珠江口盆地陆丰南地区文昌组沉积古环境恢复及烃源岩有机质富集主控因素研究[J]. 地学前缘, 2024, 31(2): 359-376. |
[15] | 胡瑞忠, 高伟, 付山岭, 苏文超, 彭建堂, 毕献武. 华南中生代陆内成矿作用[J]. 地学前缘, 2024, 31(1): 226-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||