地学前缘 ›› 2022, Vol. 29 ›› Issue (4): 221-230.DOI: 10.13745/j.esf.sf.2022.4.66
所属专题: 印度-欧亚大陆碰撞及其远程效应
• “印度-欧亚大陆碰撞及其远程效应”专栏之五 • 上一篇 下一篇
吴佳杰1,2(), 徐啸1,2,*(
), 郭晓玉1,2, 卢占武3, 吴优1,2, 向波1,2, 于洋1,2, 李春森1,2, 余嘉豪1,2, 仝霄飞1,2, 罗旭聪1,2
收稿日期:
2022-04-25
修回日期:
2022-04-30
出版日期:
2022-07-25
发布日期:
2022-07-28
通信作者:
徐啸
作者简介:
吴佳杰(1995—),男,硕士研究生,主要从事远震接收函数研究。E-mail: wujj68@mail2.sysu.edu.cn
基金资助:
WU Jiajie1,2(), XU Xiao1,2,*(
), GUO Xiaoyu1,2, LU Zhanwu3, WU You1,2, XIANG Bo1,2, YU Yang1,2, LI Chunsen1,2, YU Jiahao1,2, TONG Xiaofei1,2, LUO Xucong1,2
Received:
2022-04-25
Revised:
2022-04-30
Online:
2022-07-25
Published:
2022-07-28
Contact:
XU Xiao
摘要:
喜马拉雅造山带由印度与欧亚大陆板块的陆陆碰撞而形成。为何在挤压造山的碰撞前缘形成代表垮塌的藏南裂谷系存在巨大的争议。回答这个问题需要对裂谷的地壳结构有一个全面的认识。各裂谷带的起始活动年代自西向东逐渐年轻。本研究选取喜马拉雅东部较为年轻的错那裂谷,利用密集台阵接收的远震数据,通过P波接收函数方法,揭示错那裂谷的精细地壳结构,进而通过地壳结构分析裂谷的形成。结果显示错那裂谷为全地壳尺度结构,裂谷下方莫霍面发生明显错断,且壳内结构侧向不连续发育显著。本研究表明裂谷的形成可能关联更大尺度的区域构造运动,单一的重力垮塌是否能形成地壳尺度的裂谷需要进一步研究。综合前人对藏南裂谷系区域的超钾岩和埃达克岩研究以及深部地球物理观测结果,推断因俯冲的印度板片撕裂导致软流圈物质上涌弱化了错那裂谷区域下地壳,并且结合研究区内喜马拉雅淡色花岗岩研究显示中上地壳也存在弱化现象。因此,结合本研究结果推测全地壳尺度裂谷的形成需要不同深度的地壳弱化。
中图分类号:
吴佳杰, 徐啸, 郭晓玉, 卢占武, 吴优, 向波, 于洋, 李春森, 余嘉豪, 仝霄飞, 罗旭聪. 喜马拉雅造山带东段错那裂谷的地壳结构[J]. 地学前缘, 2022, 29(4): 221-230.
WU Jiajie, XU Xiao, GUO Xiaoyu, LU Zhanwu, WU You, XIANG Bo, YU Yang, LI Chunsen, YU Jiahao, TONG Xiaofei, LUO Xucong. Crustal structure of the Cona rift, eastern Himalaya[J]. Earth Science Frontiers, 2022, 29(4): 221-230.
图1 青藏高原地质简图(a)及南北向裂谷分布示意图(b)(b据文献[15-16]修改)
Fig.1 (a) Simplified geological map of and (b) distribution of NS-trending rifts (modified after [15-16]) in the Tibetan Plateau
图2 研究区地质构造、台站位置(a)及地震事件分布图(b)(a据文献[8,23]修改)
Fig.2 (a) Topographic map of the study area showing the major tectonic features (modified from [8,23]) and (b) distribution of seismic stations and seismic events in the study area
图4 N-S剖面接收函数叠加结果及偏移成像示意图 a—所有接收函数结果的时间域叠加,未做叠加平滑;b—在图3a结果的基础上做搜索半径6 km的叠加平滑;c—所有接收函数结果在N-S剖面上的偏移成像。STD—藏南拆离系;MHT—主喜马拉雅逆冲断裂。
Fig.4 Receiver function stacking and migration imaging results for N-S profile
图5 N-S剖面解释和研究区岩相转换及裂谷形成模型示意图(c据文献[55,63]修改) a—所有接收函数结果在N-S剖面的偏移成像,其中线条代表地层信息,上覆地形剖面颜色代表不同地质块体;b—研究区淡色花岗岩形成示意图,印度下地壳底部受上涌软流圈作用被加热和弱化,高喜马拉雅熔融发生在俯冲通道的高压变质岩折返和上地壳的减压熔融过程中;c—喜马拉雅中东部高喜马拉雅的混合麻粒岩p-T-t-D变质路径;d—上地壳的熔体迁移和下地壳的弱化导致了坍塌发生,由于高喜马拉雅的折返和地壳的横向伸展,石香肠构造在此处逐渐发育。MHT—主喜马拉雅逆冲断裂;CD—错那洞穹隆;YD—也拉香波穹隆。
Fig.5 (a) N-S profile interpretation, (b) metamorphic p-T-t-D paths in the study area and (c,d) rift formation models.c modified after [55,63].
[1] | ENGLAND P, HOUSEMAN G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research, 1989, 94(B12): 17561-17579. |
[2] | DEWEY J F, BURKE K C A. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision[J]. The Journal of Geology, 1973, 81(6): 683-692. |
[3] | HARRISON T M, COPELAND P, KIDD W, et al. Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14(3): 658-676. |
[4] | MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. |
[5] | COLEMAN M, HODGES K. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517): 49-52. |
[6] | 张进江, 丁林, 钟大赉, 等. 喜马拉雅平行于造山带伸展: 是垮塌的标志还是挤压隆升过程的产物?[J]. 科学通报, 1999, 44(19): 2031-2036. |
[7] | MOLNAR P, TAPPONNIER P. Active tectonics of Tibet[J]. Journal of Geophysical Research, 1978, 83(B11): 5361-5374. |
[8] | 吴中海, 张永双, 胡道功, 等. 西藏错那—拿日雍错地堑的第四纪正断层作用及其形成机制探讨[J]. 第四纪研究, 2008, 28(2): 232-242. |
[9] | TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. |
[10] | LEE J, WHITEHOUSE M J. Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages[J]. Geology, 2007, 35(1): 45-48. |
[11] | YIN A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21745-21759. |
[12] | BIAN S, GONG J F, ZUZA A V, et al. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 2020, 544: 116383. |
[13] | CHEN Y, LI W, YUAN X H, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413: 13-24. |
[14] | LI J T, SONG X D. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8296-8300. |
[15] |
张佳伟, 李汉敖, 张会平, 等. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
DOI |
[16] | 卞爽, 于志泉, 龚俊峰, 等. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 2021, 27(2): 178-194. |
[17] | TIAN X B, CHEN Y, TSENG T L, et al. Weakly coupled lithospheric extension in southern Tibet[J]. Earth and Planetary Science Letters, 2015, 430: 171-177. |
[18] | UNSWORTH M J, JONES A G, WEI W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064): 78-81. |
[19] | SHI D N, ZHAO W J, KLEMPERER S L, et al. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles[J]. Earth and Planetary Science Letters, 2016, 452: 171-177. |
[20] | SHI D N, WU Z H, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15. |
[21] | XU Q, ZHAO J M, YUAN X H, et al. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting[J]. Gondwana Research, 2015, 27(4): 1487-1493. |
[22] | WANG G, WEI W B, YE G F, et al. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 474: 172-179. |
[23] | DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780: 228395. |
[24] | LIANG X F, CHEN Y, TIAN X B, et al. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 2016, 443: 162-175. |
[25] | CHUNG S L, CHU M F, ZHANG Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3/4): 173-196. |
[26] | 张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2): 179-189. |
[27] | 赵志丹, 莫宣学, NOMADE S, 等. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 2006, 22(4): 787-794. |
[28] | 陈建林, 许继峰, 王保弟, 等. 青藏高原拉萨地块新生代超钾质岩与南北向地堑成因关系[J]. 岩石矿物学杂志, 2010, 29(4): 341-354. |
[29] | BURG J P, GUIRAUD M, CHEN G M, et al. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet, China)[J]. Earth and Planetary Science Letters, 1984, 69(2): 391-400. |
[30] | SCHNEIDER D A, EDWARDS M A, KIDD W S F, et al. Early Miocene anatexis identified in the western syntaxis, Pakistan Himalaya[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 121-129. |
[31] | 林彬, 唐菊兴, 郑文宝, 等. 西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J]. 岩石矿物学杂志, 2016, 35(3): 391-406. |
[32] | 吴中海, 张永双, 胡道功, 等. 西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用[J]. 地质力学学报, 2007, 13(4): 297-306. |
[33] | 洛桑尖措, 卿成实, 李光明, 等. 西藏山南地区错那洞穹窿岩石地球化学异常特征[J]. 物探与化探, 2020, 44(1): 13-24. |
[34] | 张进江, 郭磊, 张波. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征[J]. 地质科学, 2007, 42(1): 16-30. |
[35] | 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义[J]. 科学通报, 2008, 54(3): 104-112. |
[36] | BURCHFIEL B C, CHEN Z L, HODGES K V, et al. The south Tibetan detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt[M]//Boulder Geological Society of America Special Papers, 1992, 269: 1-41. |
[37] | BURG J, BRUNEL M, GAPAIS D, et al. Deformation of leucogranites of the crystalline main central Sheet in southern Tibet (China)[J]. Journal of Structural Geology, 1984, 6(5): 535-542. |
[38] | YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1/2): 1-131. |
[39] | 陈智梁, 刘宇平. 藏南拆离系[J]. 特提斯地质, 1996, 20: 31-51. |
[40] | 董汉文, 许志琴, 孟元库, 等. 藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定[J]. 岩石学报, 2017, 33(12): 3741-3752. |
[41] | SWEET J R, ANDERSON K R, BILEK S, et al. A community experiment to record the full seismic wavefield in Oklahoma[J]. Seismological Research Letters, 2018, 89(5): 1923-1930. |
[42] | PORRITT R W, MILLER M S. Updates to FuncLab, a Matlab based GUI for handling receiver functions[J]. Computers & Geosciences, 2018, 111(1): 260-271. |
[43] | NELSON K D, ZHAO W, BROWN L D, et al. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 1996, 274(5293): 1684-1688. |
[44] | SHI D N, KLEMPERER S L, SHI J Y, et al. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences, 2020, 117(40): 24742-24747. |
[45] | HOU Z Q, YANG Z M, LU Y J, et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology, 2015, 43(3): 247-250. |
[46] | 侯增谦, 赵志丹, 高永丰, 等. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 2006, 22(4): 761-774. |
[47] | ZHANG L Y, DUCEA M N, DING L, et al. Southern Tibetan oligocene-miocene adakites: a record of Indian slab tearing[J]. Lithos, 2014, 210: 209-223. |
[48] | WANG W, ZENG L S, GAO L E, et al. Eocene-Oligocene potassic high Ba-Sr granitoids in the Southeastern Tibet: petrogenesis and tectonic implications[J]. Lithos, 2018, 322: 38-51. |
[49] | GUO Z F, WILSON M. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 2019, 47(8): 776-780. |
[50] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. |
[51] | LIU Z, TIAN X B, YUAN X H, et al. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves[J]. Earth and Planetary Science Letters, 2020, 531: 1-9. |
[52] | YIN A, TAYLOR M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1798-1821. |
[53] | YANG Y J, RITZWOLLER M H, ZHENG Y, et al. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4): 1-20. |
[54] | WU F Y, LIU X C, LIU Z C, et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization[J]. Lithos, 2020, 352: 105319. |
[55] | ZHANG Z M, XIANG H, DONG X, et al. Oligocene HP metamorphism and anatexis of the higher himalayan crystalline sequence in Yadong region, east-central Himalaya[J]. Gondwana Research, 2017, 41: 173-187. |
[56] | BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414(6865): 738-742. |
[57] | RUBATTO D, CHAKRABORTY S, DASGUPTA S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology[J]. Contributions to Mineralogy and Petrology, 2012, 165(2): 349-372. |
[58] | JAMIESON R A, BEAUMONT C, NGUYEN M H, et al. Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models[J]. Geological Society, London, Special Publications, 2006, 268(1): 165-182. |
[59] | BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B6): 1-29. |
[60] | ARSLAN A, PASSCHIER C W, KOEHN D. Foliation boudinage[J]. Journal of Structural Geology, 2008, 30(3): 291-309. |
[61] | WEBB A A G, SCHMITT A K, HE D, et al. Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 483-495. |
[62] | CAROSI R, MONTOMOLI C, IACCARINO S, et al. Middle to late eocene exhumation of the greater himalayan sequence in the central Himalayas: progressive accretion from the Indian plate[J]. Geological Society of America Bulletin, 2016, 128(11/12): 1571-1592. |
[63] | WANG J M, WU F Y, RUBATTO D, et al. Early Miocene rapid exhumation in southern Tibet: insights from p-T-t-D-magmatism path of Yardoi dome[J]. Lithos, 2018, 304-307: 38-56. |
[64] | GRUJIC D, CASEY M, DAVIDSON C, et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics[J]. Tectonophysics, 1996, 260(1/2/3): 21-43. |
[65] | GUO Z F, WILSON M. The Himalayan leucogranites: constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 2012, 22(2): 360-376. |
[66] | HARRISON M T, GROVE M, MCKEEGAN K D, et al. Origin and episodic emplacement of the Manaslu Intrusive complex, central Himalaya[J]. Journal of Petrology, 1999, 40(1): 3-19. |
[67] | GUILLOT S, LE FORT P. Geochemical constraints on the bimodal origin of high himalayan leucogranites[J]. Lithos, 1995, 35(3/4): 221-234. |
[68] | 张泽明, 康东艳, 丁慧霞, 等. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制[J]. 地球科学, 2018, 43(1): 82-98. |
[69] | WU F Y, LIU Z C, LIU X C, et al. Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 2015, 31(1): 1-36. |
[70] | 贺日政, 高锐. 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 2003, 18(1): 35-43. |
[71] | TAPPONNIER P, PELTZER G, DAIN A, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. 1982, 10(12): 611. |
[72] | 郑文俊, 张培震, 袁道阳, 等. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 2019, 25(5): 699-721. |
[73] | TIAN Z, YANG Z Q, BENDICK R, et al. Present-day distribution of deformation around the southern Tibetan Plateau revealed by geodetic and seismic observations[J]. Journal of Asian earth sciences, 2019, 171: 321-333. |
[74] | YIN A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21745-21759. |
[75] | LIU M, CUI X J, LIU F T. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?[J]. Tectonophysics, 2004, 393(1/2/3/4): 29-42. |
[1] | 蔡蔚, 卢占武, 黄荣, 李文辉, 罗银河, 王光文, 穆青, 程永志, 陈司, 王冠, 陈子龙. 基于短周期密集台阵接收函数揭示的藏南错那洞穹窿地壳结构[J]. 地学前缘, 2024, 31(1): 170-180. |
[2] | 李强, 吴建平. 中国大陆东南缘地壳厚度与泊松比及其构造意义[J]. 地学前缘, 2023, 30(5): 408-419. |
[3] | 穆青, 黄荣, 严加永, 卢占武, 罗银河, 张永谦, 姜小欢, 文宏斌, 魏鹏龙, 周万里. 利用接收函数H-κ-c叠加方法约束武陵山重力梯度带地壳结构[J]. 地学前缘, 2023, 30(5): 369-383. |
[4] | 姜小欢, 黄荣, 朱露培, 卢占武, 罗银河, 张荣堂, 徐浩. RF-RTM成像方法研究新疆西准噶尔地区线性台阵下方地壳结构[J]. 地学前缘, 2023, 30(5): 358-368. |
[5] | 程永志, 高锐, 卢占武, 李文辉, 王光文, 陈司, 吴国炜, 蔡玉国. 青藏高原东北缘祁连造山带东段深部结构及其动力学过程[J]. 地学前缘, 2023, 30(5): 314-333. |
[6] | 仝霄飞, 徐啸, 郭晓玉, 李春森, 向波, 余嘉豪, 罗旭聪, 袁梓昭, 林燕琪, 时宏城. 接收函数成像揭示东昆仑断裂带及其周缘地壳结构[J]. 地学前缘, 2023, 30(4): 270-282. |
[7] | 徐啸, 余嘉豪, 向波, 郭晓玉, 李春森, 罗旭聪, 仝霄飞, 袁梓昭, 林燕琪, 时宏城. 拉萨地体东南缘地壳深部结构[J]. 地学前缘, 2023, 30(3): 221-232. |
[8] | 李春森, 徐啸, 向波, 郭晓玉, 吴优, 吴佳杰, 罗旭聪, 余嘉豪, 仝霄飞, 袁梓昭, 林燕琪. 北喜马拉雅构造带东部Moho形态研究:以接收函数3DCCP方法为例[J]. 地学前缘, 2023, 30(2): 57-67. |
[9] | 周鹏哲, 高锐, 叶卓. 祁连山中部地壳各向异性研究:来自远震接收函数的证据[J]. 地学前缘, 2022, 29(4): 265-277. |
[10] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. 远震数据显示贝加尔裂谷带北穆伊斯克(Severomuysk)段地壳和上地幔的精细结构[J]. 地学前缘, 2022, 29(2): 378-392. |
[11] | 楼海, 王椿镛, 姚志祥, 李红谊, 苏伟, 吕智勇. 龙门山断裂带深部构造和物性分布的分段特征[J]. 地学前缘, 2010, 17(5): 128-141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||