地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 207-221.DOI: 10.13745/j.esf.sf.2025.10.20

• 污染水文地质 • 上一篇    下一篇

裂隙介质VOCs传输扩散通量高效预测建模框架及突破点探析

曲辞晓1,2(), 王明玉1,*()   

  1. 1.中国科学院大学 资源与环境学院, 北京 101408
    2.中国科学院大学 工程科学学院, 北京 101408
  • 收稿日期:2025-07-14 修回日期:2025-09-10 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *王明玉 (1961—),男,博士,教授,博士生导师,主要从事数字环境与地下水风险管控。E-mail: mwang@ucas.ac.cn
  • 作者简介:曲辞晓(1992—),女,博士,讲师,主要从事复杂介质地下水环境建模与污染控制。E-mail: qucixiao@ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42207106);国家自然科学基金项目(42477092);国家重点研发计划项目(2020YFC1807100)

Effective modeling framework and pertaining key breakthroughs for efficient prediction of VOCs transport and diffusion fluxes in fractured media

QU Cixiao1,2(), WANG Mingyu1,*()   

  1. 1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2025-07-14 Revised:2025-09-10 Online:2026-01-25 Published:2025-11-10

摘要:

地下水有机污染是全球可持续发展与水安全的长期威胁。裂隙基岩(包括裂隙化多孔介质沉积岩、火成岩、溶隙化碳酸盐岩)含水层分布广泛,是挥发性有机物(VOCs)污染的主要对象之一。量化裂隙介质中VOCs的传输扩散过程,对环境系统保护与资源安全利用至关重要。然而,在较大尺度条件下此类建模往往高度复杂,实现对污染物传输扩散通量的快速、便捷与精准预测,仍面临巨大挑战。基于此,本文分析了裂隙介质VOCs传输扩散通量建模的复杂性及高效精准预测的难点,针对性地阐释了裂隙介质VOCs传输扩散通量高效预测综合建模框架,并给出了高效统计替代模型建模框架与高效智能预测模型建模框架的应用案例。最后,提出了裂隙介质VOCs传输扩散通量高效精准建模未来需进一步研究的重要问题及瓶颈突破路径,包括:裂隙网络中VOCs传输扩散通量高效预测等效降维建模方法、基于知识图谱的多维度深度融合综合建模、基于仿真模拟与本构/统计关系数据强化驱动的人工智能建模,以及基于应用场景条件与综合建模框架的裂隙介质VOCs通量高效精准预测智能化建模软件系统。本文所提出的综合建模框架、典型案例建模流程及未来应深入研究的突破方向与途径,有助于解决复杂条件地下水环境系统VOCs多相态污染物关键界面通量高效精准预测与量化难题,可望为地下水污染高效修复与风险优化管控提供重要支撑。

关键词: 裂隙介质, 地下水环境, NAPLs, VOCs, 高效与精准预测, 综合建模框架

Abstract:

Groundwater organic pollution poses a long-term threat to global sustainable development and water security. Fractured bedrock aquifers (including fractured porous sedimentary rocks, igneous rocks, and karstic carbonate rocks) are widely distributed and represent a major category of contaminated media by volatile organic compounds (VOCs). Quantifying the transport and diffusion processes of VOCs within fractured media is critical for environmental system protection and water resource security. However, at larger spatial scales, such modeling becomes highly complex, and achieving fast, convenient, and precise predictions of contaminant transport and diffusion fluxes remains a major challenge. Given this context, this paper analyzes the complexity of modeling VOCs transport and diffusion fluxes in fractured media and the challenges in achieving efficient and precise prediction. Furthermore, it proposes and elaborates on a comprehensive modeling framework for the efficient prediction of VOCs transport and diffusion fluxes in fractured media. It also explores corresponding methodologies for developing efficient statistical surrogate models and intelligent predictive models through illustrative case studies. Finally, the paper identifies key challenges warranting further research and proposes potential pathways to overcome these bottlenecks for the efficient and accurate modeling of VOCs transport and diffusion fluxes in fractured media. These include: a dimension-reduction equivalent modeling approach for efficient prediction; an integrated modeling framework leveraging knowledge graphs for deep, multi-dimensional fusion; artificial intelligence modeling driven by simulation data and enhanced by constitutive/statistical relationships; and the development of an intelligent software system, tailored to specific application scenarios and built upon the proposed integrated modeling framework, to deliver efficient and precise VOCs flux predictions in practice. The comprehensive modeling framework, the specific effective modeling methodologies, and the proposed pathways for future in-depth study will help address the challenge of efficient and accurate prediction and quantification of key interfacial fluxes of multiphase VOCs contaminants in complex groundwater environmental systems. This work is expected to provide crucial support for efficient groundwater remediation and optimal risk management.

Key words: fractured media, groundwater environment, non-aqueous phase liquids (NAPLs), volatile organic compounds (VOCs), efficient and precise prediction, integrated modeling framework

中图分类号: