

地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 207-221.DOI: 10.13745/j.esf.sf.2025.10.20
收稿日期:2025-07-14
修回日期:2025-09-10
出版日期:2026-01-25
发布日期:2025-11-10
通信作者:
*王明玉 (1961—),男,博士,教授,博士生导师,主要从事数字环境与地下水风险管控。E-mail: mwang@ucas.ac.cn
作者简介:曲辞晓(1992—),女,博士,讲师,主要从事复杂介质地下水环境建模与污染控制。E-mail: qucixiao@ucas.ac.cn
基金资助:
QU Cixiao1,2(
), WANG Mingyu1,*(
)
Received:2025-07-14
Revised:2025-09-10
Online:2026-01-25
Published:2025-11-10
摘要:
地下水有机污染是全球可持续发展与水安全的长期威胁。裂隙基岩(包括裂隙化多孔介质沉积岩、火成岩、溶隙化碳酸盐岩)含水层分布广泛,是挥发性有机物(VOCs)污染的主要对象之一。量化裂隙介质中VOCs的传输扩散过程,对环境系统保护与资源安全利用至关重要。然而,在较大尺度条件下此类建模往往高度复杂,实现对污染物传输扩散通量的快速、便捷与精准预测,仍面临巨大挑战。基于此,本文分析了裂隙介质VOCs传输扩散通量建模的复杂性及高效精准预测的难点,针对性地阐释了裂隙介质VOCs传输扩散通量高效预测综合建模框架,并给出了高效统计替代模型建模框架与高效智能预测模型建模框架的应用案例。最后,提出了裂隙介质VOCs传输扩散通量高效精准建模未来需进一步研究的重要问题及瓶颈突破路径,包括:裂隙网络中VOCs传输扩散通量高效预测等效降维建模方法、基于知识图谱的多维度深度融合综合建模、基于仿真模拟与本构/统计关系数据强化驱动的人工智能建模,以及基于应用场景条件与综合建模框架的裂隙介质VOCs通量高效精准预测智能化建模软件系统。本文所提出的综合建模框架、典型案例建模流程及未来应深入研究的突破方向与途径,有助于解决复杂条件地下水环境系统VOCs多相态污染物关键界面通量高效精准预测与量化难题,可望为地下水污染高效修复与风险优化管控提供重要支撑。
中图分类号:
曲辞晓, 王明玉. 裂隙介质VOCs传输扩散通量高效预测建模框架及突破点探析[J]. 地学前缘, 2026, 33(1): 207-221.
QU Cixiao, WANG Mingyu. Effective modeling framework and pertaining key breakthroughs for efficient prediction of VOCs transport and diffusion fluxes in fractured media[J]. Earth Science Frontiers, 2026, 33(1): 207-221.
图3 基岩裂隙场地VOCs传输扩散地表气相通量高效统计替代模型构建流程 (据文献[41]修改)
Fig.3 Workflow of building an efficient statistical surrogate model for VOCs flux of gas-phase in fractured sites. Modified after [41].
图4 裂隙介质场地VOCs传输扩散地表气相通量高效智能预测模型构建框架(据文献[60]修改)
Fig.4 Framework for building an efficient AI-based predictive model for VOCs fluxes of gas-phase in fractured sites. Modified after [60].
| [1] |
CHRYSIKOPOULOS C V, KIM T J. Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media[J]. Transport in Porous Media, 2000, 38(1/2): 167-187.
DOI |
| [2] | 沈欢, 黄勇, 苏悦, 等. 裂隙介质中lnapl污染物迁移研究进展[J]. 环境科技, 2021, 34(2): 68-72. |
| [3] | 罗凌云. Lnapl在包气带形成的透镜体形状及水位波动对其的影响[D]. 长春: 吉林大学, 2017. |
| [4] | 杨明星. 石油有机污染组分在水位波动带中的分异演化机理研究[D]. 长春: 吉林大学, 2014. |
| [5] | 李永涛. LNAPLs在包气带中运移机理及模拟研究[D]. 西安: 长安大学, 2010. |
| [6] | 薛强. 石油污染物在地下环境系统中运移的多相流模型研究[J]. 岩石力学与工程学报, 2005(17): 3201. |
| [7] | 王刘炜, 杨小东, 侯德义. 裂隙介质VOCs赋存迁移特征与场地修复难点[J]. 中国环境科学, 2022, 42(10): 4780-4789. |
| [8] | 章立勇, 林匡飞, 徐圣友, 等. 硫酸盐还原条件下三氯乙烯的降解研究[J]. 环境污染与防治, 2009, 31(2): 1-3. |
| [9] | 陈华清, 李义连. 浅层地下水pce/tce污染原位曝气修复模拟研究[J]. 环境科学与技术, 2009, 32(11): 53-57. |
| [10] |
KAO C. Enhanced PCE dechlorination by biobarrier systems under different redox conditions[J]. Water Research, 2003, 37(20): 4885-4894.
PMID |
| [11] |
郭永丽, 肖琼, 章程, 等. 石油类污染的岩溶地下水环境特征: 以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547.
DOI |
| [12] | 王明玉. 中国地下水污染有效防控探析[J]. 中国科学院院刊, 2012, 27(4): 462-468. |
| [13] | XING K, SHI X, KOKKINAKI A, et al. Residual NAPL architectures in fractures: insights from microfluidic experiments[J]. Geophysical Research Letters, 2025, 52(8): e2025GL114826. |
| [14] |
PURSWANI P, SANTOS J E, HYMAN J D, et al. Numerical investigation of multiphase flow through self-affine rough fractures[J]. Advances in Water Resources, 2025, 195: 104852.
DOI URL |
| [15] |
HU R, ZHOU C X, WU D S, et al. Roughness control on multiphase flow in rock fractures[J]. Geophysical Research Letters, 2019, 46(21): 12002-12011.
DOI |
| [16] |
YANG Z, NEUWEILER I, MéHEUST Y, et al. Fluid trapping during capillary displacement in fractures[J]. Advances in Water Resources, 2016, 95: 264-275.
DOI URL |
| [17] |
DOU Z, ZHOU Z, SLEEP B E. Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: lattice boltzmann simulations[J]. Advances in Water Resources, 2013, 61: 1-11.
DOI URL |
| [18] | KIRKMAN A J, KOONS B. Unifying NAPL drawdown and transmissivity testing in unconfined, confined, perched, and fractured settings using the Z-factor and MH principles[J]. Groundwater Monitoring & Remediation, 2020, 40(1): 47-64. |
| [19] |
WALTON K M, UNGER A J A, IOANNIDIS M A, et al. Benchmarking NAPL Redirection and matrix entry at fracture intersections below the water table[J]. Water Resources Research, 2019, 55(4): 2672-2689.
DOI URL |
| [20] | 刘忠, 赵晓, 李渊博, 等. 强烈非均质裂隙介质优先流及其工程意义: 以hn地下水封洞库为例[J]. 安全与环境工程, 2023, 30(6): 154-161, 176. |
| [21] |
LIANG H, FALTA R W. Modeling field-scale cosolvent flooding for DNAPL source zone remediation[J]. Journal of Contaminant Hydrology, 2008, 96(1/2/3/4): 1-16.
DOI URL |
| [22] |
QIN X S, HUANG G H, HE L. Simulation and optimization technologies for petroleum waste management and remediation process control[J]. Journal of Environmental Management, 2009, 90(1): 54-76.
DOI PMID |
| [23] | YUE L U, YICHAO L I U, HONGXIA X U, et al. Influence of flow velocity and dip angle on perchloroethylene migration in fractured media[J]. Geological Journal of China Universities, 2022, 28(4): 554-564. |
| [24] |
YANG Z, NIEMI A, FAGERLUND F, et al. Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools[J]. Journal of Contaminant Hydrology, 2013, 149: 88-99.
DOI PMID |
| [25] |
LI B, LIU R, JIANG Y. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections[J]. Journal of Hydrology, 2016, 538: 440-453.
DOI URL |
| [26] | JOHNSON J, BROWN S, STOCKMAN H. Fluid flow and mixing in rough-walled fracture intersections[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B12): 2005JB004087. |
| [27] |
TARTAKOVSKY A, MEAKIN P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics[J]. Physical Review E, 2005, 72(2): 026301.
DOI URL |
| [28] |
LEE H B, KIM B W. Effect of NAPL exposure on the wettability and two-phase flow in a single rock fracture[J]. Hydrological Processes, 2015, 29(23): 4919-4931.
DOI URL |
| [29] |
MCLAREN R G, SUDICKY E A, PARK Y-J, et al. Numerical simulation of DNAPL emissions and remediation in a fractured dolomitic aquifer[J]. Journal of Contaminant Hydrology, 2012, 136/137: 56-71.
DOI URL |
| [30] |
REICHENBERGER V, JAKOBS H, BASTIAN P, et al. A mixed-dimensional finite volume method for two-phase flow in fractured porous media[J]. Advances in Water Resources, 2006, 29(7): 1020-1036.
DOI URL |
| [31] |
GIMENEZ J M, IDELSOHN S R, OñATE E. Modeling and simulation of multiphase flow in highly fractured porous media with a data-driven multiscale approach[J]. Computational Mechanics, 2025, 75(6): 1847-1866.
DOI |
| [32] |
SHEN H, HUANG Y, ILLMAN W A, et al. Migration behaviour of LNAPL in fractures filled with porous media: laboratory experiments and numerical simulations[J]. Journal of Contaminant Hydrology, 2023, 253: 104118.
DOI URL |
| [33] |
LI L, VOSKOV D. A novel hybrid model for multiphase flow in complex multi-scale fractured systems[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108657.
DOI URL |
| [34] |
HUSSAIN S T, RAHMAN S S, AZIM R A, et al. Multiphase fluid flow through fractured porous media supported by innovative laboratory and numerical methods for estimating relative permeability[J]. Energy & Fuels, 2021, 35(21): 17372-17388.
DOI URL |
| [35] |
YAN B, MI L, CHAI Z, et al. An enhanced discrete fracture network model for multiphase flow in fractured reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 161: 667-682.
DOI URL |
| [36] |
REN G, JIANG J, YOUNIS R M. A model for coupled geomechanics and multiphase flow in fractured porous media using embedded meshes[J]. Advances in Water Resources, 2018, 122: 113-130.
DOI URL |
| [37] | PARKER B L, CHERRY J A, CHAPMAN S W. Discrete fracture network approach for studying contamination in fractured rock[J]. Aqua Mundi, 2012, 3(2): 101-116. |
| [38] | ZHOU Z, YANG Z, XUE S, et al. Liquid Breakthrough Time in an Unsaturated Fracture Network[J]. Water Resources Research, 2022, 58(3): e2021WR031012. |
| [39] |
CHEN Y F, GUO N, WU D S, et al. Numerical investigation on immiscible displacement in 3D rough fracture: comparison with experiments and the role of viscous and capillary forces[J]. Advances in Water Resources, 2018, 118: 39-48.
DOI URL |
| [40] |
GELLER J T, HOLMAN H-Y, SU G, et al. Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones[J]. Journal of Contaminant Hydrology, 2000, 43(1): 63-90.
DOI URL |
| [41] |
HE T, QU C, WANG M. A framework and generic models for quantifying surface environmental impact of VOCs emissions from the complex fractured rocks[J]. Environmental Pollution, 2024, 362: 124820.
DOI URL |
| [42] |
YOU X, LIU S, DAI C, et al. Contaminant occurrence and migration between high-and low-permeability zones in groundwater systems: a review[J]. Science of The Total Environment, 2020, 743: 140703.
DOI URL |
| [43] |
LIMA G D P, MEYER J R, KHOSLA K, et al. Spatial variability of microbial communities in a fractured sedimentary rock matrix impacted by a mixed organics plume[J]. Journal of Contaminant Hydrology, 2018, 218: 110-119.
DOI PMID |
| [44] | 曲辞晓. 离散圆盘裂隙网络组构对渗流与溶质运移的控制过程及规律研究[D]. 北京: 中国科学院大学, 2021. |
| [45] |
NIAN G, CHEN Z, BAO M, et al. Rainfall infiltration boundary conditions and stability of a fractured-rock slope based on a dual-continuum model[J]. Hydrogeology Journal, 2022, 30(3): 829-847.
DOI |
| [46] |
BEDOYA-GONZALEZ D, KESSLER T, RINDER T, et al. A dual-continuum model (TOUGH2) for characterizing flow and discharge in a mechanically disrupted sandstone overburden[J]. Hydrogeology Journal, 2022, 30(6): 1717-1736.
DOI |
| [47] |
DONG P, YIN M, ZHANG Y, et al. A fractional-order dual-continuum model to capture non-fickian solute transport in a regional-scale fractured aquifer[J]. Journal of Contaminant Hydrology, 2023, 258: 104231.
DOI URL |
| [48] | 王碧莲, 王明玉, 庞云天. 典型潜水层苯系物污染羽稳定性主控因子及统计建模[J]. 地球科学, 2023, 48(9): 3454-3465. |
| [49] | 龚莉, 史浙明, 张宗文, 等. 基于多元分析的某地区垃圾填埋场地下水生态环境风险定量评价[J]. 现代地质, 2024, 38(3): 734-743. |
| [50] |
杨冰, 孟童, 郭华明, 等. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391.
DOI |
| [51] |
宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469.
DOI |
| [52] |
褚宴佳, 何宝南, 陈珍, 等. 基于随机森林模型识别浅层地下水tds异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468.
DOI |
| [53] |
ZHANG C H, WANG Y, WU L J, et al. Physics-informed and data-driven machine learning of rock mass classification using prior geological knowledge and TBM operational data[J]. Tunnelling and Underground Space Technology, 2024, 152: 105923.
DOI URL |
| [54] |
DEGEN D, CAVIEDES VOULLIèME D, BUITER S, et al. Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations[J]. Geoscientific Model Development, 2023, 16(24): 7375-7409.
DOI URL |
| [55] | SUN H, YANG X, GONG J, et al. Joint physics and data driven full-waveform inversion for underground dielectric targets imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
| [56] |
BORATE P, RIVIèRE J, MARONE C, et al. Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes[J]. Nature Communications, 2023, 14(1): 3693.
DOI PMID |
| [57] |
BAI T, TAHMASEBI P. Characterization of groundwater contamination: a transformer-based deep learning model[J]. Advances in Water Resources, 2022, 164: 104217.
DOI URL |
| [58] |
MERAY A, WANG L, KURIHANA T, et al. Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites[J]. Computers & Geosciences, 2024, 183: 105508.
DOI URL |
| [59] |
LI C, HAN Z, LI Y, et al. Physical information-fused deep learning model ensembled with a subregion-specific sampling method for predicting flood dynamics[J]. Journal of Hydrology, 2023, 620: 129465.
DOI URL |
| [60] |
HE T, QU C, WANG M. Machine learning-enhanced prediction for soil-to-air VOC emission and environmental impact pertaining contaminated fractured aquifers[J]. Environmental Science & Technology, 2025, 59(14): 7176-7186.
DOI URL |
| [61] | WANG M, KULATILAKE P H S W, UM J, et al. Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modelin[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(7): 887-904. |
| [62] | 王明玉, 刘庆哲, 曲辞晓, 等. 基于圆盘裂隙物理模型的岩体单一裂隙渗流规律试验研究[J]. 岩土力学, 2020, 41(11): 3523-3530. |
| [63] | QU C X, WANG M Y, WANG P. Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures[J]. Journal of Groundwater Science and Engineering, 2022, 10(1): 33. |
| [64] |
GUO J, ZHENG J, Lü Q, et al. A procedure to estimate the accuracy of circular and elliptical discs for representing the natural discontinuity facet in the discrete fracture network models[J]. Computers and Geotechnics, 2020, 121: 103483.
DOI URL |
| [65] |
LONG J C S, GILMOUR P, WITHERSPOON P A. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures[J]. Water Resources Research, 1985, 21(8): 1105-1115.
DOI URL |
| [66] | HYMAN J D, SWEENEY M R, FRASH L P, et al. Scale-bridging in three-dimensional fracture networks: Characterizing the effects of variable fracture apertures on network-scale flow channelization[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094400. |
| [67] | 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. |
| [68] | 陈兰鑫. 洞庭湖生态环境监测系统知识图谱的构建[D]. 长沙: 湖南农业大学, 2019. |
| [69] | 杨明悦, 宁忠瑞. 知识图谱在黄河宁夏段健康诊断与智能管理系统中的应用研究[J]. 水资源开发与管理, 2020(10): 46-52. |
| [70] | 王新龙, 薛晓鹏, 孙如飞. 基于粒子群与知识图谱的突发水污染事件溯源方法[J]. 水力发电, 2020, 46(2): 17-21, 131. |
| [71] | 李星辰. 场地污染大数据知识图谱构建及可视化分析研究[D]. 北京: 北京建筑大学, 2023. |
| [72] |
WANG M, KULATILAKE P H S W. Understanding of hydraulic properties from configurations of stochastically distributed fracture networks[J]. Hydrological Processes, 2008, 22(8): 1125-1135.
DOI URL |
| [73] | 张嘉, 王明玉. 纵向弥散作用与渗透介质非均质性定量关系的模拟研究[J]. 地学前缘, 2010, 17(6): 152-158. |
| [74] | 中国科学院大学. 复杂场地挥发类有机污染物多界面多相态扩散通量模拟软件系统V1.0, 中国, 2024SR2047608[Z]. 2024-12-11. |
| [1] | 许林, 马海春, 王京平, 张庆, 黄逸航, 钱家忠, 王万林. 高地应力高温条件裂隙介质地下水非线性渗流研究进展[J]. 地学前缘, 2026, 33(1): 313-327. |
| [2] | 张艳利, 冉浩汎, 曾建强, 鲁钰婷, 庞伟华, 郭昊, 王新明. 全球变化背景下天然源痕量活性有机气体研究进展与展望[J]. 地学前缘, 2025, 32(3): 288-310. |
| [3] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
| [4] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
| [5] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
| [6] | 沈晓芳, 万玉玉, 王利刚, 苏小四, 董维红. 基于多相流数值模拟的某石油污染场地地下水中VOCs自然衰减过程识别及能力评估[J]. 地学前缘, 2021, 28(5): 90-103. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||