地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 193-206.DOI: 10.13745/j.esf.sf.2025.10.34

• 污染水文地质 • 上一篇    下一篇

铁碳微电解耦合聚乙烯醇-海藻酸钠固定化强化地下水硫酸盐去除:功能群落调控与硫闭环回收

张博爱奇1,2(), 赵朝锐2, 祝坤2, 郭秋芝2, 陈男2, 冯传平2, 胡瑜恬1,*()   

  1. 1.北京低碳清洁能源研究院 煤炭开采水资源保护与利用全国重点实验室, 北京 102211
    2.中国地质大学(北京) 水资源与环境学院, 教育部地下水循环与环境演变重点实验室, 北京 100083
  • 收稿日期:2025-06-20 修回日期:2025-10-09 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *胡瑜恬(1994—),女,博士,工程师,主要从事矿井水处理与利用研究。E-mail: 20090342@ceic.com
  • 作者简介:张博爱奇(1991—),男,博士,讲师,硕士生导师,主要从事水污染控制技术研究。E-mail: zq0823@hotmail.com
  • 基金资助:
    全国重点实验室开放基金项目(Z083612025078);中央高校基本科研基金项目(2652019281)

Enhanced sulfate removal from groundwater by iron-carbon micro-electrolysis coupled with polyvinyl alcohol-sodium alginate immobilization: Functional community regulation and closed-loop sulfur recovery

ZHANG Boaiqi1,2(), ZHAO Chaorui2, ZHU Kun2, GUO Qiuzhi2, CHEN Nan2, FENG Chuanping2, HU Yutian1,*()   

  1. 1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, National Institute of Low Carbon and Clean Energy, Beijing 102211, China
    2. School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2025-06-20 Revised:2025-10-09 Online:2026-01-25 Published:2025-11-10

摘要: 针对地下水环境中日益严重的硫酸盐污染问题(主要源于采矿、化工等工业活动及农业面源污染),本研究提出并验证了一种基于铁碳微电解与PVA-SA固定化技术的硫还原-固定-资源化闭环处理新方法。通过构建模拟含水层环境的上流式填充反应柱,系统对比了石英砂(控制组)、PVA-SA包埋麦饭石(Ma组)和PVA-SA包埋铁碳-麦饭石(FeC-Ma组)对硫酸盐的长期去除性能及硫固定效果。结果表明:FeC-Ma组出水硫酸盐浓度稳定维持在136.1 mg/L(平均去除率90%),显著优于控制组(230.3 mg/L, 80.4%);铁碳微电解通过原位生成FeS沉淀将硫化物高效固定于凝胶基质,第Ⅰ阶段(HRT=2 d)出水硫化物浓度仅2.1 mg/L(控制组为182.5 mg/L),持续运行40天后仍保持70%固定效率;宏基因组分析进一步揭示,硫酸盐还原阶段FeC-Ma体系通过协同富集完全氧化型硫酸盐还原菌(如Desulfococcus)、上调异化还原基因簇(aprA/B-dsrA/B)表达,并抑制产甲烷菌(Methanothrix丰度降低52%),驱动硫定向沉淀;基于固定硫作为电子供体开展的独立硫自养反硝化实验,成功实现硝酸盐高效还原(出水${\mathrm{NO}}_{3}^{-}$-N浓度<5 mg/L),硫元素回收率达82.1%。该技术为地下水硫酸盐污染治理与硫资源回收提供了高效解决方案。

关键词: 铁碳微电解, PVA-SA凝胶, 硫回收, 地下水修复, 硫酸盐还原菌

Abstract:

To address the escalating sulfate pollution in groundwater (primarily from mining, chemical industries, and agricultural non-point sources), this study developed and validated a closed-loop treatment strategy integrating iron-carbon micro-electrolysis with PVA-SA immobilization for sulfur reduction, fixation, and resource recovery. An up-flow packed column simulating aquifer conditions was constructed to compare the long-term sulfate removal and sulfur fixation performance of three fillers: quartz sand (Control), PVA-SA-embedded maifanite (Ma), and PVA-SA-embedded iron-carbon-maifanite (FeC-Ma). Key results demonstrated: (1) The effluent sulfate concentration in FeC-Ma stabilized at 136.1 mg/L (average removal: 90%), significantly outperforming the Control (230.3 mg/L, 80.4%); (2) Iron-carbon micro-electrolysis effectively fixed sulfides as FeS precipitates within the gel matrix, reducing effluent sulfide to 2.1 mg/L (Phase I, HRT=2 d; Control: 182.5 mg/L) with 70% fixation efficiency sustained for 40 days; (3) Metagenomic analysis revealed that during sulfate reduction, FeC-Ma enriched complete-oxidizing sulfate-reducing bacteria (e.g., Desulfococcus), upregulated dissimilatory reduction genes (aprA/B-dsrA/B), and suppressed competitive methanogens (Methanothrix decreased by 52%), jointly driving sulfur precipitation; (4) Independent sulfur-autotrophic denitrification using fixed sulfur as electron donor achieved efficient nitrate reduction (effluent ${\mathrm{NO}}_{3}^{-}$-N<5 mg/L) with 82.1% sulfur recovery. This technology provides an efficient solution for groundwater sulfate remediation and sulfur resource recovery.

Key words: iron-carbon micro-electrolysis, PVA-SA gel, sulfur recovery, groundwater remediation, sulfate-reducing bacteria

中图分类号: