地学前缘 ›› 2024, Vol. 31 ›› Issue (1): 64-76.DOI: 10.13745/j.esf.sf.2023.12.20
兰春元1,2(), 张立飞1,*(
), 陶仁彪2, 胡晗1, 张丽娟1, 王超1
收稿日期:
2023-10-05
修回日期:
2023-11-22
出版日期:
2024-01-25
发布日期:
2024-01-25
通信作者:
*张立飞(1963—),男,教授,博士生导师,主要从事变质地质学方面的研究。E-mail: 作者简介:
兰春元(1997—),男,博士研究生,主要从事深部碳循环方面的研究。E-mail: lancy@pku.edu.cn
基金资助:
LAN Chunyuan1,2(), ZHANG Lifei1,*(
), TAO Renbiao2, HU Han1, ZHANG Lijuan1, WANG Chao1
Received:
2023-10-05
Revised:
2023-11-22
Online:
2024-01-25
Published:
2024-01-25
摘要:
水岩相互作用会导致流体中元素的价态、赋存形式等发生改变,进而对元素的富集成矿、循环通量等产生影响。由于地球深部样品与实验数据有限,建立和使用地球深部流体模型可以有效地增加人们对深部流体及水岩相互作用的认知。Deep Earth Water(DEW)模型是一种描述地球深部流体热力学性质的数据库,其可以与矿物热力学数据库联用,实现对地球深部水岩相互作用过程的模拟研究。本文阐释了使用DEW模型描述深部流体的必要性,叙述了应用DEW模型进行深部流体物种和水岩相互作用计算的基本原理,介绍了一种基于DEW模型计算流体物种的软件——FluidsLab,列举了地球深部流体以及水岩相互作用的应用案例与研究现状,最后对DEW模型后续的应用与发展方向进行展望。
中图分类号:
兰春元, 张立飞, 陶仁彪, 胡晗, 张丽娟, 王超. 基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述[J]. 地学前缘, 2024, 31(1): 64-76.
LAN Chunyuan, ZHANG Lifei, TAO Renbiao, HU Han, ZHANG Lijuan, WANG Chao. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review[J]. Earth Science Frontiers, 2024, 31(1): 64-76.
元素 | 基本流体物种 |
---|---|
Na | Na+ |
K | K+ |
Mg | Mg2+ |
Ca | Ca2+ |
Al | Al3+ |
Si | Si(OH)4 |
Fe | Fe2+ |
C | |
H | H+ |
表1 元素与其对应的基本流体物种
Table 1 Elements and their corresponding basic fluid species
元素 | 基本流体物种 |
---|---|
Na | Na+ |
K | K+ |
Mg | Mg2+ |
Ca | Ca2+ |
Al | Al3+ |
Si | Si(OH)4 |
Fe | Fe2+ |
C | |
H | H+ |
元素 | 离子对流体物种 |
---|---|
Na | Na(OH)0 |
K | K(OH)0 |
Mg | Mg(OH)+,MgH |
Ca | Ca(OH)+, Ca |
Al | Al(OH |
Si | Si2O(OH |
Fe | Fe(OH)+, Fe(OH |
C | CH3COOH0, CH3COO-, |
H | OH- |
表2 不同元素对应的离子对流体物种
Table 2 Ionic pairs of fluid species corresponding to each element
元素 | 离子对流体物种 |
---|---|
Na | Na(OH)0 |
K | K(OH)0 |
Mg | Mg(OH)+,MgH |
Ca | Ca(OH)+, Ca |
Al | Al(OH |
Si | Si2O(OH |
Fe | Fe(OH)+, Fe(OH |
C | CH3COOH0, CH3COO-, |
H | OH- |
图4 (A)在5 GPa、600 ℃条件下,富水流体中碳元素的存在形式随着pH与log f O 2的变化;(B)乙酸根离子的浓度(mol/L)的对数值随着pH与log f O 2的变化[2]
Fig.4 Deep-Earth carbon. (A) 3D plots showing the effects of pH and oxygen fugacity on the concentration of carbon species under 5 GPa and 600 ℃. (B) pH-log f O 2 diagram showing the stability field of acetate in deep Earth (adapted from [2]).
[1] |
DONG J J, FISCHER R A, STIXRUDE L P, et al. Water storage capacity of the martian mantle through time[J]. Icarus, 2022, 385: 115113.
DOI URL |
[2] |
SVERJENSKY D A, STAGNO V, HUANG F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7(12): 909-913.
DOI |
[3] | WANI S P. Natural water remediation: chemistry and technology[J]. Current Science, 2020, 119(12): 2025-2026. |
[4] |
TANG Y G, YANG C W, FINKELMAN R B, et al. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields[J]. Energy and Fuels, 2020, 34(2): 2501-2515.
DOI URL |
[5] |
YADAV V B, GADI R, KALRA S. Clay based nanocomposites for removal of heavy metals from water: a review[J]. Journal of Environmental Management, 2019, 232: 803-817.
DOI PMID |
[6] |
TONG S, RODRIGUEZ-GONZALEZ L C, PAYNE K A, et al. Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater[J]. Environmental Engineering Science, 2018, 35(8): 875-886.
DOI URL |
[7] | GODDERIS Y, ROELANDT C, SCHOTT J, et al. Towards an integrated model of weathering, climate, and biospheric processes[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 411-434. |
[8] | SCHOTT J, POKROVSKY O S, OELKERS E H. The link between mineral dissolution/precipitation kinetics and solution chemistry[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 207-258. |
[9] |
SCHWEDA P, SJOBERG L, SODERVALL U. Near-surface composition of acid-leached labradorite investigated by SIMS[J]. Geochimica et Cosmochimica Acta, 1997, 61(10): 1985-1994.
DOI URL |
[10] |
WESTRICH H R, CYGAN R T, CASEY W H, et al. The dissolution kinetics of mixed-cation orthosilicate minerals[J]. American Journal of Science, 1993, 293(9): 869-893.
DOI URL |
[11] |
POKROVSKY O S, SCHOTT J. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control[J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 31-45.
DOI URL |
[12] |
BELKHIRI L, MOUNI L, TIRI A. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria[J]. Environmental Geochemistry and Health, 2012, 34(1): 1-13.
DOI PMID |
[13] |
STEELE-MACLNNIS M, MANNING C E. Hydrothermal properties of geologic fluids[J]. Elements, 2020, 16(6): 375-380.
DOI URL |
[14] | 李万财, 倪怀玮. 俯冲带脱水作用与板片流体地球化学[J]. 中国科学: 地球科学, 2020, 50(12): 1770-1784. |
[15] | GUO S, CHU X, HERMANN J, et al. Multiple episodes of fluid infiltration along a single metasomatic channel in metacarbonates (Mogok Metamorphic Belt, Myanmar) and implications for CO2 release in orogenic belts[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB02098. |
[16] |
JING X Y, YANG H B, CAO Y Q, et al. Identification of indicators of groundwater quality formation process using a zoning model[J]. Journal of Hydrology, 2014, 514: 30-40.
DOI URL |
[17] |
CHARLTON S R, PARKHURST D L. Modules based on the geochemical model PHREEQC for use in scripting and programming languages[J]. Computers and Geosciences, 2011, 37(10): 1653-1663.
DOI URL |
[18] |
MAFFEIS A, FERRANDO S, CONNOLLY J A D, et al. Thermodynamic analysis of HP-UHP fluid inclusions: the solute load and chemistry of metamorphic fluids[J]. Geochimica et Cosmochimica Acta, 2021, 315: 207-229.
DOI URL |
[19] |
DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O style.1. Pure systems from 0 ℃ to 1000 ℃ and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2605-2617.
DOI URL |
[20] |
DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O style.2. Mixtures from 50 ℃ to 1000oC and 0 to 1000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2619-2631.
DOI URL |
[21] |
CONNOLLY J A D. Phase-diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2[J]. Contributions to Mineralogy and Petrology, 1995, 119(1): 94-116.
DOI URL |
[22] |
OHMOTO H, KERRICK D. Devolatilization equilibria in graphitic systems[J]. American Journal of Science, 1977, 277(8): 1013-1044.
DOI URL |
[23] |
FRENCH B M. Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures[J]. Reviews of Geophysics, 1966, 4(2): 223-253.
DOI URL |
[24] |
HUIZENGA J M. Thermodynamic modelling of a cooling C-O-H fluid-graphite system: implications for hydrothermal graphite precipitation[J]. Mineralium Deposita, 2011, 46(1): 23-33.
DOI URL |
[25] |
HUIZENGA J M. Thermodynamic modelling of C-O-H fluids[J]. Lithos, 2001, 55(1/2/3/4): 101-114.
DOI URL |
[26] |
FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
DOI |
[27] |
FACQ S, DANIEL I, MONTAGNAC G, et al. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions[J]. Geochimica et Cosmochimica Acta, 2014, 132: 375-390.
DOI URL |
[28] | 张志刚, 张驰, 耿明. 地幔条件下富水流体状态方程[J]. 中国科学: 地球科学, 2016, 46(5): 569-581. |
[29] |
TUMIATI S, TIRABOSCHI C, MIOZZI F, et al. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 273: 383-402.
DOI URL |
[30] |
MANNING C E, FREZZOTTI M L. Subduction-zone fluids[J]. Elements, 2020, 16(6): 395-400.
DOI URL |
[31] |
SVERJENSKY D A, HARRISON B, AZZOLINI D. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 ℃[J]. Geochimica et Cosmochimica Acta, 2014, 129: 125-145.
DOI URL |
[32] | WOLERY T J. EQ3/6: a software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0)[M]. Livermore: Lawrence Livermore National Laboratory, 1992. |
[33] |
CONNOLLY J A D, GALVEZ M E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer[J]. Earth and Planetary Science Letters, 2018, 501: 90-102.
DOI URL |
[34] |
HELGESON H C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science, 1969, 267(7): 729-804.
DOI URL |
[35] |
HELGESON H C, KIRKHAM D H, FLOWERS G C. Theoretical prediction of the thermodynamic behavior of aqueous-electrolytes at high-pressures and temperatures.4. Calculation of activity-coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 ℃ and 5 kb[J]. American Journal of Science, 1981, 281(10): 1249-1516.
DOI URL |
[36] |
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic properties of aqueous electrolytes at high-pressures and temperatures.3. Equation of state for aqueous species at infinite dilution[J]. American Journal of Science, 1976, 276(2): 97-240.
DOI URL |
[37] |
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.2. Debye-Huckel parameters for activity-coefficients and relative partial molal properties[J]. American Journal of Science, 1974, 274(10): 1199-1261.
DOI URL |
[38] |
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.1. Summary of thermodynamic-electrostatic properties of solvent[J]. American Journal of Science, 1974, 274(10): 1089-1198.
DOI URL |
[39] |
SHOCK E L, SASSANI D C, WILLIS M, et al. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 907-950.
PMID |
[40] |
SHOCK E L, HELGESON H C, SVERJENSKY D A. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - standard partial molal properties of inorganic neutral species[J]. Geochimica et Cosmochimica Acta, 1989, 53(9): 2157-2183.
DOI URL |
[41] |
TANGER J C, HELGESON H C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - revised equations of state for the standard partial molal properties of ions and electrolytes[J]. American Journal of Science, 1988, 288(1): 19-98.
DOI URL |
[42] |
SHOCK E L, HELGESON H C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2009-2036.
DOI URL |
[43] |
SVERJENSKY D A. Thermodynamic modelling of fluids from surficial to mantle conditions[J]. Journal of the Geological Society, 2019, 176(2): 348-374.
DOI |
[44] |
PAN D, SPANU L, HARRISON B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6646-6650.
DOI PMID |
[45] |
HUANG F, SVERJENSKY D A. Extended deep Earth water model for predicting major element mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 2019, 254: 192-230.
DOI URL |
[46] |
GALVEZ M E, MANNING C E, CONNOLLY J A D, et al. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature[J]. Earth and Planetary Science Letters, 2015, 430: 486-498.
DOI URL |
[47] |
ZHANG C, DUAN Z H. A model for C-O-H fluid in the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2089-2102.
DOI URL |
[48] |
CONNOLLY J A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.
DOI URL |
[49] |
SHVAROV Y V. HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by windows[J]. Geochemistry International, 2008, 46(8): 834-839.
DOI URL |
[50] | ZHONG R C, LI Y X, ETSCHMANN B, et al. HighPGibbs, a practical tool for fluid-rock thermodynamic simulation in deep earth and its application on calculating nitrogen speciation in subduction zone fluids[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(5). DOI: 10.1029/2020gc008973. |
[51] |
SZLACHTA V, VLASOV K, KEPPLER H. On the stability of acetate in subduction zone fluids[J]. Geochemical Perspectives Letters, 2022, 21: 28-31.
DOI URL |
[52] |
LAN C, TAO R, ZHANG L, et al. Carbon releasing mechanisms and flux estimation in subducting slabs: problems and progress[J]. Acta Petrologica Sinica, 2022, 38(5): 1523-1540.
DOI URL |
[53] |
CACIAGLI N C, MANNING C E. The solubility of calcite in water at 6-16 kbar and 500-800 ℃[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 275-285.
DOI URL |
[54] |
LI W C, WANG Q X. In situ determination of magnesite solubility and carbon speciation in water and NaCl solutions under subduction zone conditions[J]. Solid Earth Sciences, 2022, 7(3): 200-214.
DOI URL |
[55] |
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
DOI PMID |
[56] |
FARSANG S, LOUVEL M, ROSA A D, et al. Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids[J]. Chemical Geology, 2021, 578: 120320.
DOI URL |
[57] |
LAN C Y, TAO R B, HUANG F, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989.
DOI URL |
[58] |
TUMIATI S, TIRABOSCHI C, SVERJENSKY D A, et al. Silicate dissolution boosts the CO2 concentrations in subduction fluids[J]. Nature Communications, 2017, 8: 616.
DOI |
[59] |
ZHANG L J, ZHANG L F, TANG M, et al. Massive abiotic methane production in eclogite during cold subduction[J]. National Science Review, 2022, 10: nwac207.
DOI URL |
[60] |
WANG C, TAO R B, WALTERS J B, et al. Favorable p-T-fO2 conditions for abiotic CH4 production in subducted oceanic crusts: a comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite[J]. Geochimica et Cosmochimica Acta, 2022, 336: 269-290.
DOI URL |
[61] |
BROVARONE A V, MARTINEZ I, ELMALEH A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communications, 2017, 8: 14134.
DOI PMID |
[62] |
PENG W G, ZHANG L F, TUMIATI S, et al. Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones[J]. Geochimica et Cosmochimica Acta, 2021, 311: 119-140.
DOI URL |
[63] |
BROVARONE A V, SVERJENSKY D A, PICCOLI F, et al. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere[J]. Nature Communications, 2020, 11: 3880.
DOI |
[64] |
HU H, BROVARONE A V, ZHANG L F, et al. Retrograde carbon sequestration in orogenic complexes: a case study from the Chinese southwestern Tianshan[J]. Lithos, 2021, 392/393: 106151.
DOI URL |
[65] |
PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243.
DOI URL |
[66] |
HUANG F, SVERJENSKY D A. Mixing of carbonatitic into saline fluid during panda diamond formation[J]. Geochimica et Cosmochimica Acta, 2020, 284: 1-20.
DOI URL |
[67] |
SVERJENSKY D A, HUANG F. Diamond formation due to a pH drop during fluid-rock interactions[J]. Nature Communications, 2015, 6: 8702.
DOI PMID |
[68] |
POKROVSKI G S, KOKH M A, GUILLAUME D, et al. Sulfur radical species form gold deposits on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): 13484-13489.
DOI PMID |
[69] |
POKROVSKI G S, DUBESSY J. Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids[J]. Earth and Planetary Science Letters, 2015, 411: 298-309.
DOI URL |
[70] |
LI J L, SCHWARZENBACH E M, JOHN T, et al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective[J]. Nature Communications, 2020, 11: 514.
DOI |
[1] | 胡晗, 张立飞, 彭卫刚, 兰春元, 刘志成. 西南天山超高压泥质片岩中石墨的形成:对俯冲带碳迁移、储存的启示[J]. 地学前缘, 2024, 31(6): 282-303. |
[2] | 李卓骐, 许成, 韦春婉. 地球深部脱碳过程研究评述[J]. 地学前缘, 2024, 31(6): 304-319. |
[3] | 王根厚, 李典, 梁晓. 南羌塘印支期增生造山带组成、结构及演化[J]. 地学前缘, 2023, 30(3): 242-261. |
[4] | 邢会林, 王建超, 逄硕, 王瑞泽, 刘冬豫, 马子涵, 张愉玲, 谭玉阳. 俯冲带深海-岩石圈流体交换及其效应[J]. 地学前缘, 2022, 29(5): 246-254. |
[5] | 刘海燕, 刘茂涵, 张卫民, 孙占学, 王振, 吴通航, 郭华明. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2022, 29(3): 129-144. |
[6] | 王广才, 王焰新, 刘菲, 郭华明. 基于文献计量学分析水文地球化学研究进展及趋势[J]. 地学前缘, 2022, 29(3): 25-36. |
[7] | 郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75. |
[8] | 李东东, 高丹丹, 边绍菊, 李武, 董亚萍. Na+,K+,Mg2+,Ca2+//Cl-,SO42--H2O六元体系中杂卤石形成条件的再认识[J]. 地学前缘, 2021, 28(6): 46-55. |
[9] | 孟繁聪, 白盛锦, Alexander B. MAKEYEV, Ksenia V. KULIKOVA. 俄罗斯极地乌拉尔硬玉岩成因矿物学研究[J]. 地学前缘, 2020, 27(5): 88-98. |
[10] | 金润成, 李国武, 尹京武, 金炳成, 金哲秀. 磁铁石英岩铁运输沉淀的pH值条件约束:以朝鲜半岛龙渊铁矿床为例 [J]. 地学前缘, 2019, 26(2): 304-311. |
[11] | 牛耀龄,沈芳宇,陈艳虹,龚红梅. 俯冲带形成机制的可检验假说和检验方案[J]. 地学前缘, 2018, 25(6): 51-66. |
[12] | 李三忠,索艳慧,刘博,刘永江,李玺瑶,赵淑娟,朱俊江,王光增,张国伟. 微板块构造理论:全球洋内与陆缘微地块研究的启示(附对该文的审稿意见)[J]. 地学前缘, 2018, 25(5): 323-356. |
[13] | 徐永强,李紫晶,郭冀隆,陈家玮. 页岩储层-超临界CO2-模拟压裂液相互作用实验研究及其环境意义[J]. 地学前缘, 2018, 25(4): 245-254. |
[14] | 杨高学,李永军,佟丽莉,李甘雨,吴乐. 西准噶尔海山俯冲的地质效应:来自泥盆纪—石炭纪火山岩地球化学证据[J]. 地学前缘, 2017, 24(6): 60-67. |
[15] | 朱俊江,李三忠,孙宗勋,李先鹏,李健. 南海东部马尼拉俯冲带的地壳结构和俯冲过程[J]. 地学前缘, 2017, 24(4): 341-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||