地学前缘 ›› 2021, Vol. 28 ›› Issue (1): 375-387.DOI: 10.13745/j.esf.sf.2020.11.12
唐华风1,2,3,4(), 王寒非2, BenKENNEDY2, 张芯语4, MarcosROSSETTI2, AlanPatrickBISCHOFF2, AndrewNICOL2
收稿日期:
2020-09-25
修回日期:
2020-10-25
出版日期:
2021-01-25
发布日期:
2021-01-28
作者简介:
唐华风(1979—),男,博士,教授,博士生导师,主要从事火山地层和火山岩储层综合研究。E-mail: tanghfhc@jlu.edu.cn
基金资助:
TANG Huafeng1,2,3,4(), WANG Hanfei2, Ben KENNEDY2, ZHANG Xinyu4, Marcos ROSSETTI2, Alan Patrick BISCHOFF2, Andrew NICOL2
Received:
2020-09-25
Revised:
2020-10-25
Online:
2021-01-25
Published:
2021-01-28
摘要:
新西兰Taranaki盆地中新世Kora火山是海底喷发形成的碎屑岩型火山,可代表浅埋藏火山岩的储层特征。本文根据5口钻井的孔隙度、渗透率、孔隙孔径和铸体薄片开展Kora火山的储层特征、储集空间组成、缝宽以及原生和次生孔隙之间关系的分析。研究结果如下:(1)储集空间主要为次生孔隙,然后是裂缝和原生孔隙;Kora火山具有高孔隙度和高渗透率特征,孔径具有双峰到单峰的分布特征。(2)炸裂缝、淬火缝和粒间孔形成于岩浆破碎和/或喷发期间;在晚Tortonian期间产生了网状构造裂缝,在Tortonian晚期至Messinian早期产生规则构造裂缝,二者形成时间均早于原油充注;筛状孔和铸模孔应由风化阶段和/或埋藏阶段的溶蚀作用形成,晶间微孔应由埋藏阶段的蚀变和/或重结晶作用形成。(3)原生孔隙控制次生孔隙的分布,特别是原生的裂缝;在Kora火山中控制筛状孔和铸模孔形成的缝宽的阈值约为9 μm,较宽的裂缝可优先促成筛状孔和铸模孔的形成。(4)再搬运火山颗粒含量的增加会显著降低高孔隙度岩石的总孔隙度;近源相带的孔隙度和渗透率高于远源相带,海底喷发火山远源相带发生的强烈钙质胶结可显著减少孔隙度和渗透率。相关认识可为火山岩储层形成、演化和分布规律研究提供依据。
中图分类号:
唐华风, 王寒非, BenKENNEDY, 张芯语, MarcosROSSETTI, AlanPatrickBISCHOFF, AndrewNICOL. 水下喷发火山碎屑岩储层特征及主控因素:以新西兰Taranaki盆地中新世Kora火山为例[J]. 地学前缘, 2021, 28(1): 375-387.
TANG Huafeng, WANG Hanfei, Ben KENNEDY, ZHANG Xinyu, Marcos ROSSETTI, Alan Patrick BISCHOFF, Andrew NICOL. Characteristics and controlling factors of volcanic reservoirs of subaqueous pyroclastic rocks: An analysis of the Miocene Kora Volcano in the Taranaki Basin, New Zealand[J]. Earth Science Frontiers, 2021, 28(1): 375-387.
图1 新西兰Taranaki盆地中新世Kora火山位置图 (a)—Taranaki盆地的区域位置;(b)—Mohakatino火山带[30];(c)—Kora火山的顶面埋深(时间域)。
Fig.1 Maps showing the location of the Miocene Kora Volcano in the Taranaki Basin, New Zealand
图4 新西兰Taranaki盆地中新世Kora火山的储集空间特征 a—Kora-1,1 990.1 m,凝灰岩富含晶屑,斜长石含有微裂缝;b—Kora-1a,1 894.12 m,凝灰质砾岩的安山岩岩屑;c—Kora-1,1 803.0 m,凝灰岩富含灰分,斜长石和基质中存在微裂缝;d—Kora-3,1 793.5 m,钙质胶结的凝灰质砂岩,高角度的规则裂缝充填方解石和石油;e—Kora-3,1 794.5 m,钙质胶结的凝灰质砂岩,中角度到高角度的规则裂缝充填方解石;f—Kora-3,1 781.5 m,钙质胶结的凝灰质砂岩,网状不规则裂缝充填方解石和石油;g—Kora-1,1 912.86 m,凝灰岩富含晶屑;h,i—Kora-1a,1 894.12 m,凝灰质砾岩中的安山岩岩屑;j—Kora-1a,1 790.98 m,凝灰岩;k—Kora-1,2 229.7 m,凝灰质砾岩中的凝灰岩碎屑;l—Kora-1,2 234.7 m,凝灰质砾岩中的凝灰岩碎屑。A—角闪石;P—斜长石;O—不透明矿物;C—炸裂缝;QF—冷凝收缩缝;TF—构造裂缝;IP—粒间孔;MP—铸模孔;SSP—筛状孔;CP—洞穴状孔;LP—晶屑中海绵状孔;SpP—基质中海绵状孔。图片是单偏光蓝色铸体照片,插图是正交偏光照片。
Fig.4 Void space characteristics of the Miocene Kora Volcano in the Taranaki Basin, New Zealand
图5 新西兰Taranaki盆地中新世Kora火山的储集空间类型对总孔隙度的贡献特征 IP—粒间孔;MP—铸模孔;SSP—筛状孔;CP—洞穴状孔;LP—晶屑中海绵状孔;SpP—基质中海绵状孔;F—裂缝(包括炸裂缝、冷凝收缩缝和构造裂缝)。在Matlab软件中,通过蓝色图像的分割,结合人工区分各类孔隙,对IP、MP、SSP、CP和F的面孔率,即是图像的直接计算结果。LP和SpP两类孔隙的实际面孔率(φ(LP+SpP))需要通过公式φ(LP+SpP)=S(LP+SpP)×10%计算,S(LP+SpP)为LP和SsP区域的占比,根据蓝色铸体薄片的蓝色部分计算出来的面积比。10%是利用扫描电子显微镜估计的海绵状孔隙和内溶蚀微孔的几何平均值[34]。对Kora-1井、Kora-1a井和Kora-2井的52幅图像进行了面孔率计算。
Fig.5 Contribution of each kind of void space to the total porosity of rocks in the Miocene Kora Volcano in the Taranaki Basin, New Zealand
图6 新西兰Taranaki 盆地中新世Kora火山的空隙度和渗透率特征(其他数据据文献[36,37]) n为样品数。在坎特伯雷大学完成强胶结凝灰质砾岩样品的测试。储层分区据文献[35]。
Fig.6 Porosity and Permeability characteristics of the Miocene Kora Volcano in the Taranaki Basin, New Zealand (Other data from [36-37])
图7 新西兰Taranaki盆地中新世Kora火山的孔隙直径特征(数据据文献[38]) (a)—凝灰岩;(b)—块状强胶结的凝灰质砾岩;(c)—凝灰质砂岩、角砾岩和砂岩;(d)—凝灰质砾岩。
Fig.7 Pore aperture diameter characteristics of the Miocene Kora Volcano in the Taranaki Basin, New Zealand (data after [38])
图8 新西兰Taranaki盆地中新世Kora火山的溶蚀溶解程度特征 颗粒支撑的凝灰岩如图Kora-1/1 803.0 m(a)、Kora-1/1 910.42 m(b)和Kora-1/1 912.86 m(c)所示,分别表现了弱、中、强程度的溶解作用。角砾岩中的熔结凝灰岩碎屑如图Kora-1a/1 911.95 m(d,e,f)所示,分别表现了弱、中、强程度的溶解和溶蚀作用。凝灰质砾岩中的熔岩碎屑如图Kora-1a/1 901.48 m(g)和Kora-1a/1 894.12 m(h,i)所示,分别表现了弱、中、强程度的溶解作用。A—角闪石;P—斜长石;O—不透明矿物;QF—冷凝收缩缝;TF—构造裂缝;IP—粒间孔;MP—铸模孔;SSP—筛状孔;CP—洞穴状孔;LP—晶屑中海绵状孔;SpP—基质中海绵状孔。镜下照片是单偏光蓝色铸体照片,插图是正交偏光照片。
Fig.8 Comparison of alteration intensity and dissolution diagenesis in pyroclastic rocks and tuffetite in the Miocene Kora Volcano in the Taranaki Basin, New Zealand
图9 新西兰Taranaki盆地中新世Kora火山的储层演化示意图 A—角闪石;P—斜长石;O—不透明矿物;F—裂缝;IP—粒间孔;MP—铸模孔;SSP—筛状孔;LP—晶屑中海绵状孔;SpP—基质中海绵状孔。图片是单片光蓝色铸体照片。
Fig.9 Pore formation process in the Miocene Kora Volcano in the Taranaki Basin, New Zealand
图10 新西兰Tarananki 盆地中新世Kora火山裂缝宽度特征 n为样品数。数据来自Kora-1井、Kora-1a井和Kora-2井22个薄片的118张照片。利用铸体薄片进行显微镜下测量得到缝宽。确定真实裂缝的依据有如下几方面:一是发生了溶蚀溶解作用;二是裂缝切割了岩屑或晶屑;三是裂缝中有硅质、钙质或泥质充填。由于岩石处于弱固结的状态,铸体薄片中也发现了一些样品制备过程中产生的诱导缝,该部分裂缝根据新鲜的切割边和良好的可拼合性特征进行排除。
Fig.10 Fracture aperture characteristics of the Miocene Kora Valcano in the Taranaki Basin, New Zealand
图11 不同初始缝宽的裂缝与6μm裂缝的缝宽演化的对比示意图 图片仅讨论了流体对裂缝的渗透能力。流体和岩石具有相同的性质,假设水中酸性物质完全反应。
Fig.11 Comparisons of the pore evolution of the 6 μm diameter pore with others
图12 新西兰Taranaki盆地中新世Kora火山各类碎屑的储集空间构成和面孔率特征 n为样品数。F—裂缝;IP—粒间孔;MP—铸模孔;SSP—筛状孔;CP—洞穴状孔;LP—晶屑中海绵状孔;SpP—基质中海绵状孔。
Fig.12 Contribution of each kind of void space to total porosity in and surface porosity characteristics of volcanic particles from the Miocene Kora Volcano in the Taranaki Basin, New Zealand. (a,b) Tuff fragment; (c,d) Welded tuff fragment; and (e,f) Andesite fragment.
图13 新西兰Taranaki盆地中新世Kora火山再搬运火山碎屑含量与孔隙度的关系示意图
Fig.13 Relationship between the nonjuvenile particle content and porosity in the Miocene Kora Volcano in the Taranaki Basin, New Zealand
图14 新西兰Taranaki盆地中新世Kora火山机构相带与孔隙度的关系 n—样品数。
Fig.14 Relationship between the facies belt and porosity in the Miocene Kora Volcano in the Taranaki Basin, New Zealand
[1] |
SCHUTTER S R. Occurrences of hydrocarbons in and around igneous rocks[J]. Geological Society, London, Special Publications, 2003, 214(1):35-68.
DOI URL |
[2] |
FENG Z Q. Volcanic rocks as prolific gas reservoir: a case study from the Qingshen gas field in the Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2008, 25(4/5):416-432.
DOI URL |
[3] |
CHEN Z H, WANG X Y, WANG X L, et al. Characteristics and petroleum origin of the Carboniferous volcanic rock reservoirs in the Shixi Bulge of Junggar Basin, western China[J]. Marine and Petroleum Geology, 2017, 80:517-537.
DOI URL |
[4] | CHEN Z Y, HUO Y, LI J S, et al. Relationship between Tertiary volcanic rocks and hydrocarbons in the Liaohe Basin, People’s Republic of China[J]. AAPG Bulletin, 1999, 83:1004-1014. |
[5] | 赵文智, 邹才能, 李建忠, 等. 中国陆上东、西部地区火山岩成藏比较研究与意义[J]. 石油勘探与开发, 2009, 36(1):1-11. |
[6] | 唐华风, 白冰, 边伟华, 等. 松辽盆地营城组火山机构地层结构定量模型[J]. 石油学报, 2012, 33(4):541-550. |
[7] |
CHEN Z H, LIU W, ZHANG Y, et al. Characterization of the paleocrusts of weathered Carboniferous volcanics from the Junggar Basin, western China: significance as gas reservoirs[J]. Marine and Petroleum Geology, 2016, 77:216-234.
DOI URL |
[8] |
JIN Q, XU L, WAN C L, et al. Interactions between basalts and oil source rocks in rift basins: CO2 generation[J]. Chinese Journal of Geochemistry, 2007, 26(1):58-65.
DOI URL |
[9] |
FILHOA A T, MIZUSAKIB A M P, ANTONIOLI L. Magmatism and petroleum exploration in the Brazilian Paleozoic basins[J]. Marine and Petroleum Geology, 2008, 25(2):143-151.
DOI URL |
[10] |
TAO S Z, LI C W, MA W J, et al. Geochemical analysis and origin of gas in volcanic reservoirs in the Songliao Basin[J]. Energy Exploration and Exploitation, 2017, 35(3):295-314.
DOI URL |
[11] | 唐华风, 李瑞磊, 吴艳辉, 等. 火山地层结构特征及其对波阻抗反演的约束[J]. 地球物理学报, 2011, 54(2):620-627. |
[12] |
ANTONIO P, GIOVANNI C, NICOLETTA F, et al. Influence of alteration on physical properties of volcanic rocks[J]. Tectonophysics, 2012, 566/567:67-86.
DOI URL |
[13] | 唐华风, 赵鹏九, 高有峰, 等. 盆地火山地层时空属性和岩石地层单位[J]. 吉林大学学报(地球科学版), 2017, 47(4):949-973. |
[14] | 唐华风, 孙海波, 高有峰, 等. 火山地层界面的类型、特征和储层意义[J]. 吉林大学学报(地球科学版), 2013, 43(5):1320-1329. |
[15] |
CHEN H Q, HU Y L, JIN J Q, et al. Fine stratigraphic division of volcanic reservoir by uniting of well data and seismic data: taking volcanic reservoir of member one of Yingcheng Formation in Xudong Area of Songliao Basin for an example[J]. Journal of Earth Science, 2014, 25(2):337-347.
DOI URL |
[16] | 唐华风, 孔坦, 刘祥, 等. 松辽盆地下白垩统沉火山碎屑岩优质储层特征和形成机理[J]. 石油学报, 2016, 37(5):631-643. |
[17] |
LUO J L, ZHANG C L, QU Z H. Volcanic reservoir rocks-a case study of the Cretaceous Fenghuadian suite, Huanghua Basin, eastern China[J]. Journal of Petroleum Geology, 1999, 22(4):397-415.
DOI URL |
[18] |
JONES S F, WIELENS H, WILLIAMSON M C, et al. Impact of magmatism on petroleum systems in the Sverdrup Basin, Canadian Arctic Islands, Nunavut: a numerical modelling study[J]. Journal of Petroleum Geology, 2007, 30(3):237-256.
DOI URL |
[19] |
SRUOGA P, RUBINSTEIN N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquén basins, Argentina[J]. AAPG Bulletin, 2007, 91(1):115-129.
DOI URL |
[20] | 王璞珺, 吴河勇, 庞颜明, 等. 松辽盆地火山岩相: 相序、相模式与储层物性的定量关系[J]. 吉林大学学报(地球科学版), 2006(5):805-812. |
[21] | TANG H F, CRYTON P, GAO Y F, et al. Types and characteristics of volcanostratigraphic boundaries and their oil-gas reservoir significance[J]. Acta Geologica Sinica(English Edition), 2015, 89(1):163-174. |
[22] |
TANG H F, ZHAO X Y, LIU X, et al. Filling characteristics, reservoir features and exploration significance of a volcanostratigraphic sequence in a half-graben basin: a case analysis of the Wangfu Rift Depression in Songliao Basin, NE China[J]. Marine and Petroleum Geology, 2020, 113:104128.
DOI URL |
[23] |
NICOL A, CAMPBELL J K. Late Cenozoic thrust tectonics, Picton, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1990, 33:485-494.
DOI URL |
[24] |
SUTHERLAND R. The Australia-Pacific boundary and Cenozoic plate motions in the SW Pacific: some constraints from Geosat data[J]. Tectonics, 1995, 14:819-831.
DOI URL |
[25] |
STROGEN D P, SEEBECK H, NICOL A, et al. Two-phase Cretaceous-Paleocene rifting in the Taranaki Basin region, New Zealand: implications for Gondwana break-up[J]. Journal of the Geological Society, 2017, 174:929-946.
DOI URL |
[26] |
KROEGER K F, THRASHERA G P, SARMAB M. The evolution of a Middle Miocene deep-water sedimentary system in northwestern New Zealand (Taranaki Basin): depositional controls and mechanisms[J]. Marine and Petroleum Geology, 2019, 101:355-372.
DOI URL |
[27] |
BULL S, NICOL A, STROGEN D, et al. Tectonic controls on Miocene sedimentation in the Southern Taranaki Basin and implications for New Zealand plate boundary deformation[J]. Basin Research, 2019, 31:253-273.
DOI URL |
[28] | BERGMAN S C, TALBOT J P, THOMPSON P R. The Kora Miocene submarine Andesite stratovolcano hydrocarbon reservoir, Northern Taranaki Basin [C]∥GNS. Proceedings of the 1991 New Zealand Oil Exploration Conference. Wellington, New Zealand, 1992: 178-206. |
[29] | BISCHOFF A P, NICOL A, BEGGS M. Stratigraphy of architectural elements in a buried volcanic system and implications for hydrocarbon exploration[J]. Interpretation, 2017, 5(3):141-159. |
[30] |
SEEBECK HC, NICOL A, VILLAMOR P, et al. Structure and kinematics of the Taupo Rift, New Zealand[J]. Tectonics, 2014, 33:1178-1199.
DOI URL |
[31] |
KLUG C, CASHMAN K V. Permeability development in vesiculating magmas: implications for fragmentation[J]. Bulletin of Volcanology, 1996, 58(2):87-100.
DOI URL |
[32] | 刘万洙, 王璞珺, 门广田, 等. 松辽盆地北部深层火山岩储层特征[J]. 石油与天然气地质, 2003(1):28-31. |
[33] |
SRUOGA P, RUBINSTEIN N, HINTERWIMMER G. Porosity and permeability in volcanic rocks: a case study on the Serie Tobifera, South Patagonia, Argentina[J]. Journal of Volcanology and Geothermal Research, 2004, 132(1):31-43.
DOI URL |
[34] | 高有峰, 吴艳辉, 刘万洙, 等. 松辽盆地南部英台断陷营城组火山岩晶间微孔特征及储层效应[J]. 石油学报, 2013, 34(4):667-674. |
[35] | 国家能源局. 油气储层评价方法: SY/T 6285—2011[S]. 北京: 石油工业出版社, 2011. |
[36] | Petroleum ARCO. Final well report, Kora-2. PPL 38447[R]. Wellington: Petroleum ARCO NZ Inc, 1988. |
[37] | Petroleum ARCO. Final well report, Kora-1 Kora-1A. PPL 38447[R]. Wellington: Petroleum ARCO NZ Inc, 1988. |
[38] | PetroTech Associates. Petroleum report PR4178, capillary pressure and XRD mineralogy study of kora wells[R]. Wellington: Ministry of Economic Development, New Zealand, 2010. |
[39] |
KUTOVAYA A, KROEGER K F, SEEBECK H, et al. Thermal effects of magmatism on surrounding sediments and petroleum systems in the northern offshore Taranaki Basin, New Zealand[J]. Geosciences, 2019, 9(7):288.
DOI URL |
[40] | 邹才能, 赵文智, 贾承造, 等. 中国沉积盆地火山岩油气藏形成与分布[J]. 石油勘探与开发, 2008(3):257-271. |
[41] | 唐华风, 徐正顺, 吴艳辉, 等. 松辽盆地营城组火山岩储层流动单元特征和控制因素[J]. 岩石学报, 2010, 26(1):55-62. |
[42] |
LAUBACH S E, WARD M E. Diagenesis in porosity evolution of opening-mode fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico[J]. Tectonophysics, 2006, 419:75-97.
DOI URL |
[43] |
INOUE A, MEUNIER A, PATRIER-MAS P, et al. Application of chemical geothermometry to low-temperature trioctahedral chlorites[J]. Clays and Clay Minerals, 2009, 57(3):371-382.
DOI URL |
[44] |
NOGUERA C, FRITZ B, CLÉMENT A. Simulation of the nucleation and growth of clay minerals coupled with cation exchange[J]. Geochimica et Cosmochimica Acta, 2011, 75:3402-3418.
DOI URL |
[45] | 罗静兰, 邵红梅, 杨艳芳, 等. 松辽盆地深层火山岩储层的埋藏-烃类充注-成岩时空演化过程[J]. 地学前缘, 2013, 20(5):175-187. |
[46] |
ROWE M C, ELLIS B S, LINDEBERG A. Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis[J]. American Mineralogist, 2012, 97:1685-1699.
DOI URL |
[47] | 唐华风, 庞彦明, 边伟华, 等. 松辽盆地白垩系营城组火山机构储层定量分析[J]. 石油学报, 2008(6): 841-845+852. |
[48] |
WANG P J, CHEN S M. Cretaceous volcanic reservoirs and their exploration in the Songliao Basin, Northeast China[J]. AAPG Bulletin, 2015, 99(3):499-523.
DOI URL |
[49] |
YANG C, HOU L, HOU L H, et al. Controlling factors of volcanic hydrocarbon reservoirs in Bohai Bay Basin, China[J]. Journal of Natural Gas Geoscience, 2017, 2(4):219-228.
DOI URL |
[50] | DAI X J, TANG H F, ZHANG T, et al. Facies architecture model of the Shimentan Formation pyroclastic rocks in the Block-T Units, Xihu Sag, East China Sea Basin, and its exploration significance[J]. Acta Geologica Sinica(English Edition), 2019, 93(4):1076-1087. |
[51] |
ALLEN S R, HAYWARD B W, MATHEWS E. A facies model for a submarine volcaniclastic apron: the Miocene Manukau Subgroup, New Zealand[J]. GSA Bulletin, 2007, 119(5/6):725-742.
DOI URL |
[52] |
TROFIMOVS J, SPARKS R S J, TALLING P J. Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufrière Hills volcano, Montserrat, West Indies[J]. Sedimentology, 2008, 55:617-634.
DOI URL |
[53] |
FUJIBAYASHI N, ASAKURA K, HATTORI T, et al. Pillow lava and spasmodic submarine fire fountaining in the middle Miocene marginal basin, Sado Island, Japan[J]. Island Arc, 2014, 23:344-364.
DOI URL |
[54] | WHITE J D L, SCHIPPER C I, KANO K. Submarine explosive eruption[M]∥SIGURDSSON H. Encyclopedia of volcanoes. New York: Academic Press, 2015: 553-569. |
[1] | 齐晓飞, 肖勇, 上官拴通, 苏野, 王红科, 李英英, 胡志兴. 马头营深层干热岩人工造储裂缝扩展机理研究与应用[J]. 地学前缘, 2024, 31(6): 224-234. |
[2] | 丁文龙, 王垚, 张子游, 刘天顺, 程晓云, 勾通, 王生晖, 刘霆锋. 页岩储层构造裂缝活动期次及开启性研究进展与展望[J]. 地学前缘, 2024, 31(5): 1-16. |
[3] | 刘艳祥, 吕文雅, 曾联波, 李睿琦, 董少群, 王兆生, 李彦录, 王磊飞, 冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘, 2024, 31(5): 103-116. |
[4] | 鞠玮, 杨慧, 侯贵廷, 宁卫科, 李永康, 梁孝柏. 复杂构造变形区断控裂缝发育分布模式[J]. 地学前缘, 2024, 31(5): 130-138. |
[5] | 尹帅, 张子阳, 张星星, 王景辰, 胡伟, 丁文龙, 李虎. 扇三角洲前缘非常规致密油储层裂缝发育模式:以泌阳凹陷东南部古近系核三段为例[J]. 地学前缘, 2024, 31(5): 139-155. |
[6] | 潘磊, 杜红权, 李雷涛, 龙涛, 殷雪峰. 川东北元坝地区上三叠统须家河组天然裂缝发育特征与主控因素[J]. 地学前缘, 2024, 31(5): 156-165. |
[7] | 董少群, 曾联波, 冀春秋, 张延兵, 郝静茹, 徐小童, 韩高松, 徐辉, 李海明, 李心琦. 超深层致密砂岩裂缝测井识别深度核方法[J]. 地学前缘, 2024, 31(5): 166-176. |
[8] | 何建华, 曹红秀, 邓虎成, 印长海, 朱彦平, 李厂, 李勇, 尹帅. 川东北营山-平昌地区凉高山组页岩天然裂缝发育特征及其形成演化模式研究[J]. 地学前缘, 2024, 31(5): 17-34. |
[9] | 张辉, 张冠杰, 徐珂, 尹国庆, 王志民, 罗洋, 王海应, 张滨鑫, 梁景瑞, 袁芳, 赵崴, 张玮, 卢星. 库车坳陷应力状态转换特征及其地质与力学响应[J]. 地学前缘, 2024, 31(5): 177-194. |
[10] | 高玉巧, 花彩霞, 蔡潇, 白鸾羲, 卢葭. 苏北盆地溱潼凹陷阜宁组二段页岩油储层裂缝形成机制及对烃类赋存的影响[J]. 地学前缘, 2024, 31(5): 35-45. |
[11] | 陈如彪, 王玉满, 黄正良, 李维岭, 闫伟, 梁峰, 郭玮. 鄂尔多斯盆地西北缘海相页岩裂缝孔隙发育特征与页岩气富集模式:以奥陶系乌拉力克组为例[J]. 地学前缘, 2024, 31(5): 46-60. |
[12] | 孙雅雄, 梁兵, 邱旭明, 段宏亮, 付茜, 周进峰, 刘世丽, 仇永峰, 胡慧婷, 巩磊. 苏北盆地高邮凹陷阜二段页岩天然裂缝发育特征及其对页岩油富集和保存的影响[J]. 地学前缘, 2024, 31(5): 61-74. |
[13] | 乔辉, 张永贵, 聂海宽, 彭勇民, 张珂, 苏海琨. 页岩储层多尺度天然裂缝表征与三维地质建模:以四川盆地平桥构造带五峰组-龙马溪组页岩为例[J]. 地学前缘, 2024, 31(5): 89-102. |
[14] | 韩鹏远, 丁文龙, 杨德彬, 邓光校, 王震, 马海陇, 吕晶, 耿甜. 塔河油田奥陶系碳酸盐岩储层裂缝表征与主控因素分析[J]. 地学前缘, 2024, 31(5): 209-226. |
[15] | 孟庆修, 曹自成, 丁文龙, 杨德彬, 马海陇, 刁新东, 王明, 韩鹏远, 王欢欢. 塔北隆起南斜坡带三道桥气田寒武系裂缝型白云岩储层裂缝期次差异与分布规律[J]. 地学前缘, 2024, 31(5): 247-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||