地学前缘 ›› 2021, Vol. 28 ›› Issue (1): 388-401.DOI: 10.13745/j.esf.sf.2020.7.6
吉利明1,2(), 李剑锋3, 张明震1,2, 贺聪1, 马博1,4, 金培红1
收稿日期:
2020-05-01
修回日期:
2020-05-28
出版日期:
2021-01-25
发布日期:
2021-01-28
作者简介:
吉利明(1963—),男,研究员,博士生导师,主要从事石油地质学与古生物学研究。E-mail: jilimin@lzb.ac.cn
基金资助:
JI Liming1,2(), LI Jianfeng3, ZHANG Mingzhen1,2, HE Cong1, MA Bo1,4, JIN Peihong1
Received:
2020-05-01
Revised:
2020-05-28
Online:
2021-01-25
Published:
2021-01-28
摘要:
选择鄂尔多斯盆地南部连续取岩心的YK1井延长组样品开展了系统的烃源岩评价、元素地球化学和孢粉相分析,探讨了延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响。以碳质泥岩和油页岩为主的长7-3段发育优质烃源岩,灰黑色泥岩为主的长7-1+2段部分层段发育好的烃源岩,砂泥岩互层的长6段个别层位也可形成较好的烃源岩。热流体活动强度指标Al/(Al+Fe+Mn)和(Fe+Mn)/Ti比值指示,与上述3个烃源岩发育阶段相对应古湖泊经历了3幕明显的热水活动过程,其中长7-3期为热水活动的高峰。YK1井烃源岩可划分出3种孢粉相:孢粉相A分布于长8—长9段和长6-2+3段,主要出现Ⅲ型及少量Ⅱ型有机质,有机碎屑以半透明木质和凝胶化颗粒为主;孢粉相B分布于长7-3段,主要为Ⅰ型和Ⅱ1型有机质,以高丰度藻类体和无定形体有机质为特征;孢粉相C分布于长7-1+2段,主要为Ⅱ型有机质,丰富的无定形体和植物碎屑同时出现。烃源岩总有机碳含量、有机质类型以及主要生烃组分含量均与热水活动强度表现出很好的耦合关系,表明热流体活动可能导致湖泊藻类和浮游生物的繁盛,使烃源岩有机质丰度和质量得到明显提高。热水活动高峰长7-3期发生了藻类勃发和优质烃源岩的沉积。
中图分类号:
吉利明, 李剑锋, 张明震, 贺聪, 马博, 金培红. 鄂尔多斯盆地延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响[J]. 地学前缘, 2021, 28(1): 388-401.
JI Liming, LI Jianfeng, ZHANG Mingzhen, HE Cong, MA Bo, JIN Peihong. Effects of the lacustrine hydrothermal activity in the Yanchang period on the abundance and type of organic matter in source rocks in the Ordos Basin[J]. Earth Science Frontiers, 2021, 28(1): 388-401.
地层 | 参数相关指标 | S1/ (mg·g-1) | S2/ (mg·g-1) | (S1+S2)/ (mg·g-1) | PI | Tmax/℃ | S3/ (mg·g-1) | HI/ (mg·g-1) | OI/ (mg·g-1) | TOC含量 /% | w(S)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
长4+5 | 分布范围 | 0~0.08 | 0.19~1.84 | 0.19~1.92 | 0.01~0.04 | 442~453 | 0.15~0.47 | 21~163 | 58~67 | 0.7~1.11 | 0.05~0.07 |
均值(样品数) | 0.04(2) | 1.02(2) | 1.06(2) | 0.03(2) | 448(2) | 0.31(2) | 92(2) | 63(2) | 0.91(2) | 0.06(2) | |
长6 | 分布范围 | 0.01~5.24 | 0.14~81 | 0.15~86.24 | 0.01~0.19 | 433~447 | 0~0.54 | 10~470 | 11~110 | 0.47~17.84 | 0.05~6.39 |
均值(样品数) | 0.24(118) | 3.74(118) | 3.99(118) | 0.09(118) | 441(118) | 0.02(118) | 123(118) | 54(118) | 1.54(118) | 0.52(118) | |
长7-1+2 | 分布范围 | 0.02~2.54 | 0.36~34.77 | 0.39~37.31 | 0.04~0.17 | 434~447 | 0~0.37 | 52~528 | 6~63 | 0.52~6.59 | 0.01~4.97 |
均值(样品数) | 0.38(66) | 4.7(66) | 5.09(66) | 0.08(66) | 441(66) | 0.06(66) | 215(66) | 22(66) | 1.6(66) | 0.6(66) | |
长7-3 | 分布范围 | 0.02~16.22 | 0.08~130.62 | 0.1~146.84 | 0.05~0.29 | 428~451 | 0~0.42 | 16~716 | 6~69 | 0.5~29.91 | 0.02~9.55 |
均值(样品数) | 4.92(44) | 48.25(44) | 53.17(44) | 0.11(44) | 439(44) | 0.09(44) | 452(44) | 14(44) | 10.52(44) | 4.28(44) | |
长8 | 分布范围 | 0~3.16 | 0.03~57.99 | 0.03~61.15 | 0.03~0.67 | 440~462 | 0~0.36 | 1~600 | 4~132 | 0.37~12.68 | 0.02~3.34 |
均值(样品数) | 0.24(50) | 3.44(50) | 3.69(50) | 0.12(50) | 446(50) | 0.03(50) | 97(50) | 62(50) | 1.99(50) | 0.19(50) | |
长9 | 分布范围 | 0~2.57 | 0~56.22 | 0~58.79 | 0~1 | 438~464 | 0~4.77 | 0~557 | 2~143 | 0.08~18.11 | 0.01~1.22 |
均值(样品数) | 0.14(124) | 2.65(124) | 2.80(124) | 0.09(124) | 447(124) | 0.25(124) | 100(124) | 43(124) | 1.27(124) | 0.12(124) | |
长10 | 分布范围 | 0~0.06 | 0~0.07 | 0~0.08 | 0~1 | 0~0.59 | 0~20 | 5~124 | 0.04~0.45 | 0.04~0.4 | |
均值(样品数) | 0.01(14) | 0.01(14) | 0.02(14) | 0.42(14) | 0.19(14) | 4(14) | 46(14) | 0.12(14) | 0.16(14) |
表1 延长组不同层段TOC含量与热解参数
Table 1 TOC contents and pyrolysis parameters of different members of the Yanchang Formation
地层 | 参数相关指标 | S1/ (mg·g-1) | S2/ (mg·g-1) | (S1+S2)/ (mg·g-1) | PI | Tmax/℃ | S3/ (mg·g-1) | HI/ (mg·g-1) | OI/ (mg·g-1) | TOC含量 /% | w(S)/% |
---|---|---|---|---|---|---|---|---|---|---|---|
长4+5 | 分布范围 | 0~0.08 | 0.19~1.84 | 0.19~1.92 | 0.01~0.04 | 442~453 | 0.15~0.47 | 21~163 | 58~67 | 0.7~1.11 | 0.05~0.07 |
均值(样品数) | 0.04(2) | 1.02(2) | 1.06(2) | 0.03(2) | 448(2) | 0.31(2) | 92(2) | 63(2) | 0.91(2) | 0.06(2) | |
长6 | 分布范围 | 0.01~5.24 | 0.14~81 | 0.15~86.24 | 0.01~0.19 | 433~447 | 0~0.54 | 10~470 | 11~110 | 0.47~17.84 | 0.05~6.39 |
均值(样品数) | 0.24(118) | 3.74(118) | 3.99(118) | 0.09(118) | 441(118) | 0.02(118) | 123(118) | 54(118) | 1.54(118) | 0.52(118) | |
长7-1+2 | 分布范围 | 0.02~2.54 | 0.36~34.77 | 0.39~37.31 | 0.04~0.17 | 434~447 | 0~0.37 | 52~528 | 6~63 | 0.52~6.59 | 0.01~4.97 |
均值(样品数) | 0.38(66) | 4.7(66) | 5.09(66) | 0.08(66) | 441(66) | 0.06(66) | 215(66) | 22(66) | 1.6(66) | 0.6(66) | |
长7-3 | 分布范围 | 0.02~16.22 | 0.08~130.62 | 0.1~146.84 | 0.05~0.29 | 428~451 | 0~0.42 | 16~716 | 6~69 | 0.5~29.91 | 0.02~9.55 |
均值(样品数) | 4.92(44) | 48.25(44) | 53.17(44) | 0.11(44) | 439(44) | 0.09(44) | 452(44) | 14(44) | 10.52(44) | 4.28(44) | |
长8 | 分布范围 | 0~3.16 | 0.03~57.99 | 0.03~61.15 | 0.03~0.67 | 440~462 | 0~0.36 | 1~600 | 4~132 | 0.37~12.68 | 0.02~3.34 |
均值(样品数) | 0.24(50) | 3.44(50) | 3.69(50) | 0.12(50) | 446(50) | 0.03(50) | 97(50) | 62(50) | 1.99(50) | 0.19(50) | |
长9 | 分布范围 | 0~2.57 | 0~56.22 | 0~58.79 | 0~1 | 438~464 | 0~4.77 | 0~557 | 2~143 | 0.08~18.11 | 0.01~1.22 |
均值(样品数) | 0.14(124) | 2.65(124) | 2.80(124) | 0.09(124) | 447(124) | 0.25(124) | 100(124) | 43(124) | 1.27(124) | 0.12(124) | |
长10 | 分布范围 | 0~0.06 | 0~0.07 | 0~0.08 | 0~1 | 0~0.59 | 0~20 | 5~124 | 0.04~0.45 | 0.04~0.4 | |
均值(样品数) | 0.01(14) | 0.01(14) | 0.02(14) | 0.42(14) | 0.19(14) | 4(14) | 46(14) | 0.12(14) | 0.16(14) |
图4 延长组热水活动指标Al/(Al+Fe+Mn)和(Fe+Mn)/Ti曲线图
Fig.4 Correlation between hydrothermal activity indicators Al/(Al+Fe+Mn) and (Fe+Mn)/Ti in the Yanchang Formation
层位 | 参数相关指标 | 无定形有 机质相对 含量/% | 植物碎屑相对含量/% | 孢粉体 相对 含量/% | 藻类体 相对 含量/% | 各类型有机质频率/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
凝胶化颗粒 | 半透明木质 | 丝质体 | 角质体 | Ⅰ | Ⅱ1 | Ⅱ2 | Ⅲ | |||||
Ch 6 | 分布范围 | 0~75 | 8.3~42.7 | 6.2~47.5 | 2.1~17 | 0.9~11.8 | 0~6.3 | 0~0 | 0 | 26.3 | 21.1 | 52.6 |
均值(样品数) | 27.3(19) | 27.9(19) | 27.7(19) | 10.7(19) | 3.3(19) | 3.1(19) | 0(19) | |||||
Ch 7-1+2 | 分布范围 | 0~85.2 | 5~50 | 4~47.4 | 1~18.8 | 0~7.1 | 0~5.9 | 0~2 | 2.2 | 48.9 | 28.9 | 20 |
均值(样品数) | 48(45) | 22.3(45) | 17.1(45) | 8.4(45) | 2.5(45) | 1.7(45) | 0(45) | |||||
Ch 7-3 | 分布范围 | 2.6~91.9 | 1~38.7 | 2~33 | 1~19.8 | 0~3.9 | 0~6.1 | 0~81 | 40 | 52.5 | 5 | 2.5 |
均值(样品数) | 52.3(40) | 9(40) | 7.8(40) | 4.1(40) | 1(40) | 0.6(40) | 25.2(40) | |||||
Ch 8 | 分布范围 | 0~86.9 | 6.1~43.2 | 5.1~55.6 | 1~24 | 1~6.6 | 0~6.6 | 0~8 | 3 | 15.2 | 9.1 | 72.7 |
均值(样品数) | 20.7(33) | 28.6(33) | 33.2(33) | 12(33) | 3.1(33) | 2.2(33) | 0.2(33) | |||||
Ch 9 | 分布范围 | 0~92.9 | 1~47.5 | 2~54.9 | 1~45.1 | 0~12.4 | 0~11.3 | 0~12 | 2.6 | 21.1 | 13.2 | 63.2 |
均值(样品数) | 24.7(114) | 28.6(114) | 28.6(114) | 12.9(114) | 2.8(114) | 2.1(114) | 0.3(114) |
表2 有机碎屑组分含量与有机质类型频率分布
Table 2 Composition of organic debris and percent distribution of organic matter types
层位 | 参数相关指标 | 无定形有 机质相对 含量/% | 植物碎屑相对含量/% | 孢粉体 相对 含量/% | 藻类体 相对 含量/% | 各类型有机质频率/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
凝胶化颗粒 | 半透明木质 | 丝质体 | 角质体 | Ⅰ | Ⅱ1 | Ⅱ2 | Ⅲ | |||||
Ch 6 | 分布范围 | 0~75 | 8.3~42.7 | 6.2~47.5 | 2.1~17 | 0.9~11.8 | 0~6.3 | 0~0 | 0 | 26.3 | 21.1 | 52.6 |
均值(样品数) | 27.3(19) | 27.9(19) | 27.7(19) | 10.7(19) | 3.3(19) | 3.1(19) | 0(19) | |||||
Ch 7-1+2 | 分布范围 | 0~85.2 | 5~50 | 4~47.4 | 1~18.8 | 0~7.1 | 0~5.9 | 0~2 | 2.2 | 48.9 | 28.9 | 20 |
均值(样品数) | 48(45) | 22.3(45) | 17.1(45) | 8.4(45) | 2.5(45) | 1.7(45) | 0(45) | |||||
Ch 7-3 | 分布范围 | 2.6~91.9 | 1~38.7 | 2~33 | 1~19.8 | 0~3.9 | 0~6.1 | 0~81 | 40 | 52.5 | 5 | 2.5 |
均值(样品数) | 52.3(40) | 9(40) | 7.8(40) | 4.1(40) | 1(40) | 0.6(40) | 25.2(40) | |||||
Ch 8 | 分布范围 | 0~86.9 | 6.1~43.2 | 5.1~55.6 | 1~24 | 1~6.6 | 0~6.6 | 0~8 | 3 | 15.2 | 9.1 | 72.7 |
均值(样品数) | 20.7(33) | 28.6(33) | 33.2(33) | 12(33) | 3.1(33) | 2.2(33) | 0.2(33) | |||||
Ch 9 | 分布范围 | 0~92.9 | 1~47.5 | 2~54.9 | 1~45.1 | 0~12.4 | 0~11.3 | 0~12 | 2.6 | 21.1 | 13.2 | 63.2 |
均值(样品数) | 24.7(114) | 28.6(114) | 28.6(114) | 12.9(114) | 2.8(114) | 2.1(114) | 0.3(114) |
图6 不同类型有机质碎屑组分镜下面貌 A—Ⅰ型有机质,主要由颗粒无定形有机质组成,其他组分少见;B—Ⅱ1型有机质,无定形有机质和藻类体丰富,各种植物碎屑也很常见;C—Ⅱ2型有机质,无定形有机质和植物碎屑都比较丰富;D—Ⅲ型有机质,主要由丝质体组成,其他植物碎屑和无定形有机质较少见。Granular AOM—颗粒无定形有机质;Leiosphaeridia—光球型疑源类;Palynomorphs—孢型;TLF—半透明木质碎屑;GP—凝胶化颗粒;OP—丝质体。
Fig.6 Microscopic images of different types of organic debris components
图8 烃源岩有机碎屑组分含量与热水活动强度对应关系 AOM—无定形有机质;Algae—藻类体;GP—凝胶化颗粒;TLF—半透明木质碎屑; OP—丝质体;Palynomorphs—孢型。
Fig.8 Correlation between content of organic detrital components in source rocks and intensity of hydrothermal activity
图10 热流体强度指标与氢指数(HI)和有机质类型指数(Ti)的关系
Fig.10 Relationship between intensity indicator for thermal activity and hydrogen (HI) or type (Ti) index of organic matter
[1] | 长庆油田石油地质志编写组. 中国石油地质志: 卷12, 长庆油田[M]. 北京: 石油工业出版社, 1992: 8-145. |
[2] |
LIU C Y, HAO H G, ZHAO J F, et al. Temporo-spatial coordinates of evolution of the Ordos Basin and its mineralization responses[J]. Acta Geologica Sinica (English Edition), 2008, 82(6):1229-1243.
DOI URL |
[3] | 张文正, 杨华, 李剑锋, 等. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 强生排烃特征及机理分析[J]. 石油勘探与开发, 2006, 33(3):289-293. |
[4] | 杨华, 陈洪德, 付金华. 鄂尔多斯盆地晚三叠世沉积地质与油藏分布规律[M]. 北京: 科学出版社, 2012: 1-335. |
[5] |
YANG H, LIANG X W, NIU X B, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: a case of Chang 7 Member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1):11-19.
DOI URL |
[6] |
XU Z J, LIU L F, WANG T G, et al. Characteristics and controlling factors of lacustrine tight oil reservoirs of the Triassic Yanchang Formation Chang 7 in the Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 82:265-296.
DOI URL |
[7] |
JI L M, MENG F W. Palynology of Yanchang Formation of Middle and Late Triassic in eastern Gansu Province and its paleoclimatic significance[J]. Journal of China University of Geosciences, 2006, 17(3):209-220.
DOI URL |
[8] |
ZOU C N, ZHANG X Y, LUO P, et al. Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the Upper Triassic Yanchang Formation, Ordos Basin, China[J]. Basin Research, 2010, 22(1):108-125.
DOI URL |
[9] |
QIU X W, LIU C Y, MAO G Z, et al. Major, trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot shales in the Ordos Basin, Central China[J]. Applied Geochemistry, 2015, 53:42-52.
DOI URL |
[10] |
ZHANG M Z, JI L M, WU Y D, et al. Palynofacies and geochemical analysis of the Triassic Yanchang Formation, Ordos Basin: implications for hydrocarbon generation potential and the paleoenvironment of continental source rocks[J]. International Journal of Coal Geology, 2015, 152:159-176.
DOI URL |
[11] | 吉利明, 吴涛, 李林涛. 鄂尔多斯盆地西峰地区延长组烃源岩干酪根地球化学特征[J]. 石油勘探与开发, 2007, 34(3):424-428. |
[12] |
JI L M, YAN K, MENG F W, et al. The oleaginous Botryococcus from the Triassic Yanchang Formation in Ordos Basin, Northwestern China: morphology and its paleoenvironmental significance[J]. Journal of Asian Earth Sciences, 2010, 38(1):175-185.
DOI URL |
[13] |
JI L M, MENG F W, SCHIFFBAUER J D, et al. Correlation between highly abundant oil-prone Leiosphaerid acritarchs and hydrocarbon source rocks from the Triassic Yanchang Formation, eastern Gansu Province, northwestern China[J]. Gondwana Research, 2008, 14:554-560.
DOI URL |
[14] | 杨华, 张文正. 论鄂尔多斯盆地长7 段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征[J]. 地球化学, 2005, 34(2):147-154. |
[15] | CHEN Q H, LI W H, GAO Y X, et al. The deep-lake deposit in the Upper Triassic Yanchang Formation in Ordos Basin, China and its significance for oil-gas accumulation[J]. Science in China, D: Earth Sciences, 2007, 50(Suppl 2):47-58. |
[16] |
YANG H, ZHANG W Z, WU Kai, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4):285-293.
DOI URL |
[17] |
TANG X, ZHANG J C, WANG X Z, et al. Shale characteristics in the southeastern Ordos Basin, China: implications for hydrocarbon accumulation conditions and the potential of continental shales[J]. International Journal of Coal Geology, 2014, 128/129(3):32-46.
DOI URL |
[18] |
ZHANG W Z, YANG H, XIE L Q, et al. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: a case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4):424-429.
DOI URL |
[19] | 邱欣卫. 鄂尔多斯盆地延长期富烃凹陷特征及其形成的动力学环境[D]. 西安: 西北大学, 2011. |
[20] | 邱欣卫, 刘池洋. 鄂尔多斯盆地延长期湖盆充填类型与优质烃源岩的发育[J]. 地球学报, 2014, 35(1):101-110. |
[21] | 赵文智, 胡素云, 汪泽成, 等. 鄂尔多斯盆地基底断裂在上三叠统延长组石油聚集中的控制作用[J]. 石油勘探与开发, 2003, 30(5):1-5. |
[22] |
NIJENHUIS I A, BOSCH H J, DAMSTE J S S, et al. Organic matter and trace element rich sapropels and black shales: a geochemical comparison[J]. Earth and Planetary Science Letters, 1999, 169(3/4):277-290.
DOI URL |
[23] | CHEN J F, SUN S L, LIU W H, et al. Geochemical characteristics of organic matter-rich strata of Lower Cambrian in Tarim Basin and its origin[J]. Science in China, D: Earth Sciences, 2004, 47(Suppl 2):125-132. |
[24] | 常海亮, 郑荣才, 郭春利, 等. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J]. 地质论评, 2016, 62(3):550-568. |
[25] | 李红, 柳益群, 张丽霞, 等. 准噶尔盆地东部中二叠统平地泉组具“斑状”结构热水喷流沉积岩的成因及地质意义[J]. 古地理学报, 2017, 19(2):211-226. |
[26] |
ZHANG S H, LIU C Y, LIANG H, et al. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China[J]. International Journal of Coal Geology, 2018, 185:44-60.
DOI URL |
[27] |
MEINHOLD G, HOWARD J P, STROGEN D, et al. Hydrocarbon source rock potential and elemental composition of Lower Silurian subsurface shales of the eastern Murzuq Basin, southern Libya[J]. Marine and Petroleum Geology, 2013, 48:224-246.
DOI URL |
[28] | ESPITALIE J, LAPORTE J L, MADEC M, et al. Rapid method for characterizing the source rocks, their petroleum potential and their degree of evolution[J]. Review of the French Petroleum Institute, 1977, 32:23-42. |
[29] | PETTERS K E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. AAPG Bulletin, 1986, 70:318-329. |
[30] | PETTERS K E, CASSA M R. Applied source rock geochemistry[J]. AAPG Memoir, 1994, 60:93-120. |
[31] |
BOSTRÖM K, PETERSON M N A, JOENSUU O, et al. Aluminum-poor ferromanganoan sediments on active oceanic ridges[J]. Journal of Geophysical Research, 1969, 74(12):3261-3270.
DOI URL |
[32] | RONA P A, BOSTRÖM K, LAUBIER L, et al. Hydrothermal processes at seafloor spreading centers[M]. New York: Plenum Press, 1983: 473-489. |
[33] |
MURRAY R W. Chemical-criteria to identify the depositional environment of chert: general principles and applications[J]. Sedimentary Geology, 1994, 90(3/4):213-232.
DOI URL |
[34] |
HE C, JI L M, WU Y D, et al. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, South Ordos Basin, China: evidence from element geochemistry[J]. Sedimentary Geology, 2016, 345:33-41.
DOI URL |
[35] |
BOSTRÖM K, KRAEMER T, GARTNER S. Provenace and accumulation rates of opaline silica, Al, Fe, Ti, Mn, Ni and Co in Pacific pelagic sediment[J]. Chemical Geology, 1973, 11(2):123-148.
DOI URL |
[36] | RONA P A. Hydrothermal mineralization at oceanic ridges[J]. Canadian Mineralogist, 1988, 26(3):431-465. |
[37] | QI H W, HU R Z, SU W C, et al. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: a study from the Lincang Ge deposit, Yunnan, China[J]. Science in China, D: Earth Sciences, 2004, 47(11):973-984. |
[38] | HUANG H, DU Y S, HUANG Z Q, et al. Depositional chemistry of chert during Late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin[J]. Science in China, D: Earth Sciences, 2013, 56(3):479-493. |
[39] |
ZHOU J G, YAO G S, DENG H Y, et al. Exploration potential of Chang 9 member, Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2008, 35(3):289-293.
DOI URL |
[40] | TYSON R V. Sedimentary organic matter: organic facies and palynofacies[M]. London: Chapman and Hall, 1995. |
[41] | 李建国, BATTEN D J. 孢粉相: 原理及方法[J]. 古生物学报, 2005, 44(1):138-156. |
[42] |
SEBAG D, COPARD Y, DI-GIOVANNI C, et al. Palynofacies as useful tool to study origins and transfers of particulate organic matter in recent terrestrial environments: synopsis and prospect[J]. Earth-Science Reviews, 2006, 79(3):241-259.
DOI URL |
[43] |
PACTON M, GORIN G E, VASCONCELOS C. Amorphous organic matter: experimental data on formation and the role of microbes[J]. Review of Palaeobotany and Palynology, 2011, 166(3):253-267.
DOI URL |
[44] |
ABǍRǍ D, PACTON M, MAKOU M, et al. Palynofacies and geochemical analysis of Oligo-Miocene bituminous rocks from the moldavidian domain (eastern carpathians, romania): implications for petroleum exploration[J]. Review of Palaeobotany and Palynology, 2015, 216(1):101-122.
DOI URL |
[45] |
GRAZ Y, DI-GIOVANNI C, COPARD Y, et al. Quantitative palynofacies analysis as a new tool to study transfers of fossil organic matter in recent terrestrial environments[J]. International Journal of Coal Geology, 2010, 84(1):49-62.
DOI URL |
[46] |
MUELLER S, VELD H, NAGY J, et al. Depositional history of the Upper Triassic Kapp Toscana Group on Svalbard, Norway, inferred from palynofacies analysis and organic geochemistry[J]. Sedimentary Geology, 2014, 310(8):16-29.
DOI URL |
[47] | 涂建琪, 孔庆芬, 费轩栋, 等. 透射光-荧光干酪根显微组分鉴定及类型划分方法: SY/T 5125—2014[S]. 北京: 石油工业出版社, 2015. |
[48] | 张淼, 陈清华, 徐金鲤. 东营凹陷沙河街组四段孢粉相特征及其生烃潜力[J]. 中国石油大学学报(自然科学版), 2011, 35(6):28-35. |
[49] |
TEWARI R, AWATAR R, PANDITA S K, et al. The Permian-Triassic palynological transition in the Guryul Ravine section, Kashmir, India: implications for Tethyan-Gondwanan correlations[J]. Earth-Science Reviews, 2015, 149:53-66.
DOI URL |
[50] |
LIU C L, WANG P X. The role of algal blooms in the formation of lacustrine petroleum source rocks: evidence from Jiyang depression, Bohai Gulf Rift Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388(15):15-22.
DOI URL |
[51] | TISSOT B P, WELTE D H. From kerogen to petroleum[M]//TISSOT B P, WELTE D H. Petroleum formation and occurrence. 2nd ed. Berlin: Springer, 1984: 160-198. |
[52] |
KARL D M, WIRSEN C O, JANNASCH H W. Deep-sea primary production at the Galapagos hydrothermal vents[J]. Science, 1980, 207:1345-1347.
DOI URL |
[53] |
HE C, JI L M, SU A, et al. Source-rock evaluation and depositional environment of black shales in the Triassic Yanchang Formation, southern Ordos Basin, north-central China[J]. Journal of Petroleum Science and Engineering, 2019, 173:899-911.
DOI URL |
[1] | 刘艳祥, 吕文雅, 曾联波, 李睿琦, 董少群, 王兆生, 李彦录, 王磊飞, 冀春秋. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘, 2024, 31(5): 103-116. |
[2] | 陈如彪, 王玉满, 黄正良, 李维岭, 闫伟, 梁峰, 郭玮. 鄂尔多斯盆地西北缘海相页岩裂缝孔隙发育特征与页岩气富集模式:以奥陶系乌拉力克组为例[J]. 地学前缘, 2024, 31(5): 46-60. |
[3] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[4] | 苏恺明, 徐耀辉, 徐旺林, 张月巧, 白斌, 李阳, 严刚. 鄂尔多斯盆地延长组多油源贡献比例与分布规律:基于机器学习与可解释性研究[J]. 地学前缘, 2024, 31(3): 530-540. |
[5] | 刘持恒, 李子颖, 贺锋, 张字龙, 李振成, 凌明星, 刘瑞萍. 鄂尔多斯盆地西北部下白垩统物源定量分析研究[J]. 地学前缘, 2024, 31(3): 80-99. |
[6] | 刘池洋, 张龙, 黄雷, 吴柏林, 王建强, 张东东, 谭成仟, 马艳萍, 赵建社. 砂岩型铀矿形成的新模式:来自深部有机流体的成矿作用[J]. 地学前缘, 2024, 31(1): 368-383. |
[7] | 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区早二叠世构造-沉积环境与原型盆地演化[J]. 地学前缘, 2023, 30(2): 139-153. |
[8] | 刘震, 朱茂林, 潘高峰, 夏鲁, 卢朝进, 刘明洁, 刘静静, 侯英杰. 鄂尔多斯盆地中南部地区延长组砂岩溶蚀增孔模型的建立与应用[J]. 地学前缘, 2023, 30(2): 96-108. |
[9] | 王香增. 鄂尔多斯盆地延长探区低渗致密油气成藏理论进展及勘探实践[J]. 地学前缘, 2023, 30(1): 143-155. |
[10] | 付金华. 鄂尔多斯盆地太原组致密灰岩天然气成藏地质特征与勘探潜力[J]. 地学前缘, 2023, 30(1): 20-29. |
[11] | 郑和荣, 胡宗全, 云露, 林会喜, 邓尚, 贾会冲, 蒲勇. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238. |
[12] | 熊伟东, 肖安成, 魏国齐, 吴磊, 张春林, 王依平, 杨流昀, 王芊芊. 鄂尔多斯盆地南缘寒武纪同沉积伸展断裂系统及其成因机制分析[J]. 地学前缘, 2022, 29(6): 305-313. |
[13] | 罗金海, 畅莹磊, 陈卓. 鄂尔多斯盆地西南部晚三叠世辉绿岩年代学、地球化学及其构造意义[J]. 地学前缘, 2022, 29(6): 314-324. |
[14] | 何治亮, 陆建林, 林娟华, 金晓辉, 漆立新, 徐旭辉, 黄仁春, 王毅. 中国海相盆地原型-改造分析与油气有序聚集模式[J]. 地学前缘, 2022, 29(6): 60-72. |
[15] | 阮壮, 罗忠, 于炳松, 卢远征, 谢灏辰, 杨志辉. 鄂尔多斯盆地中—晚三叠世盆地原型及构造古地理响应[J]. 地学前缘, 2021, 28(1): 12-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||