地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 124-142.DOI: 10.13745/j.esf.sf.2021.8.14
张铭杰1(), 张宏福2, 梁慨慷1, 张晓琪2, 李思奥1, 张军伟3, 班舒悦1, 王荣华1, 范育新1
收稿日期:
2021-06-07
修回日期:
2021-07-02
出版日期:
2022-01-25
发布日期:
2022-02-22
作者简介:
张铭杰(1965—),男,教授,博士生导师,主要从事地球化学研究。E-mail: mjzhang@lzu.edu.cn
基金资助:
ZHANG Mingjie1(), ZHANG Hongfu2, LIANG Kaikang1, ZHANG Xiaoqi2, LI Si’ao1, ZHANG Junwei3, BAN Shuyue1, WANG Ronghua1, FAN Yuxin1
Received:
2021-06-07
Revised:
2021-07-02
Online:
2022-01-25
Published:
2022-02-22
摘要:
中国西部探明了一系列与新元古代以来幔源岩浆有关的镍铜铂族元素(platinum group elements, PGE)岩浆矿床,华北克拉通新元古代金川镍铜铂族硫化物矿床、峨眉山二叠纪大火成岩省金宝山铂族元素矿床等记录了不同构造环境幔源岩浆PGE超常富集成矿过程。亲铁性的铂族元素高度富集于地核,深部地幔起源、高程度部分熔融形成的镁铁质岩浆中PGE含量较高,地幔岩浆系统不同条件下铂族元素以纳米态元素簇、合金、硫化物熔体或超临界流体运移-聚集成矿,在阶段性岩浆房多阶段、多途径富集,成矿作用类型丰富。华北-华南克拉通岩石圈地幔PGE含量均略高于原始地幔值;华北克拉通岩石圈地幔PGE含量从古生代到中新生代略有降低,表明存在PGE抽取岩浆事件。中国西部新元古代以来的幔源岩浆源区PGE不亏损、岩浆活动时间长、岩浆-硫化物相互作用PGE多阶段富集及地幔柱岩浆动力学背景是PGE超常富集成矿的有利地质条件,其控制因素及动力学背景的认识对查明PGE成矿潜力和拓展资源储量具有重要意义。
中图分类号:
张铭杰, 张宏福, 梁慨慷, 张晓琪, 李思奥, 张军伟, 班舒悦, 王荣华, 范育新. 中国西部典型岩浆铂族元素矿床超常富集成矿机制[J]. 地学前缘, 2022, 29(1): 124-142.
ZHANG Mingjie, ZHANG Hongfu, LIANG Kaikang, ZHANG Xiaoqi, LI Si’ao, ZHANG Junwei, BAN Shuyue, WANG Ronghua, FAN Yuxin. Extreme enrichment and ore-forming mechanism of main mafic magma-related platinum group element deposits in western China[J]. Earth Science Frontiers, 2022, 29(1): 124-142.
图1 中国铂族元素岩浆矿床相关镁铁-超镁铁质岩体分布图 (底图据文献[13,15]修改。 岩体年龄数据来自所列岩体的各文献。新元古代岩体:金川[25,26],宝坛[27],汉南毕机沟[28],周庵[29],煎茶岭[30],冷水箐[31],阿克苏[32], 库鲁克塔格[33];古生代岩体:黄山[37],喀拉通克[38],图拉尔根[39],香山西[42],白石泉[44],葫芦[40],土墩[41], 黑山[43],红旗岭[49],冰沟南[47],石头坑德[41],夏日哈木[45,48],牛鼻子梁[46],金宝山[16],杨柳坪[34],阿布郎当[35],朱布[36];中、新生代岩体:漂河川[49],五星[48])
Fig.1 Distribution map of mafic-ultramafic intrusions associated with magmatic PGE deposits in China. Modified after [13,15-16, 25-49].
图2 中国西部主要岩浆矿床PGE原始地幔(PM)均一化配分模式 (数据来自文献[30,52,54-55])
Fig.2 Primitive mantle (PM)-normalized PGE distribution patterns in main magmatic deposits in western China. Adapted from [30,52,54-55].
岩体 | 地理 位置 | 年龄/ Ma | 面积/ km2 | 围岩 | 赋矿 岩石 | 矿体 形态 | 矿石 矿物 | 矿床 规模 | 储量/t | 品位/(g·t-1) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
周庵 | 河南唐 河县 | 637±4 | 5.4 | 大雀山组白云石英片岩与大理岩 | 橄榄岩、二辉橄榄岩、橄榄辉石岩 | 岩盆状、岩墙状 | 磁黄铁矿、镍黄铁矿、黄铜矿、方黄铜矿、黄铁矿、磁铁矿 | 大型Cu-Ni-PGE | Pt 33 | Pd 0.87 | [ |
毕机沟 | 陕西西 乡县 | 约780 | 500 | 西乡群变质沉积火山岩 | 橄榄岩、二辉橄榄岩、橄榄辉石岩 | 条带状、似层状 | 钛磁铁矿、钛铁矿、磁黄铁矿、黄铜矿、黄铁矿 | Cu-Ni-Pt矿化 | [ | ||
煎茶岭 | 陕西略 阳县 | 878±27 | 6.8 | 鱼洞子群大理岩和片岩、片麻岩 | 纯橄岩、斜 方辉橄岩、 辉石岩 | 透镜状、似层状 | 镍黄铁矿、紫硫镍铁矿、针镍矿和辉镍矿等 | 大型 Ni-Co | [ | ||
石棉 | 四川石 棉县 | 1.5 | 苏雄组、观音崖组、灯影组 | 辉石岩、辉 长岩 | 网脉状、似层状 | 磁铁矿、钛铁矿、黄铁矿、黄铜矿、自然铂 | Pt矿化点 | Pt 36~41.7 | [ | ||
冷水箐 | 四川盐 边县 | 817±5 | <4 | 盐边群斜长角闪片岩 | 角闪二辉橄榄岩、角闪辉石岩和单辉橄榄岩 | 条带状、似层状、透镜状 | 磁黄铁矿、镍黄铁矿、黄铜矿、黄铁矿和方黄铜矿 | 中型Ni-Cu-(PGE) | Pt 0.01~ 0.06 | Pd 0.06~ 0.20 | [ |
表1 扬子克拉通边缘新元古代层状镁铁-超镁铁质岩体及岩浆矿床
Table 1 Basic information on the layered Neoproterozoic mafic-ultramafic intrusions and magmatic deposits in the Yangtze Craton
岩体 | 地理 位置 | 年龄/ Ma | 面积/ km2 | 围岩 | 赋矿 岩石 | 矿体 形态 | 矿石 矿物 | 矿床 规模 | 储量/t | 品位/(g·t-1) | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
周庵 | 河南唐 河县 | 637±4 | 5.4 | 大雀山组白云石英片岩与大理岩 | 橄榄岩、二辉橄榄岩、橄榄辉石岩 | 岩盆状、岩墙状 | 磁黄铁矿、镍黄铁矿、黄铜矿、方黄铜矿、黄铁矿、磁铁矿 | 大型Cu-Ni-PGE | Pt 33 | Pd 0.87 | [ |
毕机沟 | 陕西西 乡县 | 约780 | 500 | 西乡群变质沉积火山岩 | 橄榄岩、二辉橄榄岩、橄榄辉石岩 | 条带状、似层状 | 钛磁铁矿、钛铁矿、磁黄铁矿、黄铜矿、黄铁矿 | Cu-Ni-Pt矿化 | [ | ||
煎茶岭 | 陕西略 阳县 | 878±27 | 6.8 | 鱼洞子群大理岩和片岩、片麻岩 | 纯橄岩、斜 方辉橄岩、 辉石岩 | 透镜状、似层状 | 镍黄铁矿、紫硫镍铁矿、针镍矿和辉镍矿等 | 大型 Ni-Co | [ | ||
石棉 | 四川石 棉县 | 1.5 | 苏雄组、观音崖组、灯影组 | 辉石岩、辉 长岩 | 网脉状、似层状 | 磁铁矿、钛铁矿、黄铁矿、黄铜矿、自然铂 | Pt矿化点 | Pt 36~41.7 | [ | ||
冷水箐 | 四川盐 边县 | 817±5 | <4 | 盐边群斜长角闪片岩 | 角闪二辉橄榄岩、角闪辉石岩和单辉橄榄岩 | 条带状、似层状、透镜状 | 磁黄铁矿、镍黄铁矿、黄铜矿、黄铁矿和方黄铜矿 | 中型Ni-Cu-(PGE) | Pt 0.01~ 0.06 | Pd 0.06~ 0.20 | [ |
地质年代/寄主岩 | 岩石/捕虏体 | n | 含量/10-9 | 文献 来源 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Os | Ir | Ru | Rh | Pt | Pd | |||||
华北克拉通 | ||||||||||
新生代 | 玄武岩 | 37 | 0.05 | 0.03 | 0.07 | 0.02 | 0.17 | 0.13 | [ | |
中生代 | 玄武岩 | 10 | — | 0.02 | 0.02 | 0.02 | 0.30 | 1.39 | [ | |
古生代 | 金伯利岩 | 20 | — | 2.36 | 3.46 | 0.87 | 5.08 | 4.67 | [ | |
新生代 | 橄榄岩 | 31 | 1.66 | 2.47 | 5.80 | 0.75 | 5.95 | 3.78 | [ | |
玄武岩 | 尖晶石橄榄岩 | 14 | 1.36 | 1.79 | 2.79 | 0.71 | 3.68 | 2.01 | [ | |
辉石岩 | 5 | 0.44 | 0.57 | 1.16 | 0.15 | 2.39 | 3.41 | [ | ||
中生代 | 橄榄辉石岩 | 3 | 0.09 | 0.50 | 0.37 | — | 16.47 | 22.50 | [ | |
玄武岩 | 橄榄岩 | 8 | 1.38 | 1.45 | 2.59 | — | 3.43 | 3.07 | [ | |
玄武岩 | 尖晶石橄榄岩 | 5 | — | 1.21 | 7.08 | 0.50 | 1.00 | 3.52 | [ | |
金伯利岩 | 石榴石橄榄岩 | 1 | — | 3.60 | 4.86 | 1.36 | 9.66 | 9.18 | [ | |
古生代 | 硫化物橄榄岩 | 3 | — | 5.48 | 9.41 | 1.36 | 3.85 | 3.23 | [ | |
金伯利岩 | 尖晶石橄榄岩 | 2 | — | 4.48 | 7.19 | 1.43 | 6.93 | 3.82 | [ | |
石榴石橄榄岩 | 5 | — | 3.51 | 5.75 | 1.18 | 3.05 | 3.39 | [ | ||
铬铁矿 | 1 | — | 52.20 | 41.10 | 5.68 | 17.80 | 5.65 | [ | ||
华南克拉通 | ||||||||||
捕虏体 | 石榴石橄榄岩 | 1 | 3.60 | 4.86 | 9.66 | 9.18 | 1.36 | [ |
表2 中国东部玄武岩、金伯利岩及地幔捕虏体PGE含量
Table 2 PGE contents in basalt, kimberlite and mantle xenolith in eastern China
地质年代/寄主岩 | 岩石/捕虏体 | n | 含量/10-9 | 文献 来源 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Os | Ir | Ru | Rh | Pt | Pd | |||||
华北克拉通 | ||||||||||
新生代 | 玄武岩 | 37 | 0.05 | 0.03 | 0.07 | 0.02 | 0.17 | 0.13 | [ | |
中生代 | 玄武岩 | 10 | — | 0.02 | 0.02 | 0.02 | 0.30 | 1.39 | [ | |
古生代 | 金伯利岩 | 20 | — | 2.36 | 3.46 | 0.87 | 5.08 | 4.67 | [ | |
新生代 | 橄榄岩 | 31 | 1.66 | 2.47 | 5.80 | 0.75 | 5.95 | 3.78 | [ | |
玄武岩 | 尖晶石橄榄岩 | 14 | 1.36 | 1.79 | 2.79 | 0.71 | 3.68 | 2.01 | [ | |
辉石岩 | 5 | 0.44 | 0.57 | 1.16 | 0.15 | 2.39 | 3.41 | [ | ||
中生代 | 橄榄辉石岩 | 3 | 0.09 | 0.50 | 0.37 | — | 16.47 | 22.50 | [ | |
玄武岩 | 橄榄岩 | 8 | 1.38 | 1.45 | 2.59 | — | 3.43 | 3.07 | [ | |
玄武岩 | 尖晶石橄榄岩 | 5 | — | 1.21 | 7.08 | 0.50 | 1.00 | 3.52 | [ | |
金伯利岩 | 石榴石橄榄岩 | 1 | — | 3.60 | 4.86 | 1.36 | 9.66 | 9.18 | [ | |
古生代 | 硫化物橄榄岩 | 3 | — | 5.48 | 9.41 | 1.36 | 3.85 | 3.23 | [ | |
金伯利岩 | 尖晶石橄榄岩 | 2 | — | 4.48 | 7.19 | 1.43 | 6.93 | 3.82 | [ | |
石榴石橄榄岩 | 5 | — | 3.51 | 5.75 | 1.18 | 3.05 | 3.39 | [ | ||
铬铁矿 | 1 | — | 52.20 | 41.10 | 5.68 | 17.80 | 5.65 | [ | ||
华南克拉通 | ||||||||||
捕虏体 | 石榴石橄榄岩 | 1 | 3.60 | 4.86 | 9.66 | 9.18 | 1.36 | [ |
图3 中国金伯利岩及碱性玄武岩中地幔捕虏体的PGE含量平均值原始地幔(PM)均一化配分模式 (数据来自文献[71,109-115]。样品数:复县4[110],蒙阴4[110],信阳6[71],鹤壁5[71],阳原12[115],阿巴嘎8[109],北岩9[114],长白山6[113])
Fig.3 Primitive mantle (PM)-normalized PGE distribution patterns in mantle xenolith from kimberlite and alkli basalt in China. Data adapted from [71,109-115].
[1] | 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产:国际动向与思考[J]. 矿床地质, 2019, 38(4):689-698. |
[2] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2):106-111. |
[3] | SCHULZ K J, DEYOUNG J H, SEAL R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply[M]// US Geological Survey Professional Paper Series 1802. Reston: USGS, 2017: 797. https://doi.org/10.3133/pp1802. |
[4] | 唐冬梅, 秦克章, 刘秉光, 等. 铂族元素矿床的主要类型、 成矿作用及研究展望[J]. 岩石学报, 2008, 24(3):569-588. |
[5] | 宋谢炎, 胡瑞忠, 陈列锰. 铜、 镍、 铂族元素地球化学性质及其在幔源岩浆起源、 演化和岩浆硫化物矿床研究中的意义[J]. 地学前缘, 2009, 16(4):287-305. |
[6] |
BARNES S J, PICARD C P. The behaviour of platinum-group elements during partial melting, crystal fractionation, and sulphide segregation:an example from the Cape Smith Fold Belt, northern Quebec[J]. Geochimica et Cosmochimica Acta, 1993, 57(1):79-87.
DOI URL |
[7] |
DAY J M, PEARSON D G, TAYLOR L A. Highly siderophile element constraints on accretion and differentiation of the earth-moon system[J]. Science, 2007, 315(5809):217-219.
DOI URL |
[8] |
SNOW J E, SCHMIDT G. Constraints on Earth accretion deduced from noble metals in the oceanic mantle[J]. Nature, 1998, 391(6663):166-169.
DOI URL |
[9] | USGS (US Geological Survey). Mineral commodity summaries 2020[M]. Reston: USGS, 2020:200. https://doi.org/10.3133/mcs2020. |
[10] |
MUNGALL J E, NALDRETT A J. Ore deposits of the platinum-group elements[J]. Elements, 2008, 4(4):253-258.
DOI URL |
[11] |
NALDRETT A J. World-class Ni-Cu-PGE deposits: key factors in their genesis[J]. Mineralium Deposita, 1999, 34(3):227-240.
DOI URL |
[12] | 吕林素, 毛景文, 刘珺, 等. 新元古代岩浆Ni-Cu-(PGE)硫化物矿床地质特征、 形成时代及其地球动力学背景[J]. 矿床地质, 2007, 26(4):397-416. |
[13] |
LI C, RIPLEY EM, TAO Y. Magmatic Ni-Cu and Pt-Pd sulfide deposits in China[J]. Society of Economic Geologists, Special Publication, 2019, 22:483-508. DOI: 10.5382/SP.22.11
DOI |
[14] | 梁有彬, 刘同有, 宋国仁, 等. 中国铂族元素矿床[M]. 北京: 冶金工业出版社, 1998. |
[15] |
LU Y G, LESHER C M, DENG J. Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China[J]. Ore Geology Reviews, 2019, 107:863-887.
DOI URL |
[16] | 陶琰, 马言胜, 苗来成, 等. 云南金宝山超镁铁岩体锆石SHRIMP年龄[J]. 科学通报, 2008, 53(22):2828-2832. |
[17] | EVANS-LAMSWOOD D M. Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu-Co deposit, Labrador[J]. Economic Geology, 2000, 95(4):749-769. |
[18] | 李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索[J]. 中国有色金属学报, 2017, 27(6):1236-1262. |
[19] |
PREMO W R, HELZ R T, ZIENTEK M L, et al. U-Pb and Sm-Nd ages for the Stillwater complex and its associated sills and dikes, Beartooth Mountains, Montana: identification of a parent magma?[J]. Geology, 1990, 18(11):1065.
DOI URL |
[20] |
SCOATES J S, FRIEDMAN R M. Precise age of the platiniferous Merensky reef, Bushveld complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS technique[J]. Economic Geology, 2008, 103(3):465-471.
DOI URL |
[21] | PACES J B, MILLER J D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System[J]. Journal of Geophysical Research: Solid Earth, 2012, 98(B8):13997-14013. |
[22] |
OBERTHÜR T, DAVIS D W, BLENKINSOP T G, et al. Precise U-Pb mineral ages, Rb-Sr and Sm-Nd systematics for the Great Dyke, Zimbabwe: constraints on late Archean events in the Zimbabwe craton and Limpopo belt[J]. Precambrian Research, 2002, 113(3/4):293-305.
DOI URL |
[23] |
CORFU F, LIGHTFOOT P C. U-Pb geochronology of the sublayer environment, Sudbury igneous complex, Ontario[J]. Economic Geology, 1996, 91(7):1263-1269.
DOI URL |
[24] |
KAMO S L, CZAMANSKE G K, AMELIN Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 214(1/2):75-91.
DOI URL |
[25] |
ZHANG M J, KAMO S L, LI C, et al. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China[J]. Mineralium Deposita, 2010, 45(1):3-9.
DOI URL |
[26] | LI X H, SU L, CHUNG S L, et al. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: associated with the ~825 Ma South China mantle plume?[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11):Q11004. |
[27] |
MAO J W, DU A D. The 982 Ma Re-Os age of copper-nickel sulfide ores in the Baotan area, Guangxi and its geological significance[J]. Science in China Series D: Earth Sciences, 2002, 45(10):911-920.
DOI URL |
[28] | 陈龙耀, 崔建军, 刘晓春, 等. 陕西汉南毕机沟钒钛磁铁矿锆石U-Pb年代学及其意义[J]. 地球学报, 2017, 38(4):505-512. |
[29] | 王梦玺, 王焰, 赵军红. 扬子板块北缘周庵超镁铁质岩体锆石U/Pb年龄和Hf-O同位素特征: 对源区性质和Rodinia超大陆裂解时限的约束[J]. 科学通报, 2012, 57(34):3283-3294. |
[30] | 王瑞廷, 赫英, 王东生, 等. 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003, 49(2):205-211. |
[31] |
MUNTEANU M, WILSON A H, YAO Y, et al. Sequence of magma emplacement and sulfide saturation in the Gaojiacun-Lengshuiqing intrusive complex (SW China)[J]. Mineralium Deposita, 2010, 45(6):517-529.
DOI URL |
[32] |
ZHANG Z Y, ZHU W B, SHU L S, et al. Apatite fission track thermochronology of the Precambrian Aksu blueschist, NW China: implications for thermo-tectonic evolution of the north Tarim basement[J]. Gondwana Research, 2009, 16:182-188.
DOI URL |
[33] |
TANG Q Y, ZHANG Z W, LI C, et al. Neoproterozoic subduction-related basaltic magmatism in the northern margin of the Tarim Craton:implications for Rodinia reconstruction[J]. Precambrian Research, 2016, 286:370-378.
DOI URL |
[34] | 王登红, 李建康, 王成辉, 等. 与峨眉地幔柱有关年代学研究的新进展及其意义[J]. 矿床地质, 2007, 26(5):550-556. |
[35] |
ZHOU M F, MALPAS J, SONG X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3/4):113-122.
DOI URL |
[36] |
ZHOU M F, ARNDT N T, MALPAS J, et al. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 2008, 103(3/4):352-368.
DOI URL |
[37] |
ZHOU M F, MICHAEL L C, YANG Z X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209(3/4):233-257.
DOI URL |
[38] | 韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 2004, 49(22):2324-2328. |
[39] | 三金柱, 秦克章, 汤中立, 等. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J]. 岩石学报, 2010, 26(10):3027-3035. |
[40] | 孙涛, 钱壮志, 汤中立, 等. 新疆葫芦铜镍矿床锆石U-Pb年代学、 铂族元素地球化学特征及其地质意义[J]. 岩石学报, 2010, 26(11):3339-3349. |
[41] | 王敏芳. 新疆东天山土墩基性-超基性杂岩体橄榄石成分特征及其成因意义[J]. 中国地质, 2014, 41(5):1452-1463. |
[42] | 肖庆华, 秦克章, 唐冬梅, 等. 新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物-矿相学-锆石 U-Pb 年代学及岩石地球化学证据[J]. 岩石学报, 2010, 26(2):503-522. |
[43] | 杨建国, 王磊, 王小红, 等. 甘肃北山地区黑山铜镍矿化基性-超基性杂岩体SHRIMP锆石U-Pb定年及其地质意义[J]. 地质通报, 2012, 31(增刊1):448-454. |
[44] | 毛启贵, 肖文交, 韩春明, 等. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、 地球化学特征及其对古亚洲洋闭合时限的制约[J]. 岩石学报, 2005, 22(1):153-162. |
[45] |
LI C, ZHANG Z W, LI W Y, et al. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet Plateau, western China[J]. Lithos, 2015, 216/217:224-240.
DOI URL |
[46] | 钱兵, 张照伟, 张志炳, 等. 柴达木盆地西北缘牛鼻子梁镁铁-超镁铁质岩体年代学及其地质意义[J]. 中国地质, 2015, 42(3):482-493. |
[47] | 何书跃, 孙非非, 李云平, 等. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 2017, 16(4):582-592. |
[48] | 李光辉, 孙景贵, 黄永卫, 等. 黑龙江鸡东五星铂钯矿床含矿岩体的锆石U-Pb年龄及其地质意义[J]. 世界地质, 2010, 29(1):28-32. |
[49] |
WU F Y, WILDE S A, ZHANG G L, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, 2004, 23(5):781-797.
DOI URL |
[50] |
ZHANG Z W, WANG Y L, QIAN B, et al. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, Number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 2018, 96:236-246.
DOI URL |
[51] |
LI Z X, LI X H, KINNY P D, et al. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 1999, 173(3):171-181.
DOI URL |
[52] |
CHEN L M, SONG X Y, KEAYS R R, et al. Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the western Jinchuan intrusion, northwestern China: insights from platinum group element geochemistry[J]. Economic Geology, 2013, 108(8):1793-1811.
DOI URL |
[53] |
PRICHARD H M, KNIGHT R D, FISHER P C, et al. Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China:an example of selenium remobilization by postmagmatic fluids[J]. Mineralium Deposita, 2013, 48(6):767-786.
DOI URL |
[54] |
SONG X Y, KEAYS R R, ZHOU M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2):404-424.
DOI URL |
[55] |
MAO X C, LI L J, LIU Z K, et al. Multiple magma conduits model of the Jinchuan Ni-Cu-(PGE) deposit, northwestern China:constraints from the geochemistry of platinum-group elements[J]. Minerals, 2019, 9(3):187.
DOI URL |
[56] |
WANG C Y, ZHOU M F, QI L. Origin of extremely PGE-rich mafic magma system:an example from the Jinbaoshan ultramafic sill, Emeishan large igneous province, SW China[J]. Lithos, 2010, 119(1/2):147-161.
DOI URL |
[57] |
LI C, ZHANG M J, FU P E, et al. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism?[J]. Mineralium Deposita, 2012, 47(1/2):51-67.
DOI URL |
[58] |
ZHANG M J, LI C, FU P E, et al. The Permian Huangshanxi Cu-Ni deposit in western China: intrusive-extrusive association, ore genesis, and exploration implications[J]. Mineralium Deposita, 2011, 46(2):153-170.
DOI URL |
[59] |
SONG X Y, YI J N, CHEN L M, et al. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun orogenic belt, northern Tibet Plateau, China[J]. Economic Geology, 2016, 111(1):29-55.
DOI URL |
[60] |
ZHANG M J, TANG Q Y, CAO C H, et al. The origin of Permian Pobei ultramafic complex in the northeastern Tarim craton, western China:evidences from chemical and C-He-Ne-Ar isotopic compositions of volatiles[J]. Chemical Geology, 2017, 469:85-96.
DOI URL |
[61] |
TANG Q Y, ZHANG M J, WANG Y K, et al. The origin of the Zhubu mafic-ultramafic intrusion of the Emeishan large igneous province, SW China:insights from volatile compositions and C-Hf-Sr-Nd isotopes[J]. Chemical Geology, 2017, 469:47-59.
DOI URL |
[62] |
ZHONG H, QI L, HU R Z, et al. Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: implications for source mantle composition, mantle evolution, PGE fractionation and mineralization[J]. Geochimica et Cosmochimica Acta, 2011, 75(6):1621-1641.
DOI URL |
[63] |
MUNGALL J E, BRENAN J M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements[J]. Geochimica et Cosmochimica Acta, 2014, 125:265-289.
DOI URL |
[64] |
SATTARI P, BRENAN J M, HORN I, et al. Experimental constraints on the sulfide- and chromite-silicate melt partitioning behavior of rhenium and platinum-group elements[J]. Economic Geology, 2002, 97(2):385-398.
DOI URL |
[65] |
BARNES S J, TANG Z L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China[J]. Economic Geology, 1999, 94(3):343-356.
DOI URL |
[66] |
BARNES S J, VAN ACHTERBERGH E, MAKOVICKY E, et al. Proton microprobe results for the partitioning of platinum-group elements between monosulphide solid solution and sulphide liquid[J]. South African Journal of Geology, 2001, 104(4):275-286.
DOI URL |
[67] |
HE D T, LIU Y S, MOYNIER F, et al. Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate[J]. Earth and Planetary Science Letters, 2020, 541:116262.
DOI URL |
[68] |
PEACH C L, MATHEZ E A, KEAYS R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB:implications for partial melting[J]. Geochimica et Cosmochimica Acta, 1990, 54(12):3379-3389.
DOI URL |
[69] |
KEAYS R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 1995, 34(1/2/3):1-18.
DOI URL |
[70] |
LIANG Q L, SONG X Y, WIRTH R, et al. Implications of nano- and micrometer-size platinum-group element minerals in base metal sulfides of the Yangliuping Ni-Cu-PGE sulfide deposit, SW China[J]. Chemical Geology, 2019, 517:7-21.
DOI URL |
[71] |
ZHENG J P, SUN M, ZHOU M F, et al. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton[J]. Geochimica et Cosmochimica Acta, 2005, 69(13):3401-3418.
DOI URL |
[72] | 杜乐天, 戎嘉树, 陈安福, 等. 地幔岩中微粒合金和还原气体[J]. 科学通报, 1995, 40(19):1788-1790. |
[73] |
BALLHAUS C, SYLVESTER P. Noble metal enrichment processes in the Merensky Reef, Bushveld complex[J]. Journal of Petrology, 2000, 41(4):545-561.
DOI URL |
[74] |
LORAND J P, PATTOU L, GROS M. Fractionation of platinum-group elements and gold in the upper mantle: a detailed study in Pyrenean orogenic lherzolites[J]. Journal of Petrology, 1999, 40(6):957-981.
DOI URL |
[75] | CAWTHORN R G. Platinum-group element mineralization in the Bushveld Complex: a critical reassessment of geochemical models[J]. South African Journal of Geology, 1999, 102(3):268-281. |
[76] |
WANG C Y, WEI B, ZHOU M F, et al. A synjournal of magmatic Ni-Cu-(PGE) sulfide deposits in the ~260 Ma Emeishan large igneous province, SW China and northern Vietnam[J]. Journal of Asian Earth Sciences, 2018, 154:162-186.
DOI URL |
[77] |
CAMPBELL I H, NALDRETT A J, BARNES S J. A model for the origin of the platinum-rich sulfide horizons in theBushveld and Stillwater complexes[J]. Journal of Petrology, 1983, 24(2):133-165.
DOI URL |
[78] |
FINNIGAN C S, BRENAN J M, MUNGALL J E, et al. Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction[J]. Journal of Petrology, 2008, 49(9):1647-1665.
DOI URL |
[79] |
FLEET M E, CROCKET J H, LIU M H, et al. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits[J]. Lithos, 1999, 47(1/2):127-142.
DOI URL |
[80] |
GHIORSO M S, SACK R O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures[J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3):197-212.
DOI URL |
[81] | 张铭杰, 汤庆艳, 李文渊, 等. 岩浆镍铜铂族矿床成矿过程中流体的作用: 对小岩体超大型矿床的启示[J]. 中国工程科学, 2015, 17(2):40-49, 84. |
[82] |
BARNES S J, MAKOVICKY E, MAKOVICKY M, et al. Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid[J]. Canadian Journal of Earth Sciences, 1997, 34(4):366-374.
DOI URL |
[83] |
BRENAN J M, MCDONOUGH W F, ASH R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237:855-872.
DOI URL |
[84] |
BORISOV A, PALME H. Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems[J]. American Mineralogist, 2000, 85(11/12):1665-1673.
DOI URL |
[85] |
LI C S, RIPLEY E M. Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits[J]. Mineralium Deposita, 2005, 40(2):218-230.
DOI URL |
[86] |
RIPLEY E M, LI C S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1):45-58.
DOI URL |
[87] |
KEAYS R R, LIGHTFOOT P C. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits:evidence from chalcophile element signatures of Siberian and Deccan Trap basalts[J]. Mineralium Deposita, 2010, 45(3):241-257.
DOI URL |
[88] |
PAGÉ P, BARNES S J. The influence of chromite on osmium, iridium, ruthenium and rhodium distribution during early magmatic processes[J]. Chemical Geology, 2016, 420:51-68.
DOI URL |
[89] |
LOCMELIS M, FIORENTINI M L, BARNES S J, et al. Ruthenium variation in chromite from komatiites and komatiitic basalts:a potential mineralogical indicator for nickel sulfide mineralization[J]. Economic Geology, 2013, 108(2):355-364.
DOI URL |
[90] |
ARGUIN J P, PAGÉ P, BARNES S J, et al. The effect of chromite crystallization on the distribution of osmium, iridium, ruthenium and rhodium in picritic magmas: an example from the Emeishan large igneous province, southwestern China[J]. Journal of Petrology, 2016, 57(5):1019-1048.
DOI URL |
[91] |
MUNGALL J E, ANDREWS D R A, CABRI L J, et al. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities[J]. Geochimica et Cosmochimica Acta, 2005, 69(17):4349-4360.
DOI URL |
[92] |
MALITCH K N, AUGE T, BADANINA I Y, et al. Os-rich nuggets from Au-PGE placers of the Maimecha-Kotui Province, Russia: a multi-disciplinary study[J]. Mineralogy and Petrology, 2002, 76(1/2):121-148.
DOI URL |
[93] |
KAMENETSKY V S, PARK J W, MUNGALL J E, et al. Crystallization of platinum-group minerals from silicate melts: evidence from Cr-spinel-hosted inclusions in volcanic rocks[J]. Geology, 2015, 43(10):903-906.
DOI URL |
[94] |
PARK J W, CAMPBELL I H, EGGINS S M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: evidence from the Ambae volcano, Vanuatu[J]. Geochimica et Cosmochimica Acta, 2012, 78:28-50.
DOI URL |
[95] |
SONG X Y, ZHOU M F, TAO Y, et al. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China[J]. Chemical Geology, 2008, 253(1/2):38-49.
DOI URL |
[96] |
LI C, BARNES S J, MAKOVICKY E, et al. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: effects of composition and temperature[J]. Geochimica et Cosmochimica Acta, 1996, 60(7):1231-1238.
DOI URL |
[97] |
HOATSON D M, SUN S S. Archean layered mafic-ultramafic intrusions in the west Pilbara Craton, western Australia: a synjournal of some of the oldest orthomagmatic mineralizing systems in the world[J]. Economic Geology, 2002, 97(4):847-872.
DOI URL |
[98] |
JANA D, WALKER D. Core formation in the presence of various C-H-O volatile species[J]. Geochimica et Cosmochimica Acta, 1999, 63(15):2299-2310.
DOI URL |
[99] |
LOWENSTERN J B. Carbon dioxide in magmas and implications for hydrothermal systems[J]. Mineralium Deposita, 2001, 36(6):490-502.
DOI URL |
[100] |
BOUDREAU A E, MCCALLUM I S. Concentration of platinum-group elements by magmatic fluids in layered intrusions[J]. Economic Geology, 1992, 87(7):1830-1848.
DOI URL |
[101] |
FIORENTINI M L, BERESFORD S W. Role of volatiles and metasomatized subcontinental lithospheric mantle in the genesis of magmatic Ni-Cu-PGE mineralization[J]. Terra Nova, 2008, 20(5):333-340. DOI: 10.1111/j.1365-3121.2008.00825.x
DOI URL |
[102] |
KEN R B. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: observations and predictions[J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3525-3542.
DOI URL |
[103] |
GEMMELL J B. Geochemistry of metallic trace elements in fumarolic condensates from Nicaraguan and Costa Rican volcanoes[J]. Journal of Volcanology and Geothermal Research, 1987, 33(1/2/3):161-181.
DOI URL |
[104] | OLMEZ I, FINNEGAN D L, ZOLLER W H. Iridium emissions from Kilauea volcano[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B1):653-663. |
[105] |
AMOSSE J, ALLIBERT M, FISCHER W, et al. Experimental study of the solubility of platinum and iridium in basic silicate melts: implications for the differentiation of platinum-group elements during magmatic processes[J]. Chemical Geology, 1990, 81(1/2):45-53.
DOI URL |
[106] |
VATIN-PERIGNON N, AMOSSÉ J, RADELLI L, et al. Platinum group element behaviour and thermochemical constraints in the ultrabasic-basic complex of the Vizcaino Peninsula, Baja California Sur, Mexico[J]. Lithos, 2000, 53(1):59-80.
DOI URL |
[107] |
KONNIKOV E G, MEURER W P, NERUCHEV S S, et al. Fluid regime of platinum group elements (PGE) and gold-bearing reef formation in the Dovyren mafic-ultramafic layered complex, eastern Siberia, Russia[J]. Mineralium Deposita, 2000, 35(6):526-532.
DOI URL |
[108] |
MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.
DOI URL |
[109] |
ZHANG M, YANG J H, SUN J F, et al. Juvenile subcontinental lithospheric mantle beneath the eastern part of the Central Asian Orogenic Belt[J]. Chemical Geology, 2012, 328:109-122.
DOI URL |
[110] |
ZHANG H F, GOLDSTEIN S L, ZHOU X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology, 2008, 155(3):271-293.
DOI URL |
[111] |
ZHANG H F, ZHOU M F, SUN M, et al. The origin of Mengyin and Fuxian diamondiferous kimberlites from the North China Craton: implication for Palaeozoic subducted oceanic slab-mantle interaction[J]. Journal of Asian Earth Sciences, 2010, 37(5/6):425-437.
DOI URL |
[112] |
ZHANG W H, ZHANG H F, SUN Y L, et al. Platinum-group element geochemistry of Cenozoic basalts from the North China Craton:implications for mantle heterogeneity[J]. Science China: Earth Sciences, 2015, 58(6):881-895.
DOI URL |
[113] |
WANG J, LIU J L, KEIKO H, et al. Behavior of siderophile and chalcophile elements in the subcontinental lithospheric mantle beneath the Changbaishan volcano, NE China[J]. Acta Geologica Sinica (English Edition), 2012, 86(2):407-422.
DOI URL |
[114] |
XIAO Y, ZHANG H F. Effects of melt percolation on platinum group elements and Re-Os systematics of peridotites from the Tan-Lu fault zone, eastern North China Craton[J]. Journal of the Geological Society, 2011, 168(5):1201-1214.
DOI URL |
[115] |
YANG J H, ZHANG M, WU F Y. Mesozoic decratonization of the North China Craton by lithospheric delamination: evidence from Sr-Nd-Hf-Os isotopes of mantle xenoliths of Cenozoic alkaline basalts in Yangyuan, Hebei Province, China[J]. Journal of Asian Earth Sciences, 2018, 160:396-407.
DOI URL |
[116] |
LI C S, TAO Y, Q I L, et al. Controls on PGE fractionation in the Emeishan picrites and basalts: constraints from integrated lithophile-siderophile elements and Sr-Nd isotopes[J]. Geochimica et Cosmochimica Acta, 2012, 90:12-32.
DOI URL |
[117] | 卢宜冠, 和文言. 滇西金宝山富铂钯岩体岩浆源区研究: 铂族元素和Sr-Nd同位素约束[J]. 地学前缘, 2018, 25(6):196-208. |
[118] |
TANG Q Y, LI C S, ZHANG M J, et al. Detrital zircon constraint on the timing of amalgamation between Alxa and Ordos, with exploration implications for Jinchuan-type Ni-Cu ore deposit in China[J]. Precambrian Research, 2014, 255:748-755.
DOI URL |
[119] |
YANG S H, QU W J, TIAN Y L, et al. Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China:post-segregation diffusion of Os[J]. Chemical Geology, 2008, 247(3/4):401-418.
DOI URL |
[120] |
YANG S H, YANG G, QU W J, et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China[J]. Mineralium Deposita, 2018, 53(6):757-774.
DOI URL |
[121] |
SONG X Y, DANYUSHEVSKY L V, KEAYS R R, et al. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 2012, 47(3):277-297.
DOI URL |
[122] |
TANG Q Y, LI C S, ZHANG M J, et al. U-Pb age and Hf isotopes of zircon from basaltic andesite and geochemical fingerprinting of the associated picrites in the Emeishan large igneous province, SW China[J]. Mineralogy and Petrology, 2015, 109(1):103-114.
DOI URL |
[123] |
ZHOU M F, ZHAO J H, QI L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contributions to Mineralogy and Petrology, 2006, 151(1):1-19.
DOI URL |
[124] |
HE B, XU Y G, HUANG X L, et al. Age and duration of the Emeishan flood volcanism, SW China: geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth and Planetary Science Letters, 2007, 255(3/4):306-323.
DOI URL |
[125] |
FAN W M, WANG Y J, PENG T P, et al. Ar-Ar and U-Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism[J]. Chinese Science Bulletin, 2004, 49(21):2318-2327.
DOI URL |
[126] |
PENG B, SUN F Y, LI B L, et al. The geochemistry and geochronology of the Xiarihamu II mafic-ultramafic complex, Eastern Kunlun, Qinghai Province, China:implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Ore Geology Reviews, 2016, 73:13-28.
DOI URL |
[127] |
SONG X Y, ZHOU M F, CAO Z M, et al. Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan large igneous province, SW China[J]. Mineralium Deposita, 2003, 38(7):831-843.
DOI URL |
[128] |
MAIER W D, ARNDT N T, CURL E A. Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks[J]. Contributions to Mineralogy and Petrology, 2000, 140(3):316-327.
DOI URL |
[129] | LAMBERT D D, FRICK L R, FOSTER J G, et al. Re-Os isotopic systematics of the Voisey’s Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: II. Implications for parental magma chemistry, ore genesis, and metal redistribution[J]. Economic Geology, 2000, 95(4):867-888. |
[130] |
RIPLEY E M, LIGHTFOOT P C, LI C S, et al. Sulfur isotopic studies of continental flood basalts in the Noril’s k region: implications for the association between lavas and ore-bearing intrusions[J]. Geochimica et Cosmochimica Acta, 2003, 67(15):2805-2817.
DOI URL |
[131] |
RIPLEY E M, LI C, SHIN D. Paragneiss assimilation in the genesis of magmatic Ni-Cu-co sulfide mineralization at Voisey’s bay, Labrador: δ34S, δ13C, and Se/S evidence[J]. Economic Geology, 2002, 97(6):1307-1318.
DOI URL |
[132] |
LEHMANN J, ARNDT N, WINDLEY B, et al. Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China[J]. Economic Geology, 2007, 102(1):75-94.
DOI URL |
[133] |
RIPLEY E M, SARKAR A, LI C. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China[J]. Economic Geology, 2005, 100(7):1349-1361.
DOI URL |
[134] |
DUAN J, LI C S, QIAN Z Z, et al. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China[J]. Mineralium Deposita, 2016, 51(4):557-574.
DOI URL |
[135] |
ZHANG M J, TANG Q Y, HU P Q, et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, western China[J]. Chemical Geology, 2013, 339:301-312.
DOI URL |
[136] | 马言胜, 陶琰, 朱飞霖, 等. 金宝山铂-钯矿和力马河镍矿的硫同位素组成特征及地质意义[J]. 矿物岩石地球化学通报, 2009, 28(2):123-127. |
[137] | 卢宜冠, 和文言. 滇西金宝山铂钯矿床S-Os同位素特征及其对成矿过程的制约[J]. 岩石学报, 2018, 34(5):1258-1270. |
[138] | 胡瑞忠, 陶琰, 钟宏, 等. 地幔柱成矿系统: 以峨眉山地幔柱为例[J]. 地学前缘, 2005, 12(1):42-54. |
[139] | MAO Y J, BARNES S J, DUAN J, et al. Morphology and particle size distribution of olivines and sulphides in the Jinchuan Ni-Cu sulphide deposit: evidence for sulphide percolation in a crystal mush[J]. Journal of Petrology, 2018, 59(9):1701-1730. |
[140] |
CAMPOS-ALVAREZ N O, SAMSON I M, FRYER B J. The roles of magmatic and hydrothermal processes in PGE mineralization, Ferguson Lake deposit, Nunavut, Canada[J]. Mineralium Deposita, 2012, 47(4):441-465.
DOI URL |
[141] |
SU S G, LI C S, ZHOU M F, et al. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China[J]. Mineralium Deposita, 2008, 43(6):609-622.
DOI URL |
[142] | 刘秉光, 骆耀南, 姚永, 等. 攀西裂谷地区层状镁铁岩的PGE矿化作用[J]. 地学前缘, 2008, 15(4):269-279. |
[143] |
BENKÓ Z, MOGESSIE A, MOLNÁR F, et al. Hydrothermal alteration and Cu-Ni-PGE mobilization in the charnockitic rocks of the footwall of the South Kawishiwi intrusion, Duluth Complex, USA[J]. Ore Geology Reviews, 2015, 67:170-188.
DOI URL |
[1] | 邓军, 王长明, 李文昌, 杨立强, 王庆飞. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 20140101, 21(1): 52-64. |
[2] | 王建, 杨言辰, 李爱, 袁海齐. 吉林红旗岭晚三叠世镁铁-超镁铁质侵入体矿物化学和岩石地球化学特征:对镍-铜成矿的启示[J]. 地学前缘, 2024, 31(2): 249-269. |
[3] | 周振华, 毛景文. 大兴安岭南段锡多金属矿床成矿规律与矿床模型[J]. 地学前缘, 2022, 29(1): 176-199. |
[4] | 赵俊猛, 张培震, 张先康, Xiaohui YUAN, Rainer KIND, Robertvander HILST, 甘卫军, 孙继敏, 邓涛, 刘红兵, 裴顺平, 徐强, 张衡, 嘉世旭, 颜茂都, 郭晓玉, 卢占武, 杨小平, 邓攻, 琚长辉. 中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J]. 地学前缘, 2021, 28(5): 230-259. |
[5] | 陈永清, 莫宣学. 超大型矿床成矿背景-过程-勘查三位一体的找矿理念[J]. 地学前缘, 2021, 28(3): 26-48. |
[6] | Svetlana S. Timofeeva, Evgeniy V. Kislov, Lyudmila I. Khudyakova. 俄罗斯贝加尔湖北部 Yoko-Dovyren 层状纯橄岩-橄长岩-辉长岩地块: 结构、成分以及作为矿物原材料的用途[J]. 地学前缘, 2020, 27(5): 262-279. |
[7] | 王大钊, 刘家军, 翟德高, 甄世民, 王江. 河北东坪碲金矿床辉钼矿Re-Os及锆石U-Pb年龄研究[J]. 地学前缘, 2020, 27(2): 405-419. |
[8] | 卢宜冠,和文言. 滇西金宝山富铂钯岩体岩浆源区研究:铂族元素和Sr-Nd同位素约束[J]. 地学前缘, 2018, 25(6): 196-208. |
[9] | 付伟, 黄小荣, 杨梦力, 张亚倩, 牛虎杰. 超基性岩红土风化壳中铂族元素(PGE)的地球化学特征及其表生行为:来自印尼与中国不同气候环境红土剖面的对比研究[J]. 地学前缘, 2015, 22(2): 160-173. |
[10] | 宋晓东, 李江涛, 鲍学伟, 李思田, 王良书, 任建业. 中国西部大型盆地的深部结构及对盆地形成和演化的意义[J]. 地学前缘, 2015, 22(1): 126-136. |
[11] | 邓军, 王长明, 李文昌, 杨立强, 王庆飞. 三江特提斯复合造山与成矿作用研究态势及启示[J]. 地学前缘, 2014, 21(1): 52-64. |
[12] | 汪洋,程素华. 中国西部及邻区岩石圈热状态与流变学强度特征[J]. 地学前缘, 2013, 20(1): 182-189. |
[13] | 王建, Keiko H.Hattori, Charles R.Stern, 刘金霖. 软流圈熔体地幔交代作用过程中的铂族元素行为[J]. 地学前缘, 2010, 17(1): 164-176. |
[14] | 谭娟娟 朱永峰. 布什维尔德铂族元素矿床:铂族矿物赋存状态及其成因[J]. 地学前缘, 2009, 16(2): 227-238. |
[15] | 赵正 漆亮 黄智龙 许成. 地质样品中铂族元素的分析测定方法[J]. 地学前缘, 2009, 16(1): 181-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||