地学前缘 ›› 2022, Vol. 29 ›› Issue (1): 176-199.DOI: 10.13745/j.esf.sf.2021.8.12
收稿日期:
2021-01-20
修回日期:
2021-05-22
出版日期:
2022-01-25
发布日期:
2022-02-22
作者简介:
周振华(1981—),男,研究员,博士生导师,主要从事关键金属成矿作用研究。E-mail: zhzhoucags@sina.com
基金资助:
Received:
2021-01-20
Revised:
2021-05-22
Online:
2022-01-25
Published:
2022-02-22
摘要:
大兴安岭南段是我国北方最重要的锡矿带,本文对其时空分布和成矿规律进行了系统总结,并提出了大兴安岭南段锡多金属矿深部动力学模型和矿床模型,旨在推动区域进一步锡银找矿工作。研究表明,锡多金属矿形成于伸展构造环境,具有明显的成群分布特点,空间上夹持在二连—贺根山、黄岗—甘珠尔庙和西拉木伦深大断裂带之间,矿化时代集中在150~130 Ma之间,但在个别大中型矿床中表现出多期成矿的特征。尽管锡矿化规模巨大,但目前揭露的高分异含矿花岗岩体并不多见,成矿作用可能与该区高的成矿元素背景值有关,但同时矿体下部可能存在隐伏高分异岩体。锡多金属成矿系统以锡铅锌银为主,鲜有共生或伴生钨矿化,不同阶段或类型矿化是深部岩浆房多期次出溶的不同或相同性质流体共同作用的结果,同时成矿流体与围岩的反应也会影响流体的组成和演化。岩浆流体出溶、地层活化萃取、地幔物质、大气降水、热卤水和变质热液共同参与了成矿作用,尤其是深部镁铁质岩浆底侵及脱气不仅为成矿提供了热源,同时也可能提供了大量的成矿元素和挥发组分。在成矿过程中,流体温压的下降、不同来源流体混合、超临界流体不混溶作用、流体多次沸腾和水岩反应等是金属元素超常富集的主要机制。
中图分类号:
周振华, 毛景文. 大兴安岭南段锡多金属矿床成矿规律与矿床模型[J]. 地学前缘, 2022, 29(1): 176-199.
ZHOU Zhenhua, MAO Jingwen. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range[J]. Earth Science Frontiers, 2022, 29(1): 176-199.
图1 兴蒙造山带区域地质及锡钨铌钽矿床分布图 1—赵井沟;2—乌日尼图;3—乌兰得勒;4—宝格达乌拉;5—巴彦都兰;6—达亚纳;7—沙麦;8—白音查干;9—石灰窑;10—小孤山;11—毛登;12—维拉斯托;13—安乐;14—黄岗;15—查木罕;16—台莱花;17—边家大院;18—大井;19—老盘道背后;20—白音皋;21—莫古吐;22—宝盖沟;23—小海青;24—大海青;25—道伦达坝;26—富林;27—园林子;28—白音诺;29—乃林坝林场;30—浩布高;31—东山湾;32—敖脑达坝;33—罕山林场;34—巴尔哲;35—孟恩陶勒盖;36—兴隆屯;37—红花尔基;38—宝山;39—阿廷河;40—翠宏山;41—五星;42—碾子山;43—弓棚子;44—秋皮沟;45—三家子;46—磐石铁汞山;47—小木古;48—羊鼻山;49—白石砬子;50—杨金沟;51—五道沟;52—河口林场。
Fig.1 Regional tectonic units (a) and distribution map of W-Sn-Nb-Ta deposits (b) in the Xingmeng Orogenic Belt
图2 大兴安岭南段地质和锡多金属矿床分布图 1—白音查干;2—小孤山;3—毛登;4—维拉斯托;5—园林子;6—富林;7—黄岗;8—边家大院;9—老盘道背后;10—白音皋;11—安乐;12—大井;13—莫古吐;14—宝盖沟;15—小海青;16—道伦达坝;17—大海青;18—白音诺;19—乃林坝林场;20—浩布高;21—敖脑达坝;22—罕山林场;23—孟恩陶勒盖;24—兴隆屯。
Fig.2 Geological map of SGXR showing the distribution of tin polymetallic deposits
图3 大兴安岭南段锡多金属矿床成岩(a)和成矿时代统计直方图(b)
Fig.3 Histograms showing the distributions of diagenetic (a) and mineralization (b) ages in the tin polymetallic deposits in SGXR
图4 大兴安岭南段锡多金属成矿岩体地球化学图解(数据来源:黄岗,据文献[55];莫古吐,据文献[73];维拉斯托,据文献[10,11];白音查干,据文献[69, 115];边家大院,据文献[116,117,118]; 毛登,据文献[119];园林子,据周振华等,未发表数据;白音诺,据文献[120]; 浩布高,据文献[76])
Fig.4 Geochemical classification diagram (a-c) and plot of zircon saturation temperature vs. age (d) for the tin polymetallic ore-bearing granites from SGXR. Data from [10-11,55,69,73,76,115-120] and unpublished work by Zhou et al.
图5 强烈风化的页岩相平衡模拟图(显示氧逸度对矿物组合、熔融条件和熔体体积的影响)(据文献[90]) a—还原条件下相平衡图;b—氧化环境下相平衡图;绿色线表示黑云母分解线,橘色线代表固熔体线,阴影部分包含熔体。APS—强烈风化古生代页岩;Bt—黑云母;Ky—蓝晶石;And—红柱石;Sil—硅线石。
Fig.5 Simulated equilibrium phase diagrams for highly weathered shale rock (APS), illustrating the influence of oxygen fugacity on mineral assemblage, melting condition and melt production. Adapted from [90].
图6 大兴安岭南段代表性锡矿化花岗岩和锡林郭勒杂岩体稀土元素配分(a)和微量元素配分(b)曲线(球粒陨石和原始地幔值据文献[133];花岗岩数据据文献[11];锡林郭勒杂岩体数据据文献[11,134])
Fig.6 Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider diagrams (b) for representative tin-bearing granites and the Xilinguole complex in SGXR. Chondrite and primitive mantle data from [133]. Granite data from [11]. Xilinguole complex data from [11,134].
图7 岩浆-热液矿床中等密度流体和卤水流体中Na标准化后Sn、Ag、Pb、Zn等金属元素含量与Cs含量关系图(据文献[101])
Fig.7 Relationships between Sn, Ag, Pb or Zn and Cs contents in isopycnic and brine fluid inclusions in magmatic-hydrothermal deposit after Na standardization. Adapted from [101].
图8 意大利Stromboli(A-C)和Etna(D)活动火山中发现的Sn、Ag、Cu、Co等金属氯或硫化物及合金BSE照片(据文献[149]) 灰色阴影主要为玻璃和硅酸盐矿物。
Fig.8 BSE images showing metal sublimates attaching to the vesicle walls in pumice and scoria samples from Stromboli (A-C) and Etna (D) Volcanos, Italy. Adapted from [149].
图9 大兴安岭南段锡多金属矿床成矿深部动力学模型 (据文献[183,184,185]修改)
Fig.9 A mineralization dynamics model for the tin polymetallic deposits in SGXR. Modified after [183-185].
图10 大兴安岭南段锡多金属矿床成矿模型
Fig.10 A metallogenic model for the tin polymetallic deposits in SGXR. See the above text for a detailed description of the model.
[1] | 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产:国际动向与思考[J]. 矿床地质, 2019, 38(4):689-698. |
[2] | 蒋少涌, 赵葵东, 姜海, 等. 中国钨锡矿床时空分布规律、 地质特征与成矿机制研究进展[J]. 科学通报, 2020, 65(33):3730-3745. |
[3] | LEHMANN B. Metallogeny of tin[M]. Berlin: Springer-Verlag, 1990. |
[4] |
ROMER R L, KRONER U. Phanerozoic tin and tungsten mineralization: tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana Research, 2016, 31:60-95.
DOI URL |
[5] | SCHULZ K J, DE YOUNG J H, SEAL R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply[R]. Reston: United States Geological Survey, 2017. |
[6] | MAO J W, OUYANG H G, SONG S W, et al. Geology and metallogeny of tungsten and tin deposits in China[J]. Economic Geology, 2019, 22(Special Publications):411-482. |
[7] |
MAO J W, CHENG Y B, CHEN M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3):267-294.
DOI URL |
[8] | 王京彬, 王玉往, 王莉娟. 大兴安岭南段锡多金属成矿系列[J]. 地质与勘探, 2005, 41(6):15-20. |
[9] | 曾庆栋, 刘建明, 禇少雄, 等. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 2016, 46(4):1100-1123. |
[10] | 祝新友, 张志辉, 付旭, 等. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 2016, 43(1):188-208. |
[11] |
GAO X, ZHOU Z H, BREITER K, et al. Ore-formation mechanism of the Weilasituo tin-polymetallic deposit, NE China: constraints from bulk-rock and mica chemistry, He-Ar isotopes, and Re-Os dating[J]. Ore Geology Reviews, 2019, 109:163-183.
DOI URL |
[12] |
TURNEAURE F S. The Bolivian tin-silver province[J]. Economic Geology, 1971, 66(2):215-225.
DOI URL |
[13] |
SILLITOE R H, HALLS C, GRANT J N. Porphyry tin deposits in Bolivia[J]. Economic Geology, 1975, 70(5):913-927.
DOI URL |
[14] | GRANT J N, HALLS C, SHEPPARD S M F, et al. Evolution of the porphyry tin deposits of Bolivia[J]. Mining Geology, 1980, 8:151-173. |
[15] | SUGAKI A, KUSACHI I, SHIMADA N. Granite-series and -types of igneous rocks in the Bolivian Andes and their genetic relation to tin-tungsten mineralization[J]. Mining Geology, 1988, 38:121-130. |
[16] | MAO J W, XIE G Q, YUAN S D, et al. Current research progress and future trends of porphyry-skarn copper and granite-related tin polymetallic deposits in the Circum Pacific metallogenic belts[J]. Acta Petrologica Sinca, 2018, 34(9):2501-2517. |
[17] |
ZHAI D G, LIU J J, COOK N J, et al. Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China[J]. Mineralium Deposita, 2019, 54(1):47-66.
DOI URL |
[18] |
XIAO W J, SUN M, SANTOSH M. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt[J]. Geoscience Frontiers, 2015, 6(2):137-140.
DOI URL |
[19] |
LI J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.
DOI URL |
[20] | 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5):1620-1646. |
[21] |
WU F Y, SUN D Y, GE W C, et al. Geochronology of the Phanerozoic granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.
DOI URL |
[22] | XIAO W J, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6):1069. |
[23] |
XU W L, PEI F P, WANG F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74:167-193.
DOI URL |
[24] |
LIU Y J, LI W M, FENG Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43:123-148.
DOI URL |
[25] | KOVALENKO V I, YARMOLYUK V V, KOVACH V P, et al. Sources of Phanerozoic granitoids in central Asia: Sm-Nd isotope data[J]. Geochemistry International, 1996, 34(8):699-712. |
[26] |
HAN B F, WANG S G, JAHN B M, et al. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3/4):135-159.
DOI URL |
[27] |
JAHN B M, WU F Y, CHEN B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2):82-92.
DOI URL |
[28] |
JAHN B M, WU F Y, CAPDEVILA R, et al. Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an (Khingan) Mountains in NE China[J]. Lithos, 2001, 59(4):171-198.
DOI URL |
[29] | YARMOLYUK V V, KOVALENKO V I. The Mesozoic-Cenozoic of Mongolia[M]//DERGUNOV A B. Tectonics, magmatism, and metallogeny of Mongolia. London: Taylor and Francis Group, 2001: 203-244. |
[30] |
GRAHAM S A, HENDRIX M S, JOHNSON C L, et al. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia[J]. Geological Society of America Bulletin, 2001, 113(12):1560-1579.
DOI URL |
[31] |
ZHANG Y B, WU F Y, WILDE S A, et al. Zircon U-Pb ages and tectonic implications of Early Paleozoic granitoids at Yanbian, Jilin Province, northeast China[J]. Island Arc, 2004, 13(4):484-505.
DOI URL |
[32] |
WU F Y, YANG J H, WILDE S, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221(1/2):127-156.
DOI URL |
[33] |
WU F Y, LIN J Q, WILDE S A, et al. Nature and significance of the Early Cretaceous giant igneous event in Eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2):103-119.
DOI URL |
[34] | 葛文春, 隋振民, 吴福元, 等. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、 Hf同位素特征及地质意义[J]. 岩石学报, 2007, 23(2):423-440. |
[35] |
ZENG Q D, SUN Y, DUAN X X, et al. U-Pb and Re-Os geochronology of the Haolibao porphyry Mo-Cu deposit, NE China: implications for a Late Permian tectonic setting[J]. Geological Magazine, 2013, 150(6):975-985.
DOI URL |
[36] |
ZHOU Z H, MAO J W, CHE H W, et al. Metallogeny of the Handagai skarn Fe-Cu deposit, northern Great Xing’an Range, NE China: constraints on fluid inclusions and skarn genesis[J]. Ore Geology Reviews, 2017, 80:623-644.
DOI URL |
[37] | 郝宇杰, 任云生, 史雨凡, 等. 黑龙江省完达山地区河口林场斑岩型锡多金属矿床花岗斑岩的形成年代、 岩石成因及构造背景[J]. 岩石学报, 2020, 36(3):837-855. |
[38] |
ZHOU Z H, MAO J W, LYCKBERG P. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 2012, 49:272-286.
DOI URL |
[39] |
OUYANG H G, MAO J W, SANTOSH M, et al. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: perspectives from spatio-temporal distribution patterns of ore deposits[J]. Journal of Asian Earth Sciences, 2013, 78:222-236.
DOI URL |
[40] |
OUYANG H G, MAO J W, ZHOU Z H, et al. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China[J]. Gondwana Research, 2015, 27(3):1153-1172.
DOI URL |
[41] | 赵华雷. 吉黑东部钨矿成因及成矿地球动力学背景[D]. 长春: 吉林大学, 2014. |
[42] | 向安平, 佘宏全, 陈毓川, 等. 内蒙古红花尔基钨钼矿云英岩化白云母Ar-Ar定年及其地质意义[J]. 岩矿测试, 2016, 35(1):108-116. |
[43] | 郝宇杰, 任云生, 赵华雷, 等. 黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(6):1840-1850. |
[44] | 李俊建, 付超, 唐文龙, 等. 内蒙古东乌旗沙麦钨矿床的成矿时代[J]. 地质通报, 2016, 35(4):524-530. |
[45] | 任云生, 牛军平, 王辉, 等. 吉林四平孟家岭含钨花岗岩体锆石LA-ICP-MS年龄及其地质意义[J]. 矿物岩石, 2009, 29(3):100-105. |
[46] | 赵华雷, 任云生, 鞠楠, 等. 延边白石砬子钨矿床成矿岩体的年代学与地球化学特征[J]. 吉林大学学报(地球科学版), 2011, 41(6):1726-1735, 1744. |
[47] | 陈聪, 任云生, 赵华雷, 等. 吉黑东部中生代钨矿成矿作用时代及构造背景[J]. 矿床地质, 2014, 33(增刊):173-174. |
[48] | 华仁民, 李光来, 张文兰, 等. 华南钨和锡大规模成矿作用的差异及其原因初探[J]. 矿床地质, 2010, 29(1):9-23. |
[49] |
YUAN S D, WILLIAMS-JONES A E, ROMER R L, et al. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenicprovinces: insights from the Nanling Region, China[J]. Economic Geology, 2019, 114(5):1005-1012.
DOI URL |
[50] | 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991. |
[51] | 徐备, 陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学D辑: 地球科学, 1997, 27(3):227-232. |
[52] | 施光海, 刘敦一, 张福勤, 等. 中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义[J]. 科学通报, 2003, 48(20):2187-2192. |
[53] |
WANG J B, WANG Y W, WANG L J, et al. Tin-polymetallic mineralization in the southern part of the Da Hinggan Mountains, China[J]. Resource Geology, 2001, 51(4):283-291.
DOI URL |
[54] |
ZHOU Z H, LI B Y, WANG A S, et al. Zircon SHRIMP U-Pb dating and geochemical characteristics of Late Variscan granites of the Daitongshan copper deposit and Lamahanshan polymetallic-silver deposit, Southern Daxing’anling, China[J]. Journal of Earth Science, 2013, 24(5):772-795.
DOI URL |
[55] | 周振华, 吕林素, 杨永军, 等. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约[J]. 岩石学报, 2010, 26(12):3521-3537. |
[56] | 赵元艺, 李殿超, 程泽君. 内蒙古敖脑达坝斑岩型铜银锡多金属矿床围岩蚀变特征研究[J]. 吉林地质, 1994, 13(2):57-62. |
[57] |
SCHWARTZ M O, RAJAH S S, ASKURY A K, et al. The Southeast Asian tin belt[J]. Earth-Science Reviews, 1995, 38(2/3/4):95-293.
DOI URL |
[58] | 张志辉, 祝新友, 李泊洋, 等. 内蒙古自治区克什克腾旗维拉斯托新发现大型锡矿及其意义探讨[J]. 中国矿业, 2015, 24(增刊1):247-250. |
[59] | 华仁民, 韦星林, 王定生, 等. 试论南岭钨矿“上脉下体”成矿模式[J]. 中国钨业, 2015, 30(1):16-23. |
[60] | 山东省地质勘查开发局第六地质大队. 内蒙古自治区西乌珠穆沁旗白音查干东山矿区锌多金属矿储量核实报告[R]. 烟台: 山东省地质勘查开发局, 2015: 1-125. |
[61] | 刘成龙. 论内蒙古黄岗矿区锡酸矿的赋存特点及某些分布规律[G]//沈阳: 中国地质科学院沈阳地质矿产研究所文集, 1981. |
[62] | 杨志达, 鲍修坡. 黄岗—甘珠尔庙地区多金属矿床地质地球化学[M]//大兴安岭及其邻区铜多金属矿床成矿规律与远景评价. 北京: 地震出版社, 1997: 125-144. |
[63] | 张平发, 徐巧, 邹滔, 等. 大兴安岭南段白音诺尔锡多金属矿田构造控矿格局及成矿系统特征[J]. 矿产勘查, 2020, 11(3):433-441. |
[64] | 徐巧, 唐果, 邹滔, 等. 大兴安岭南段巴林左旗浩布高锡多金属矿田成矿系统与靶区预测[J]. 地质与勘探, 2020, 56(2):265-276. |
[65] | 盛继福, 傅先政. 大兴安岭中段铜多金属成矿环境和地质特征[M]. 北京: 地震出版社, 1999: 216. |
[66] | 周振华, 高旭, 欧阳荷根, 等. 锡钨锂矿化与外围脉状铅锌银铜矿化的内在成因关系和形成机制: 以内蒙古维拉斯托锡钨锂多金属矿床为例[J]. 矿床地质, 2019, 38(5):1004-1022. |
[67] | 王春女, 王全明, 于晓飞, 等. 大兴安岭南段锡矿成矿特征及找矿前景[J]. 地质与勘探, 2016, 52(2):220-227. |
[68] | 姚磊. 内蒙古白音查干锡多金属矿床成矿作用研究[R]. 北京: 中国地质调查局发展研究中心, 2018. |
[69] | 姚磊, 吕志成, 叶天竺, 等. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、 地球化学和Nd-Hf同位素特征及地质意义[J]. 岩石学报, 2017, 33(10):3183-3199. |
[70] |
WANG F X, BAGAS L, JIANG S H, et al. Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 2017, 80:1206-1229.
DOI URL |
[71] |
LIU Y F, JIANG S H, BAGAS L. The genesis of metal zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) deposits in the shallow part of a porphyry Sn-W-Rb system, Inner Mongolia, China[J]. Ore Geology Reviews, 2016, 75:150-173.
DOI URL |
[72] |
ZHAI D G, LIU J J, ZHANG A L, et al. U-Pb, Re-Os, and 40Ar/39Ar geochronology of porphyry Sn±Cu±Mo and polymetallic (Ag-Pb-Zn-Cu) vein mineralization at Bianjiadayuan, Inner Mongolia, Northeast China: implications for discrete mineralization events[J]. Economic Geology, 2017, 112(8):2041-2059.
DOI URL |
[73] | 杨朝磊. 内蒙古莫古吐铁锡矿床地质特征与成矿作用[D]. 北京: 中国地质大学(北京), 2019. |
[74] |
LIU L J, ZHOU T F, ZHANG D Y, et al. S isotopic geochemistry, zircon and cassiterite U-Pb geochronology of the Haobugao Sn polymetallic deposit, southern Great Xing’an Range, NE China[J]. Ore Geology Reviews, 2018, 93:168-180.
DOI URL |
[75] |
LIU Y, JIANG S H, BAGAS L, et al. Isotopic (C-O-S) geochemistry and Re-Os geochronology of the Haobugao Zn-Fe deposit in Inner Mongolia, NE China[J]. Ore Geology Reviews, 2017, 82:130-147.
DOI URL |
[76] |
WANG X D, XU D M, LV X B, et al. Origin of the Haobugao skarn Fe-Zn polymetallic deposit, Southern Great Xing’an range, NE China: geochronological, geochemical, and Sr-Nd-Pb isotopic constraints[J]. Ore Geology Reviews, 2018, 94:58-72.
DOI URL |
[77] | 廖震, 王玉往, 王京彬, 等. 内蒙古大井锡多金属矿床岩脉LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 岩石学报, 2012, 28(7):2292-2306. |
[78] | 江思宏, 梁清玲, 刘翼飞, 等. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J]. 岩石学报, 2012, 28(2):495-513. |
[79] | 廖震, 王玉往, 王京彬, 等. 内蒙古大井锡多金属矿床锡石LA-MC-ICP-MS U-Pb测年及其意义[J]. 矿床地质, 2014, 33(增刊):421-422. |
[80] | 艾永富, 张晓辉. 内蒙大井矿床的脉岩与成矿[C]//中国地质学会. “八五”地质科技重要成果学术交流会议论文选集. 北京: 冶金工业出版社, 1996: 231-234. |
[81] | 周振华, 欧阳荷根, 武新丽, 等. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、 地球化学特征及其地质意义[J]. 岩石学报, 2014, 30(1):79-94. |
[82] | 陈公正, 武广, 李铁刚, 等. 内蒙古道伦达坝铜钨锡矿床LA-ICP-MS锆石和锡石U-Pb年龄及其地质意义[J]. 矿床地质, 2018, 37(2):225-245. |
[83] |
MEINERT L D, HEFTON K K, MAYES D, et al. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya[J]. Economic Geology, 1997, 92(5):509-534.
DOI URL |
[84] | 祝红丽, 张丽鹏, 杜龙, 等. 钨的地球化学性质与华南地区钨矿成因[J]. 岩石学报, 2020, 36(1):13-22. |
[85] | 任耀武. 大兴安岭中南段铜多金属矿床的重要矿源层[J]. 华北地质矿产杂志, 1994, 9(3):313-316. |
[86] | 王莉娟, 王京彬, 王玉往, 等. 内蒙古大井锡铜多金属矿床流体成矿机理及外围找矿预测[J]. 岩石学报, 2015, 31(4):991-1001. |
[87] | 祝新友, 刘新, 黄行凯, 等. 大兴安岭南麓地区脉型锡多金属矿床的控矿构造特征[J]. 矿产勘查, 2017, 8(6):919-926. |
[88] | 孙雅琳, 许虹, 祝新友, 等. 内蒙古维拉斯托锡多金属矿床流体包裹体特征及其地质意义[J]. 矿产勘查, 2017, 8(6):1044-1053. |
[89] | 刘瑞麟, 武广, 陈公正, 等. 大兴安岭南段维拉斯托锡多金属矿床流体包裹体和同位素特征[J]. 矿床地质, 2018, 37(2):199-224. |
[90] |
WOLF M, ROMER R L, FRANZ L, et al. Tin in granitic melts: the role of melting temperature and protolith composition[J]. Lithos, 2018, 310/311:20-30.
DOI URL |
[91] |
DRIVENES K, LARSEN R B, MÜLLER A, et al. Crystallization and uplift path of late Variscan granites evidenced by quartz chemistry and fluid inclusions: example from the Land’s End granite, SW England[J]. Lithos, 2016, 252/253:57-75.
DOI URL |
[92] |
RUNYON S E, STEELE-MACINNIS M, SEEDORFF E, et al. Coarse muscovite veins and alteration deep in the Yerington batholith, Nevada: insights into fluid exsolution in the roots of porphyry copper systems[J]. Mineralium Deposita, 2017, 52:463-470.
DOI URL |
[93] |
ROTTIER B, KOUZMANOV K, BOUVIER A S, et al. Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic-hydrothermal transition (Cerro de Pasco district, Peru)[J]. Chemical Geology, 2016, 447:93-116.
DOI URL |
[94] |
LEGROS H, MARIGNAC C, MERCADIER J, et al. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China)[J]. Lithos, 2016, 264:108-124.
DOI URL |
[95] | 李真真, 秦克章, 赵俊兴, 等. 锡-银多金属成矿系统的基本特征、 研究进展与展望[J]. 岩石学报, 2019, 35(7):1979-1998. |
[96] |
HEINRICH C A, GÜNTHER D, AUDÉTAT A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J]. Geology, 1999, 27(8):755.
DOI URL |
[97] |
HEINRICH C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study[J]. Mineralium Deposita, 2005, 39(8):864-889.
DOI URL |
[98] | HEINRICH C A, DRIESNER T, STEFÁNSSON A, et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits[J]. Geology, 2004, 32(9):761764. |
[99] | 陈骏, 王汝成, 朱金初, 等. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学: 地球科学, 2014, 44(1):111-121. |
[100] | 王汝成, 谢磊, 陆建军, 等. 南岭及邻区中生代含锡花岗岩的多样性: 显著的矿物特征差异[J]. 中国科学: 地球科学, 2017, 47(11):1257-1268. |
[101] |
AUDÉTAT A. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential[J]. Economic Geology, 2019, 114(6):1033-1056.
DOI URL |
[102] |
LEHMANN B. Metallogeny of tin: magmatic differentiation versus geochemical heritage[J]. Economic Geology, 1982, 77(1):50-59.
DOI URL |
[103] |
LINNEN R L, VAN LICHTERVELDE M, ČERNY P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4):275-280.
DOI URL |
[104] |
WAWRYK C M, FODEN J D. Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: a case study from the Renison Sn-W deposit, Tasmania[J]. Geochimica et Cosmochimica Acta, 2015, 150:285-298.
DOI URL |
[105] | KIRWIN D J, SELTMANN R. Unidirectional solidfication textures associated with intrusion-related gold deposits[C]// SELTMANN R, GEREL O, KIRWIND J. Geodynamics and metallogeny of Mongolia with a special emphasis on copper and gold deposit. London: IAGOD, 2002: 22-26. |
[106] |
HARRIS A C. Melt inclusions in veins: linking magmas and porphyry Cu deposits[J]. Science, 2003, 302(5653):2109-2111.
DOI URL |
[107] |
VASYUKOVA O V, KAMENESKY V S, GÖMANN K, et al. Origin of “quartz eyes” and fluid inclusions in mineralized porphyries[J]. Geochimica et Cosmochimica Acta, 2008, 72(12):978.
DOI URL |
[108] |
SEEDORFF E, BARTON M D, STAVAST W J A, et al. Root zones of porphyry systems: extending the porphyry model to depth[J]. Economic Geology, 2008, 103(5):939-956.
DOI URL |
[109] |
IRBER W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
DOI URL |
[110] | LINNEN R L, CUNEY M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization[C]// LINNEN R L, SAMSON I M. Rare-element geochemistry and mineral deposits. GAC Short Course Notes. St. John’s: Geological Association of Canada, 2005, 17:45-67. |
[111] |
BREITER K, MÜLLER A, LEICHMANN J, et al. Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic[J]. Lithos, 2005, 80(1/2/3/4):323-345.
DOI URL |
[112] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8):871-880. |
[113] |
CHEN J, WANG R C, ZHU J C, et al. Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China[J]. Science China Earth Sciences, 2013, 56(12):2045-2055.
DOI URL |
[114] |
FARNER M J, LEE C T A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism:a global study[J]. Earth and Planetary Science Letters, 2017, 470:96-107.
DOI URL |
[115] | 刘新, 李学刚, 祝新友, 等. 内蒙古白音查干锡多金属矿床成矿作用研究Ⅱ: 成矿花岗斑岩年代学、 地球化学特征及地质意义[J]. 矿产勘查, 2017, 8(6):981-996. |
[116] |
RUAN B X, LV X B, YANG W, et al. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Mongolia, NE China:implications for tectonic setting and metallogeny[J]. Ore Geology Reviews, 2015, 71:121-137.
DOI URL |
[117] | 王喜龙, 刘家军, 翟德高, 等. 内蒙古边家大院铅锌银矿区侵入岩LA-ICP-MS锆石U-Pb年龄、 地球化学特征及其地质意义[J]. 大地构造与成矿学, 2013, 37(4):730-742. |
[118] | 顾玉超, 陈仁义, 贾斌, 等. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 2017, 44(1):101-117. |
[119] | 郭硕, 何鹏, 张学斌, 等. 大兴安岭南段毛登—小孤山锡多金属矿田年代学、 地球化学特征及其地质意义[J]. 矿床地质, 2019, 38(3):509-525. |
[120] |
JIANG S H, CHEN C L, BAGAS L, et al. Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia, China: evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages[J]. Journal of Asian Earth Sciences, 2017, 144:339-367.
DOI URL |
[121] | 郝立波, 段国正, 李殿超, 等. 大兴安岭锡多金属成矿带花岗岩地球化学特征[J]. 世界地质, 1999, 18(2):66-72. |
[122] | 邵济安, 张履桥, 牟保磊. 大兴安岭中南段中生代的构造-热演化[J]. 中国科学D辑: 地球科学, 1998, 28(3):193-200. |
[123] | 邵济安, 牟保磊, 朱慧忠, 等. 大兴安岭中南段中生代成矿物质的深部来源与背景[J]. 岩石学报, 2010, 26(3):649-656. |
[124] | 吕志成, 段国正, 郝立波, 等. 大兴安岭中南段燕山期两类不同成矿花岗岩类角闪石的化学成分及其成岩成矿意义[J]. 矿物岩石, 2003, 23(1):5-10. |
[125] |
DIETRICH A, LEHMANN B, WALLIANOS A. Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems[J]. Economic Geology, 2000, 95(2):313-326.
DOI URL |
[126] |
BALLOUARD C, POUJOL M, BOULVAIS P, et al. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
DOI URL |
[127] |
ROMER R L, KRONER U. Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization[J]. Mineralium Deposita, 2015, 50(3):327-338.
DOI URL |
[128] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7):745-765. |
[129] |
BREITER K, DURIŠOVÁ J, HRSTKA T, et al. Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Lithos, 2017, 292/293:198-217.
DOI URL |
[130] | 王汝成, 谢磊, 诸泽颖, 等. 云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 2019, 35(1):69-75. |
[131] |
DIETRICH A, LEHMANN B, WALLIANOS A, et al. Magma mixing in Bolivian tin porphyries[J]. Naturwissenschaften, 1999, 86(1):40-43.
DOI URL |
[132] |
KLEMME S, GÜNTHER D, HAMETNER K, et al. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon[J]. Chemical Geology, 2006, 234(3/4):251-263.
DOI URL |
[133] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
DOI URL |
[134] | 朱永峰, 孙世华, 毛骞, 等. 内蒙古锡林郭勒杂岩的地球化学研究: 从Rodinia聚合到古亚洲洋闭合后碰撞造山的历史记录[J]. 高校地质学报, 2004, 10(3):343-355. |
[135] | 邵济安, 王友, 唐克东. 有关内蒙古西拉木伦带古生代—早中生代构造环境的讨论[J]. 岩石学报, 2017, 33(10):3002-3010. |
[136] |
HILDRETH W, WILSON C J N. Compositional zoning of the bishop tuff[J]. Journal of Petrology, 2007, 48(5):951-999.
DOI URL |
[137] | BURNHAM C W. Magma and hydrothermal fluids[M]//BARNES H L. Geochemistry of hydrothermal ore deposits. New York: John Wiley, 1979: 71-136. |
[138] |
HALTER W E, WEBSTER J D. The magmatic to hydrothermal transition and its bearing on ore-forming systems[J]. Chemical Geology, 2004, 210(1/2/3/4):1-6.
DOI URL |
[139] | 张招崇, 侯通, 李厚民, 等. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5):1189-1204. |
[140] |
KLEMM L M, PETTKE T, HEINRICH C A, et al. Hydrothermal evolution of the El teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids[J]. Economic Geology, 2007, 102(6):1021-1045.
DOI URL |
[141] |
ULRICH T, GÜNTHUR D, HEINRICH C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399(6737):676-679.
DOI URL |
[142] |
AUDÉTAT A, PETTKE T. The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA)[J]. Geochimica et Cosmochimica Acta, 2003, 67(1):97-121.
DOI URL |
[143] | 赵一鸣, 张德全. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M]. 北京: 地震出版社, 1997. |
[144] |
SHU Q H, LAI Y, SUN Y, et al. Ore genesis and hydrothermal evolution of the Baiyinnuo’er zinc-lead skarn deposit, Northeast China: evidence from isotopes (S, Pb) and fluid inclusions[J]. Economic Geology, 2013, 108(4):835-860.
DOI URL |
[145] |
SHU Q H, CHANG Z S, HAMMERLI J, et al. Composition and evolution of fluids forming the Baiyinnuo’er Zn-Pb skarn deposit, Northeastern China: insights from Laser Ablation ICP-MS study of fluid inclusions[J]. Economic Geology, 2017, 112(6):1441-1460.
DOI URL |
[146] | 武丽艳. 稀有气体同位素地球化学在矿床学研究中的应用进展[J]. 岩石学报, 2019, 35(1):215-232. |
[147] |
HU R Z, BI X W, JIANG G H, et al. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, southeastern China[J]. Mineralium Deposita, 2012, 47(6):623-632.
DOI URL |
[148] |
BURNARD P G, POLYA D A. Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira[J]. Geochimica et Cosmochimica Acta, 2004, 68(7):1607-1615.
DOI URL |
[149] |
HUNTER E A O, HUNTER J R, ZAJACZ Z, et al. Vapor transport and deposition of Cu-Sn-Co-Ag alloys in vesicles in mafic volcanic rocks[J]. Economic Geology, 2020, 115(2):279-301.
DOI URL |
[150] | 周振华, 吕林素, 王挨顺. 内蒙古黄岗锡铁矿床花岗岩深部源区特征与构造岩浆演化: Sr-Nd-Pb-Hf多元同位素制约[J]. 地质科技情报, 2011, 30(1):1-14. |
[151] |
LECUMBERRI-SANCHEZ P, VIEIRA R, HEINRICH C A, et al. Fluid-rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 2017, 45(7):579-582.
DOI URL |
[152] | 张德全, 雷蕴芬. 大兴安岭南段主要金属矿物的成分标型特征[J]. 岩石矿物学杂志, 1992, 11(2):166-177. |
[153] |
ETSCHMANN B E, LIU W, TESTEMALE D, et al. An in situ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25-592 ℃, 180-600 bar): Speciation and solubility in vapor and liquid phases[J]. Geochimica et Cosmochimica Acta, 2010, 74(16):4723-4739.
DOI URL |
[154] | SEWARD T M, WILLIAMS-JONES A E, MIGDISOV A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 29-57. |
[155] | WOOD S A, SAMSON I M. Solubility of ore minerals and complexation of ore metals in hydrothermal solutions[M]//RICHARDS J, LARSON P. Reviews in economic geology. Littleton: Society of Economic Geologists, 1998: 33-80. |
[156] |
BHALLA P, HOLTZ F, LINNEN R L, et al. Solubility of cassiterite in evolved granitic melts: effect of T, f(O2), and additional volatiles[J]. Lithos, 2005, 80(1/2/3/4):387-400.
DOI URL |
[157] |
DUC-TIN Q, AUDÉTAT A, KEPPLER H. Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 ℃, 140 MPa: a LA-ICP-MS study on synthetic fluid inclusions[J]. Geochimica et Cosmochimica Acta 2007, 71(13):3323-3335.
DOI URL |
[158] |
DILL H G. The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews, 2010, 100(1/2/3/4):1-420.
DOI URL |
[159] |
ŠTEMPROK M. Greisenization (a review)[J]. Geologische Rundschau, 1987, 76(1):169-175.
DOI URL |
[160] |
TAYLOR J R, WALL V J. Cassiterite solubility, tin speciation, and transport in a magmatics aqueous phase[J]. Economic Geology, 1993, 88(2):437-460.
DOI URL |
[161] |
ZHONG R C, BRUGGER J, CHEN Y J, et al. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids[J]. Chemical Geology, 2015, 395:154-164.
DOI URL |
[162] |
STEFÁNSSON A, SEWARD T M. Experimental determination of the stability and stoichiometry of sulphide complexes of silver(I)in hydrothermal solutions to 400 ℃[J]. Geochimica et Cosmochimica Acta, 2003, 67(7):1395-1413.
DOI URL |
[163] |
LERCHBAUMER L, AUDÉTAT A. High Cu concentrations in vapor-type fluid inclusions: an artifact?[J]. Geochimica et Cosmochimica Acta, 2012, 88:255-274.
DOI URL |
[164] |
HURTIG N C, WILLIAMS-JONES A E. Porphyry-epithermal Au-Ag-Mo ore formation by vapor-like fluids: new insights from geochemical modeling[J]. Geology, 2015, 43(7):587-590.
DOI URL |
[165] |
WOOD S A, SAMSON I M. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Economic Geology, 2000, 95(1):143-182.
DOI URL |
[166] | DE CLERCQ F. Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda)[D]. Leuven: KU Leuven, 2012. |
[167] | 刘新, 王京彬, 祝新友, 等. 内蒙古白音查干锡多金属矿床成矿作用研究I: 金属矿物组合及其成因机制[J]. 矿产勘查, 2017, 8(6):967-980. |
[168] | 徐佳佳, 赖勇, 崔栋, 等. 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化[J]. 岩石学报, 2009, 25(11):2957-2972. |
[169] | 王开华. 内蒙古安乐锡多金属矿床特征及成矿模式[J]. 矿产与地质, 1998, 12(6):404-409. |
[170] | 周振华, 王挨顺, 李涛. 内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究[J]. 矿床地质, 2011, 30(5):867-889. |
[171] | 张德全, 赵一鸣. 大兴安岭及邻区铜多金属矿床论文集[M]. 北京: 地震出版社, 1993. |
[172] | SAWKINS F J. Metal deposits and relations to tectonic plates[M]. Berlin: Springer-Verlag, 1984. |
[173] | LEHMANN B. Metallogeny of the Central Andes: geotectonic framework and geochemical evolution of porphyry system in Bolivia and Chile during the last 40 million years[C]//KHANCHUK A I, GONEVCHUK G A, MITROKHIN A N, et al. Metallogny of the Pacific Northwest: tectonics, magmatism and metallogeny of active continental margins. Vladivostok: The Interim IAGOD Conference, 2004: 118-122. |
[174] | 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10):2329-2338. |
[175] |
WANG R C, XIE L, LU J J, et al. Diversity of Mesozoic tin-bearing granites in the Nanling and adjacent regions, South China: distinctive mineralogical patterns[J]. Science China (Earth Sciences), 2017, 60(11):1909-1919.
DOI URL |
[176] | SELTMANN R, KAMPF H, MOLLER P. Metallogenesis in collisional orogens[M]. Postdam: GeoForschungs Zentrum Postdam, 1994. |
[177] |
BREITER K, HLOŽKOVÁ M, KORBELOVÁ Z, et al. Diversity of lithium mica compositions in mineralized granite- greisen system: Cínovec Li-Sn-W deposit, Erzgebirge[J]. Ore Geology Reviews, 2019, 106:12-27.
DOI URL |
[178] | 侯泉林, 林伟, 许德如, 等. 中国东部中生代构造格局与演化[J]. 矿物岩石地球化学通报, 2017, 36(6):1063-1067. |
[179] | 林伟, 许德如, 侯泉林, 等. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿[J]. 大地构造与成矿学, 2019, 43(3):409-430. |
[180] | 郑建平, 戴宏坤, 张卉. 中国东部岩石圈地幔的富化和置换过程[J]. 矿物岩石地球化学通报, 2019, 38(2):201-216, 444. |
[181] | 邵济安, 张履桥, 牟保磊. 大兴安岭中生代伸展造山过程中的岩浆作用[J]. 地学前缘, 1999, 6(4):339-346. |
[182] | 邵济安, 韩庆军, 张履桥, 等. 陆壳垂向增生的两种方式: 以大兴安岭为例[J]. 岩石学报, 1999, 15(4):600-606. |
[183] | WANG T, ZHENG Y D, ZHANG J J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6):TC6007. |
[184] | 杨谦, 施炜, 侯贵廷. 中国东部及邻区晚中生代伸展拆离构造: 综述与新认识[J]. 地球学报, 2019, 40(4):511-544. |
[185] |
FOURNIER R O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J]. Economic Geology, 1999, 94(8):1193-1211.
DOI URL |
[186] |
HENLEY R W, KING P L, WYKES J L, et al. Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption[J]. Nature Geoscience, 2015, 8(3):210-215.
DOI URL |
[1] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[2] | 张艳斌, 翟明国, 周艳艳, 周李岗. 大陆下地壳[J]. 地学前缘, 2024, 31(1): 28-45. |
[3] | 宋颜, 董少春, 胡欢, 王汝成. 基于大数据的铌钽矿物全球时空分布特征分析[J]. 地学前缘, 2023, 30(5): 197-204. |
[4] | 时瑶, 张雷, 秦延文, 马迎群, 杨晨晨, 刘志超, 竹怀林. 四川邛海水体氮、磷浓度时空分布特征及其生态环境响应研究[J]. 地学前缘, 2023, 30(2): 495-505. |
[5] | 王跃, 苏尚国, 张旗, 周奇明, 张雅南. 内蒙古大井铜锡多金属矿床矿石中Cu-S同位素特征及成矿预测[J]. 地学前缘, 2022, 29(3): 319-328. |
[6] | 朱小辉, 陈丹玲, 冯益民, 任云飞, 张欣. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 2022, 29(2): 241-260. |
[7] | 夏祥标, 李光明, 张林奎, 张志, 曹华文, 梁维. 西藏错那洞穹隆祥林铍锡多金属矿地质特征及找矿方向[J]. 地学前缘, 2022, 29(1): 93-106. |
[8] | 张明浩, 赵廷宁, 肖辉杰. 内蒙古乌海粉尘浓度时空分布及影响因素探析[J]. 地学前缘, 2021, 28(4): 118-130. |
[9] | 韩润生, 赵冻, 吴鹏, 王雷, 邱文龙, 隆运清, 刘凤平, 邓安平, 宗志宏. 湘南黄沙坪铜锡多金属矿床构造控岩控矿机制及深部找矿勘查启示[J]. 地学前缘, 2020, 27(4): 199-218. |
[10] | 袁方林,张旗,张成立. 全球新生代苦橄岩时空分布特征及意义 [J]. 地学前缘, 2019, 26(4): 13-21. |
[11] | 陈公正,武广,武文恒,张彤,李铁刚,刘瑞麟,武利文,章培春,江彪,王志利. 大兴安岭南段道伦达坝铜多金属矿床流体包裹体研究和同位素特征[J]. 地学前缘, 2018, 25(5): 202-221. |
[12] | 刘瑞麟,武广,李铁刚,陈公正,武利文,章培春,张彤,江彪,刘文元. 大兴安岭南段维拉斯托锡多金属矿床LA-ICP-MS锡石和锆石U-Pb年龄及其地质意义[J]. 地学前缘, 2018, 25(5): 183-201. |
[13] | 朱鹏飞,蔡煜琦,郭庆银,刘武生,李建红,张明林,漆富成,张字龙,贾立城,徐浩. 中国铀矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 148-158. |
[14] | 丛源,董庆吉,肖克炎,陈建平,高永宝,阴江宁 . 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3): 118-137. |
[15] | 张楠,方志伟,韩笑,陈春利,祁小博. 近年来我国泥石流灾害时空分布规律及成因分析[J]. 地学前缘, 2018, 25(2): 299-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||