地学前缘 ›› 2022, Vol. 29 ›› Issue (3): 319-328.DOI: 10.13745/j.esf.sf.2021.11.5
王跃1,2(), 苏尚国1,*(
), 张旗3, 周奇明2, 张雅南1
收稿日期:
2021-09-21
修回日期:
2021-11-17
出版日期:
2022-05-25
发布日期:
2022-04-28
通信作者:
苏尚国
作者简介:
王 跃(1992—),男,硕士,地球化学专业。E-mail: geo.wy@outlook.com
基金资助:
WANG Yue1,2(), SU Shangguo1,*(
), ZHANG Qi3, ZHOU Qiming2, ZHANG Yanan1
Received:
2021-09-21
Revised:
2021-11-17
Online:
2022-05-25
Published:
2022-04-28
Contact:
SU Shangguo
摘要:
内蒙古大井铜锡多金属矿床是大兴安岭成矿带代表性矿床之一,矿区位于内蒙古东部林西县境内,成矿地质条件良好。矿床矿石中同位素特征及与成矿的关系研究薄弱。本文通过对矿体中黄铜矿Cu同位素,黄铜矿、黄铁矿S同位素和Pb同位素的研究表明:黄铜矿δ65Cu 值总体范围为 -0.46‰+0.32‰,平均值为0 ‰,2σ误差平均值约为0.03‰;黄铜矿、黄铁矿δ34S值总体范围为 +0.076 ‰+3.00‰,平均值为+1.83‰,且δ34S值分散程度也较小,整体较均一,属于岩浆硫的同位素特征;Pb同位素数据整体变化很小,具体为206Pb/204Pb=18.29118.353,207Pb/204Pb =15.50115.574,208Pb/204Pb =38.05138.265。结合区域前人的研究表明,大井矿Cu同位素的变化是由于硫化物-岩浆分异过程导致,大井矿矿石黄铜矿δ65Cu的变化可能指示了矿化阶段成矿硫化物的演化方向,δ65Cu逐渐降低的方向可能存在隐伏矿体,研究区域东部生产区域与外围预测未生产区域具有一致的Cu同位素特征,Cu同位素证据表明大井矿外围预测区可能存在深部隐伏矿体。
中图分类号:
王跃, 苏尚国, 张旗, 周奇明, 张雅南. 内蒙古大井铜锡多金属矿床矿石中Cu-S同位素特征及成矿预测[J]. 地学前缘, 2022, 29(3): 319-328.
WANG Yue, SU Shangguo, ZHANG Qi, ZHOU Qiming, ZHANG Yanan. Cu-S Isotope characteristics and metallogenic prediction of orebodies in the Dajing Sn-Cu polymetallic deposit in Inner Mongolia[J]. Earth Science Frontiers, 2022, 29(3): 319-328.
图1 大兴安岭南段区域地质图(a)和大井矿区域地质图(b)(a据文献[21];b据文献[29⇓-31])
Fig.1 Regional geological maps of the (a) southern section of Daxinganling (adapted from [21]) and (b) Dajing deposit (adapted from [29⇓-31])
图3 内蒙古大井铜锡多金属矿床矿硫化物矿石结构特征 (a)—硫化物矿体与粉砂质泥岩接触关系;(b)—镜下黄铜矿与黄铁矿和磁铁矿共存。CCp—黄铜矿;Py—黄铁矿;Mag—磁黄铁矿。
Fig.3 Structural characteristics of sulfide orebody in the Dajing Cu-Sn polymetallic deposit, Inner Mongolia
样品编号 | 矿物 | 采样位置 | δ65Cu/‰ | 2σ/‰ | δ34S/‰ | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb |
---|---|---|---|---|---|---|---|---|
10#01-1 | 黄铁矿 | 矿体 | 2.638 | 18.351 | 15.574 | 38.094 | ||
10#01-2 | 黄铜矿 | 矿体 | -0.446 | 0.034 | 1.975 | 18.346 | 15.561 | 38.191 |
10#02-1 | 黄铁矿 | 矿体 | 2.638 | |||||
10#02-2 | 黄铜矿 | 矿体 | 0.178 | 0.056 | 2.966 | 18.301 | 15.509 | 38.105 |
10#03-1 | 黄铁矿 | 矿体 | 18.341 | 15.512 | 38.256 | |||
10#03-2 | 黄铜矿 | 矿体 | 0.326 | 0.024 | 0.806 | 18.291 | 15.492 | 38.046 |
10#04-1 | 黄铁矿 | 矿体 | 3.842 | |||||
10#04-2 | 黄铜矿 | 矿体 | 0.127 | 0.008 | 2.860 | 18.318 | 15.501 | 38.136 |
10#05-1 | 黄铁矿 | 矿体 | 1.236 | |||||
10#05-2 | 黄铜矿 | 矿体 | 0.028 | 0.044 | 2.942 | 18.373 | 15.534 | 38.156 |
10#06-1 | 黄铁矿 | 矿体 | 1.049 | 18.279 | 15.508 | 38.051 | ||
10#06-2 | 黄铜矿 | 矿体 | 0.163 | 0.054 | 0.441 | 18.345 | 15.527 | 38.104 |
10#07-1 | 黄铁矿 | 矿体 | 2.240 | 18.336 | 15.534 | 38.154 | ||
10#07-2 | 黄铜矿 | 矿体 | -0.458 | 0.030 | 18.315 | 15.546 | 38.174 | |
10#08-1 | 黄铁矿 | 矿体 | ||||||
10#08-2 | 黄铜矿 | 矿体 | -0.289 | 0.023 | 0.563 | 18.318 | 15.508 | 38.164 |
10#09-1 | 黄铁矿 | 矿体 | 1.150 | |||||
10#09-2 | 黄铜矿 | 矿体 | 0.177 | 0.033 | 1.070 | 18.294 | 15.561 | 38.167 |
10#10-1 | 黄铁矿 | 矿体 | 2.553 | |||||
10#10-2 | 黄铜矿 | 矿体 | 0.139 | 0.037 | 0.076 | 18.353 | 15.515 | 38.195 |
表1 大井矿铜锡多金属矿床主矿体硫化物矿物铜同位素、硫同位素和铅同位素组成
Table 1 Cu, S, Pb Isotope compositions of sulfide minerals in the main orebody of the Dajing Cu-Sn polymetallic deposit
样品编号 | 矿物 | 采样位置 | δ65Cu/‰ | 2σ/‰ | δ34S/‰ | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb |
---|---|---|---|---|---|---|---|---|
10#01-1 | 黄铁矿 | 矿体 | 2.638 | 18.351 | 15.574 | 38.094 | ||
10#01-2 | 黄铜矿 | 矿体 | -0.446 | 0.034 | 1.975 | 18.346 | 15.561 | 38.191 |
10#02-1 | 黄铁矿 | 矿体 | 2.638 | |||||
10#02-2 | 黄铜矿 | 矿体 | 0.178 | 0.056 | 2.966 | 18.301 | 15.509 | 38.105 |
10#03-1 | 黄铁矿 | 矿体 | 18.341 | 15.512 | 38.256 | |||
10#03-2 | 黄铜矿 | 矿体 | 0.326 | 0.024 | 0.806 | 18.291 | 15.492 | 38.046 |
10#04-1 | 黄铁矿 | 矿体 | 3.842 | |||||
10#04-2 | 黄铜矿 | 矿体 | 0.127 | 0.008 | 2.860 | 18.318 | 15.501 | 38.136 |
10#05-1 | 黄铁矿 | 矿体 | 1.236 | |||||
10#05-2 | 黄铜矿 | 矿体 | 0.028 | 0.044 | 2.942 | 18.373 | 15.534 | 38.156 |
10#06-1 | 黄铁矿 | 矿体 | 1.049 | 18.279 | 15.508 | 38.051 | ||
10#06-2 | 黄铜矿 | 矿体 | 0.163 | 0.054 | 0.441 | 18.345 | 15.527 | 38.104 |
10#07-1 | 黄铁矿 | 矿体 | 2.240 | 18.336 | 15.534 | 38.154 | ||
10#07-2 | 黄铜矿 | 矿体 | -0.458 | 0.030 | 18.315 | 15.546 | 38.174 | |
10#08-1 | 黄铁矿 | 矿体 | ||||||
10#08-2 | 黄铜矿 | 矿体 | -0.289 | 0.023 | 0.563 | 18.318 | 15.508 | 38.164 |
10#09-1 | 黄铁矿 | 矿体 | 1.150 | |||||
10#09-2 | 黄铜矿 | 矿体 | 0.177 | 0.033 | 1.070 | 18.294 | 15.561 | 38.167 |
10#10-1 | 黄铁矿 | 矿体 | 2.553 | |||||
10#10-2 | 黄铜矿 | 矿体 | 0.139 | 0.037 | 0.076 | 18.353 | 15.515 | 38.195 |
图4 应用65Cu变化预测内蒙古大井铜锡多金属矿床隐伏岩体示意图(底图据文献[32])
Fig.4 Illustration of using 65Cu isotope in metallogenic prediction of concealed rock mass in the Dajing Cu-Sn polymetallic deposit, Inner Mongolia, through spatial association between the direction of gradual δ65Cu value decreasing with IP anomaly and occurrences of orebody and concealed rock mass in deep fault zones. Basemap adapted from [32].
[1] |
FERNANDEZ A, BORROK D M. Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 264: 1-12.
DOI URL |
[2] |
ZHU X K, GUO Y, WILLIAMS R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200: 47-62.
DOI URL |
[3] |
LIU S A, TENG F Z, LI S G, et al. Copper and iron isotope fractionation during weathering and pedogenesis: insights from saprolite profiles[J]. Geochimica et Cosmochimica Acta, 2014, 146: 59-75.
DOI URL |
[4] |
MATHUR R, JIN L, PRUSH V, et al. Cu isotopes and concentrations during weathering of black shale of the Marcellus formation, Huntingdon County, Pennsylvania (USA)[J]. Chemical Geology, 2012, 304/305: 175-184.
DOI URL |
[5] |
ASAEL D, MATTHEWS A, BAR-MATTHEWS M, et al. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel)[J]. Chemical Geology, 2007, 243: 238-254.
DOI URL |
[6] |
GRAHAM S, PEARSON N, JACKSON S, et al. Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit[J]. Chemical Geology, 2004, 207: 147-169.
DOI URL |
[7] |
LARSON P B, MAHER K, RAMOS F C, et al. Copper isotope ratios in magmatic and hydrothermal ore forming environments[J]. Chemical Geology, 2003, 201(3/4): 337-350.
DOI URL |
[8] |
LI W Q, JACKSON S E, PEARSON N J, et al. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia[J]. Geochimica et Cosmochimica Acta, 2010, 74: 4078-4096.
DOI URL |
[9] |
MAHER K C, LARSON P B. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru[J]. Economic Geology, 2007, 102: 225-237.
DOI URL |
[10] |
MATHUR R, TITLEY S, BARRA F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical Exploration, 2009, 102: 1-6.
DOI URL |
[11] |
ROUXEL O, FOUQUET Y, LUDDEN J N. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev seafloor hydrothermal fields on the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 99: 585-600.
DOI URL |
[12] |
LUO X Z, REHKAMKPEI M R, LEE D C. High precision230Th/232Th and 234U/238U measurements using energy filtered ICP magnetic sector multiple collector mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 171(1/3): 105-117.
DOI URL |
[13] |
HALLIDAY A N, LEE D C, CHRISTENSEN J N, et al. Applications of multiple collector ICP-MS to cosmochemistry, geochemistry and paleoceanography[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 919-940.
DOI URL |
[14] |
MARECHAL C N, TELOUK P, ALBAREDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156: 251-273.
DOI URL |
[15] |
BRAXTON D, MATHUR R D. Exploration applications of copper isotopes in the supergene environment: a case study of the bayugo porphyry copper-gold deposit, Southern Philippines[J]. Economic Geology, 2011, 106 (8): 1447-1463.
DOI URL |
[16] |
GRAHAM S, PEARSON N, JACKSON S. et al. Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit[J]. Chemical Geology, 2004, 207(3/4): 147-169.
DOI URL |
[17] | 芮宗瑶, 施林道, 方如恒. 华北陆块北缘及邻区有色金属矿床地质[M]. 北京: 地质出版社, 1994. |
[18] | 刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 2004, 11(1): 269-277. |
[19] |
OUYANG H G, WU X L, MAO J W. The nature and timing of ore formation in the Budunhua copper deposit, southern Great Xing’an Range: evidence from geology, fluid inclusions, and U-Pb and Re-Os geochronology[J]. Ore Geology Reviews, 2014, 63: 238-251.
DOI URL |
[20] |
ZENG Q D, LIU J M, YU C M, et al. Metal deposits in the Da Hinggan Mountains, NE China: styles, characteristics, and exploration potential[J]. International Geology Review, 2011, 53(7): 846-878.
DOI URL |
[21] |
OUYANGA H G, MAO J W, ZHOU Z H, et al. Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China[J]. Gondwana Research, 2015, 27(3): 1153-1172.
DOI URL |
[22] | 赵一鸣, 王大畏, 张德全, 等. 内蒙古东南部铜多金属成矿地质条件及找矿模式[M]. 北京: 地震出版社, 1994. |
[23] | 赵一鸣. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M]. 北京: 地震出版社, 1997. |
[24] | 王莉娟, 王玉往, 王京彬, 等. 大井矿床锡铜矿体成矿流体研究及其成因意义[J]. 岩石学报, 2000, 16(4): 609-614. |
[25] | 储雪蕾, 霍卫国, 张巽. 内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源[J]. 岩石学报, 2002, 18(4): 566-574. |
[26] | 张德全. 大井银铜锡矿体:一个潜火山热液矿床的特征和成因[J]. 火山地质与矿产, 1993, 14(1): 37-46. |
[27] | 储雪蕾, 孙敏, 周美夫. 内蒙古林西大井铜多金属矿床矿石的铂族元素分布及其物质来源[J]. 科学通报, 2002, 47(6): 457-461. |
[28] | 冯建忠, 艾霞, 吴俞斌, 等. 内蒙大井多金属矿床稳定同位素地球化学特征[J]. 吉林地质, 1994, 13(3): 60-66. |
[29] | 廖震, 王玉往, 王京彬, 等. 内蒙古大井锡多金属矿床岩脉 LAICP-MS 锆石 U-Pb 定年及其地质意义[J]. 岩石学报, 2012, 28(7): 2292-2306. |
[30] | 王汉生, 李欲晓. 岩组分析在大井构造研究中的应用[J]. 地质找矿论丛, 1995, 10(1): 16-24. |
[31] | 江思宏, 梁清玲, 刘翼飞, 等. 内蒙古大井矿区及外围岩浆岩锆石U-Pb 年龄及其对成矿时的约束[J]. 岩石学报, 2012, 28(2): 495-513. |
[32] | 王玉往, 王京彬, 龙灵利, 等. 内蒙古大井矿床成矿作用[M]. 北京: 科学出版社, 2014. |
[33] |
MARÉCHAL C N, TÉLOUK, P, ALBARÈDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156: 251-273.
DOI URL |
[34] |
MATHUR R, RUIZ J, TITLEY S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69(22): 5233-5246.
DOI URL |
[35] |
MALITCH K N, LATYPOV R M, BADANINA I Y, et al. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): evidence from copper and sulfur isotopes[J]. Lithos, 2014, 204: 172-187.
DOI URL |
[36] | KROUSE H R, FOLINSBEE R E. The S32/S34 ratio in troilite from the Bruderheim and Peace River meteorites[J]. Journal of Geophysical Research, 1964, 10(69): 4192-4193. |
[37] |
WALKER R J, MORGAN J W, HORAN M F, et al. Re-Os isotopic evidence for an enriched-mantle source for the Noril’sk-type, ore-bearing intrusions, Siberia[J]. Geochimica et Cosmochimica Acta, 1994, 58: 4179-4197.
DOI URL |
[38] |
WOODEN J L, CZAMANSKE G K, FEDORENKO V A, et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia[J]. Geochimica et Cosmochimica Acta, 1993, 57: 3677-3704.
DOI URL |
[39] |
RIPLEY E M, BROPHY J G, LI C. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2791-2800.
DOI URL |
[40] |
RIPLEY E M, DONG S F, LI C S, et al. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America[J]. Chemical Geology, 2005, 414: 59-68.
DOI URL |
[41] |
RICHTER F M, DAUPHAS N, TENG F Z. Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion[J]. Chemical Geology, 2009, 258: 92-103.
DOI URL |
[42] |
HUANG F, LUNDSTROM C C, GLESSNER J.et al. Chemical and isotopic fractionation of wet andesite in a temperature gradient: experiments and models suggesting a new mechanism of magma differentiation[J]. Geochimica et Cosmochimica Acta, 2009, 73(3): 729-749.
DOI URL |
[43] |
LUNDSTROM C E, BOUDREAU A, PERTERMANN M. Diffusion-reaction in a thermal gradient: implications for the genesis of anorthitic plagioclase, high alumina basalt and igneous mineral layering[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 829-854.
DOI URL |
[44] |
HSU Y J, ZAJACZ Z, ULMERA P, et al. Copper partitioning between silicate melts and amphibole: Experimental insight into magma evolution leading to porphyry copper ore formation[J]. Chemical Geology, 448(5): 151-163.
DOI URL |
[45] |
LEE C T A, LUFFI P, CHIN E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 33: 64-68.
DOI URL |
[46] |
LIU S A, HUANG J, LIU J G, et al. Copper isotopic composition of the silicate Earth[J]. Earth and Planetary Science Letters, 2015, 427: 95-103.
DOI URL |
[47] | TANG M, LEE C T, JI W Q, et al. Crustal thickening and endogenic oxidation of magmatic sulfur[J]. Science Advances, 2020, 6(31): 63-42. |
[48] | NALDRETT A J, SINGH J, KRSTIC S. The mineralogy of the Voisey’s Bay Ni-Cu-Co deposit, northern Labrador, Canada: influence of oxidation state on textures and mineral compositions[J]. Economic Geology, 2000, 95: 889-900. |
[49] |
DARE S A S, BARNES S J, BEAUDOIN G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination[J]. Geochimica et Cosmochimica Acta, 2012, 88: 27-50.
DOI URL |
[50] |
GAO J F, ZHOU M F. LIGHTFOOT P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, NW China[J]. Economic Geology, 2013, 108: 1833-1848.
DOI URL |
[51] |
ZHAO Y, XUE C J, ZHAO X B, et al. Variable mineralization processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Journal of Asian Earth Sciences, 2016, 126: 1-13.
DOI URL |
[52] |
RIPLEY E D, BROPHY J G. Solubility of copper in a sulfur-free mafic melt[J]. Geochimica et Cosmochimica Acta, 1995, 59: 5027-5030.
DOI URL |
[53] |
MIKHLIN Y, TOMASHEVICH Y, TAUSON V, et al. A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2[J]. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142: 83-88.
DOI URL |
[54] |
TODD E C, SHERMAN D M. Surface oxidation of chalcocite (Cu2S) under aqueous (pH=2-11) and ambient atmospheric conditions: mineralogy from Cu L- and O K-edge X-ray absorption spectroscopy[J]. American Mineralogist, 2003, 88: 1652-1656.
DOI URL |
[55] |
KLEKOVKINA V V, GAINOV R R, VAGIZOV F G, et al. Oxidation and magnetic states of chalcopyrite CuFeS2: a first principles calculation[J]. Optics and Spectroscopy, 2014, 116: 885-888.
DOI URL |
[56] |
BORROK D M, NIMICK D A, WANTY R B, et al. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining[J]. Geochimica et Cosmochimica Acta, 2008, 72: 329-344.
DOI URL |
[57] |
EHRLICH S, BUTLER I, HALICZ L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology, 2004, 209: 259-269.
DOI URL |
[58] | MATHUR R, JIN L, PRUSH V, et al. Cu isotopes and concentrations during weathering of black shale of the Marcellus formation, Huntingdon County, Pennsylvania (USA)[J]. Chemical Geology, 2012, (304/305): 175-184. |
[59] |
MATHUR R, MUNK L, NGUYEN M, et al. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the pebble porphyry Cu-Au-Mo deposit, Alaska[J]. Economic Geology, 2013, 108: 529-541.
DOI URL |
[60] |
WALL A J, MATHUR R, POST J E, et al. Cu isotope fractionation during bornite dissolution: an in situ X-ray diffraction analysis[J]. Ore Geology Reviews, 2011, 42: 62-70.
DOI URL |
[1] | 安文通, 陈建平, 朱鹏飞. 基于成矿过程数值模拟的隐伏矿双向预测研究[J]. 地学前缘, 2021, 28(3): 97-111. |
[2] | 韩润生, 赵冻, 吴鹏, 王雷, 邱文龙, 隆运清, 刘凤平, 邓安平, 宗志宏. 湘南黄沙坪铜锡多金属矿床构造控岩控矿机制及深部找矿勘查启示[J]. 地学前缘, 2020, 27(4): 199-218. |
[3] | 黄少华,秦明宽,David SELBY,刘银山,许强,何中波,刘章月,刘俊杰. 准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re-Os同位素定年[J]. 地学前缘, 2018, 25(2): 254-266. |
[4] | 孔志岗,吴越,张锋,张长青,孟旭阳. 川滇黔地区典型铅锌矿床成矿物质来源分析:来自S-Pb同位素证据[J]. 地学前缘, 2018, 25(1): 125-137. |
[5] | 陈建平, 于萍萍, 史蕊, 于淼, 张顺昌. 区域隐伏矿体三维定量预测评价方法研究[J]. 地学前缘, 2014, 21(5): 211-220. |
[6] | 李小虎, 初凤友, 雷吉江, 余星, 张平萍. 青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨[J]. 地学前缘, 2014, 21(1): 196-204. |
[7] | 赵云, 王建平, 杨增海, 张捷先, 王守光, 尚恒胜, 左海洋. 内蒙古白乃庙铜矿床辉钼矿铼锇同位素定年及其地质意义[J]. 地学前缘, 2013, 20(4): 361-368. |
[8] | 申萍,沈远超,刘铁兵. 隐伏矿体定位预测的地球物理地质找矿模型:以地质与EH4双源大地电磁测深技术结合为例[J]. 地学前缘, 2011, 18(3): 284-292. |
[9] | 吴俊华,赵赣,屈文俊,袁承先,龚敏,刘爽,李牟,周雪桂,廖明和,魏俊浩,马振东. 赣南葛廷坑钼矿辉钼矿Re-Os年龄及其地质意义[J]. 地学前缘, 2011, 18(3): 261-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||