地学前缘 ›› 2021, Vol. 28 ›› Issue (3): 26-48.DOI: 10.13745/j.esf.sf.2021.1.11
收稿日期:
2021-01-25
修回日期:
2021-01-30
出版日期:
2021-05-20
发布日期:
2021-05-23
通信作者:
莫宣学
作者简介:
陈永清(1960—),男,博士,教授,矿产普查与勘探专业,主要从事矿产勘查教学与研究工作。E-mail: yqchen@cugb.edu.cn
基金资助:
CHEN Yongqing(), MO Xuanxue*(
)
Received:
2021-01-25
Revised:
2021-01-30
Online:
2021-05-20
Published:
2021-05-23
Contact:
MO Xuanxue
摘要:
超大型矿床是某一(或某些)矿种资源的巨大储库。据统计,全球矿产资源70%~85%的勘探储量集中分布于占全球矿床数10%的超大型矿床。由此可见发现超大型矿床对一个国家经济与社会发展的极端重要性。超大型矿床成矿背景是其形成的基础,成矿过程是其成矿的关键,勘查评价是其发现的根本途径。文章试图从成矿背景、成矿过程与勘查评价相互关联的角度探索超大型矿床“三位一体”的找矿理念。对于隐伏的和新类型超大型矿床,集“成矿背景、过程与勘查评价”于一体的找矿理念是矿产勘查成功的关键。我们根据地球成矿动力学理论,将地壳结构复杂的地质异常区域(如板块边界)定义为找矿可行地段;在找矿可行地段内,根据成矿系统理论,将成矿关键要素(源、运、储、盖)发育的地段定义为找矿有利地段;在找矿有利地段内,根据成矿系列理论,将可能出现矿床共生组合的地段定义为找矿远景地段。根据自组织成矿系统理论,一个矿集区内,矿床规模-频率幂律分布,奠定了多尺度聚焦找矿的理论基础。地质矿化单一信息的多解性和不确定性奠定应用综合致矿信息找矿的理论基础。基于成矿系统和综合致矿信息数字找矿模型的矿产勘查是从成矿的因果关系(本质)和矿床与诸控矿因素的相关关系(现象)两个方面确定可能矿化地段的最有效方法。超大型矿床找寻上升至综合地学学科水平,应视为一种科学的探索,这种探索综合来自地学各相关领域致矿信息,然后将从这些信息中获取的关键成矿过程和参数转换为找矿的空间数据信息,根据选靶模型识别并确认这些空间数据信息的存在,最后在全球、成矿省和矿化集中区尺度上圈定能够定量排序的超大型矿床的找矿远景区(靶区)。集“成矿背景、过程与勘查评价”于一体的找矿理念应为未来的超大型矿床勘查奠定理论和方法学基础,为应用直接探测技术和方法探测矿床提供合理的工程勘查方案。
中图分类号:
陈永清, 莫宣学. 超大型矿床成矿背景-过程-勘查三位一体的找矿理念[J]. 地学前缘, 2021, 28(3): 26-48.
CHEN Yongqing, MO Xuanxue. Metallogenic background, process and exploration as one: A trinity concept for prospecting for super-large ore deposits[J]. Earth Science Frontiers, 2021, 28(3): 26-48.
图2 离散板块边界及其主要矿床类型(引自文献[32])
Fig.2 Divergent plate boundaries and the main deposit types in inland hot spring/incipient rift (a), inland rift zone (b), or ocean ridge/Hawaii type hot spring deposit (c). Adapted from [32].
图3 汇聚板块边界及其主要矿床类型(引自文献[33])
Fig.3 Convergent plate boundary and the deposit types in oceanic island arc or (continental) back-arc basin. Adapted from [33].
图4 郯庐走滑断裂与金矿分布(引自文献[22]) 1—中条造山带及后中条盖层;2—扬子造山带及后扬子盖层;3—兴凯造山带及后兴凯盖层;4—加里东造山带及后加里东盖层;5—华力西造山带及后华力西盖层;6—印支-燕山造山带及后印支-燕山盖层;7—喜山造山带及后喜山盖层;8—金矿床;9—金矿集区;10—断裂。
Fig.4 Tanlu strike-slip fault and distribution of gold deposits. Adapted from [22].
图7 地质历史时期主要矿床及其成矿环境(引自文献[38]) (A):AM—非造山岩浆作用;CA—大陆弧;CC—陆陆造山;CO—科迪勒拉山系;CR—大陆裂谷;IA—洋内弧;PL—地幔柱岩石圈;斑岩型-热液型,VMS矿床形成于洋内弧和陆弧,同样,岩浆热液Sn矿床形成于科迪勒拉造山带和陆陆碰撞造山带;(B):沉积盆地;BA—后弧盆地;FA—前弧盆地;FL—前陆盆地;IC—内陆盆地;O—大洋盆地;PM—被动大陆边缘盆地;RM—裂谷大陆边缘盆地;SS—走滑拉分盆地;沙金矿床堆积在造山带的弧前和后弧盆地。
Fig.7 Main deposit types and metallogenic environments through the geological history. Adapted from [38].
图8 超大型矿床的主要特征(引自文献[57]) 该示意图说明了斑岩铜矿和低温热液型金矿形成的一般模式。LS,低硫化型;紫色框突出了可能导致增强形成超大型矿床的特点或过程。
Fig.8 The main characteristics of super-large deposits. Adapted from [57].
组间距 | 频数 | 频率/% | 累积频率/% | 组间距 | 频数 | 频率/% | 累积频率/% |
---|---|---|---|---|---|---|---|
0.1~0.2 | 2 | 0.69 | 0.69 | 1.1~1.2 | 12 | 4.17 | 92.01 |
0.2~0.3 | 10 | 3.47 | 4.17 | 1.2~1.3 | 6 | 2.08 | 94.10 |
0.3~0.4 | 17 | 5.90 | 10.07 | 1.3~1.4 | 4 | 1.39 | 95.49 |
0.4~0.5 | 60 | 20.83 | 30.90 | 1.4~1.5 | 3 | 1.04 | 96.53 |
0.5~0.6 | 51 | 17.71 | 48.61 | 1.5~1.6 | 4 | 1.39 | 97.92 |
0.6~0.7 | 37 | 12.85 | 61.46 | 1.6~1.7 | 3 | 1.04 | 98.96 |
0.7~0.8 | 28 | 9.72 | 71.18 | 1.7~1.8 | 0 | 0.00 | 98.96 |
0.8~0.9 | 23 | 7.99 | 79.17 | 1.8~1.9 | 2 | 0.69 | 99.65 |
0.9~1.0 | 16 | 5.56 | 84.72 | 1.9~2.0 | 1 | 0.35 | 100 |
1.0~1.1 | 9 | 3.13 | 87.85 |
表1 个旧—薄竹山矿集区样品单元成矿有利度频率和累积频率
Table 1 Ore-forming favorability frequency and cumulative frequency of sample units in the Gejiu-Bozhushan ore-rich area
组间距 | 频数 | 频率/% | 累积频率/% | 组间距 | 频数 | 频率/% | 累积频率/% |
---|---|---|---|---|---|---|---|
0.1~0.2 | 2 | 0.69 | 0.69 | 1.1~1.2 | 12 | 4.17 | 92.01 |
0.2~0.3 | 10 | 3.47 | 4.17 | 1.2~1.3 | 6 | 2.08 | 94.10 |
0.3~0.4 | 17 | 5.90 | 10.07 | 1.3~1.4 | 4 | 1.39 | 95.49 |
0.4~0.5 | 60 | 20.83 | 30.90 | 1.4~1.5 | 3 | 1.04 | 96.53 |
0.5~0.6 | 51 | 17.71 | 48.61 | 1.5~1.6 | 4 | 1.39 | 97.92 |
0.6~0.7 | 37 | 12.85 | 61.46 | 1.6~1.7 | 3 | 1.04 | 98.96 |
0.7~0.8 | 28 | 9.72 | 71.18 | 1.7~1.8 | 0 | 0.00 | 98.96 |
0.8~0.9 | 23 | 7.99 | 79.17 | 1.8~1.9 | 2 | 0.69 | 99.65 |
0.9~1.0 | 16 | 5.56 | 84.72 | 1.9~2.0 | 1 | 0.35 | 100 |
1.0~1.1 | 9 | 3.13 | 87.85 |
图12 个旧—薄竹山矿集区Sn-Cu和Ag-Pb-Zn多金属矿产资源体潜在地段分布
Fig.12 Distribution of potential Sn-Cu and Ag-Pb-Zn polymetallic mineral resources zones in the Gejiu-Bozhushan ore-rich area
靶区编号 | Si/km2 | Fi | POi | Pi |
---|---|---|---|---|
I | 125 | 0.95 | 119 | 0.05 |
II | 325 | 1.24 | 403 | 0.34 |
III | 275 | 1.12 | 307 | 0.24 |
IV | 250 | 0.86 | 214 | 0.15 |
V | 825 | 1.28 | 1056 | 1 |
VI | 75 | 0.86 | 64.5 | 0 |
VII | 100 | 0.9 | 90.25 | 0.02 |
VIII | 175 | 0.95 | 166.25 | 0.1 |
表2 靶区找矿优度及找矿概率
Table 2 Ore prospecting priority and prospecting probability of the target area
靶区编号 | Si/km2 | Fi | POi | Pi |
---|---|---|---|---|
I | 125 | 0.95 | 119 | 0.05 |
II | 325 | 1.24 | 403 | 0.34 |
III | 275 | 1.12 | 307 | 0.24 |
IV | 250 | 0.86 | 214 | 0.15 |
V | 825 | 1.28 | 1056 | 1 |
VI | 75 | 0.86 | 64.5 | 0 |
VII | 100 | 0.9 | 90.25 | 0.02 |
VIII | 175 | 0.95 | 166.25 | 0.1 |
[1] | 谢学锦. 用新观念与新技术寻找巨型矿床[J]. 科学中国人, 1995, 10:15-16. |
[2] |
SINGER D A. World class base and precious metal deposit: a quantitative analysis[J]. Economic Geology, 1995, 90(1):88-104.
DOI URL |
[3] | SCHODDE R C, HRONSKY J M A. The role of world-class mines in wealth creation[J]. Society of Economic Geologists, Special Publication, 2006, 12:77-90. |
[4] | LAZNICKA P. Giant ore deposits: a quantitative approach[J]. Global Tectonics and Metallogeny, 1983, 41:63. |
[5] | LAZNICKA P. Giant metallic deposits: Future sources of industrial metals[M]. Berlin: Springer Verlag, 2010: 1-949. |
[6] | 涂光炽. 超大型矿床的寻找与研究的若干进展[J]. 地学前缘, 1994, 1(3):45-53. |
[7] | GARWIN S, HALL R, WATANABE Y. Tectonic setting, geology, and gold and copper mineralization in Cenozoic magmatic arcs of Southeast Asia and the West Pacific[C]. Hedenquist J W, et al. Economic Geology One Hundredth Anniversary Volume 1905-2005. 2005: 891-930. |
[8] |
KHASHGEREL B E, RYE R O, KAVALIERIS I, et al. The sericitic to advanced argillic transition: Stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi district, Mongolia[J]. Economic Geology, 2009, 104(8):1087-1110.
DOI URL |
[9] |
KELLEY K D, LANG J, EPPINGER R G. The giant Pebble Cu-Au-Mo deposit and surrounding region, southwest Alaska: introduction[J]. Economic Geology, 2013, 108(3):397-404.
DOI URL |
[10] | WHITING B H, HODGSON C J, MASON R, Giant Ore deposits[C]. Society of Economic Geologists Special Publication, 1993, 2:1-163. |
[11] | CLARK A H. Giant ore deposits-I-Controls on the Scale of Orogenic Magmatic-Hydrothermla Mineralization[C]. Proceedings of the Second Giant Ore Deposits Workshop, Kingston, Ontario, Canada, 1995: 1-696. |
[12] | COOKE D R, PONGRATZ J. Giant Ore deposits: Characteristics, genesis and exploration[M]. CODES Special Publication 4, 2002: 1-269. |
[13] | 涂光炽. 中国超大型矿床[M]. 北京: 科学出版社, 2000: 1-584. |
[14] | 赵鹏大, 陈永清, 张寿庭, 等. 大型-超大型矿床成矿地球动力学背景、 过程与定量评价: 定量勘查与评价[M]. 北京: 地质出版社, 2020: 1-151. |
[15] | 陈永清, 陈守余, 黄静宁, 等. 个旧超大型锡铜多金属矿床成矿背景-过程-定量评价[M]. 北京: 地质出版社, 2020: 1-206. |
[16] | 王世称, 陈永良. 大型、 超大型金矿床综合信息成矿预测标志[J]. 黄金地质, 1999, 5(1):1-5. |
[17] | HRONSKY J M A. Self-organized critical systems and ore formation: the key to spatial targeting?[J]. SEG Newsletter, 2011(84):14-16. |
[18] | SCHODDE R C, HRONSKY J M A. The role of world-class mines in wealth creation[J]. Special Publication-Society of Economic Geologists, 2006, 12:71-90. |
[19] |
CARLSON C A. Spatial distribution of ore deposits[J]. Geology, 1991, 19(2):111-114.
DOI URL |
[20] |
AGTERBERG F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1):1-8.
DOI URL |
[21] |
PIQUUER J, BERRY, R F, SCOTT R J, et al. Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile[J]. Journal of Structural Geology, 2016, 89:101-117.
DOI URL |
[22] | 李胜荣. 山东郯庐断裂两侧大型-超大型金矿床成矿地球动力学背景, 过程与定量评价工作项目可行性报告[R]. 北京: 中国地质大学, 2011. |
[23] | 滕吉文, 杨立强, 姚敬金, 等. 金属矿产资源的深部找矿、 勘探与成矿的深层动力过程[J]. 地球物理学进展, 2007, 2:317-334. |
[24] | 滕吉文, 姚敬金, 江昌洲, 等. 地壳深部岩浆岩岩基体与大型、 超大型金属矿床的形成及找矿效应[J]. 岩石学报, 2009, 25(5):1009-1038. |
[25] | 科兹洛夫斯基 E A. 科拉超深钻井[M]. 张秋生主译. 北京: 地质出版社, 1984. |
[26] | 滕吉文. 强化第二深度空间金属矿产资源探查, 加速发展地球物理勘探新技术与仪器设备的研制及产业化[J]. 地球物理学进展, 2010, 25(3):729-748. |
[27] |
GRAUPNER T, NIEDERMANN S, KEMPE U, et al. Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data[J]. Geochimica et Cosmochimica Acta, 2006, 70:5356-5370.
DOI URL |
[28] | KEMPE U, GRAUPNER T, SELTMANN R, et al. Muruntau gold (Uzbekistan): a unique ancient hydrothermal system in the southern Tien Shan[J]. Geosciences Frontier, 2016, 7:495-528. |
[29] | 董树文, 李廷栋, 陈宣华, 等. 我国深部探测技术与实验研究进展综述[J]. 地球物理学报, 2012, 55(12):884-3901. |
[30] | ERNEST W G. The Dynamic Planet[M]. New York: Columbia University Press, 1990: 1-280. |
[31] |
BARLEY M E, GROVES D I. Supercontinent cycles and the distribution of metal deposits through time[J]. Geology, 1992, 20:291-294.
DOI URL |
[32] | MITCHELL A H G, GARSON M S. Mineral deposits and global tectonic settings[M]. Academic Press, 1981: 1-405. |
[33] | ROBB L. Introduction to ore-forming processes[M]. Oxford: Blackwell Publishing Company, 2005: 1-373. |
[34] | 莫宣学. 大型-超大型矿床成矿地球动力学背景[J]. 地学前缘, 2020, 7(2):13-19. |
[35] |
GROVES D I, GOLDFARB R J, GEBRE-MARIAM M, et al. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998, 13:7-27.
DOI URL |
[36] |
GOLDFARB R J, TAYLOR R D, COLLINS G S. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 2014, 25:48-102.
DOI URL |
[37] |
DISTLER V V, YUDOVSKAYAA M A, GENNADY L, et al. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia[J]. Ore Geology Reviews, 2004, 24:7-44.
DOI URL |
[38] | KERRICH R, GOLDFARB R J, RICHARDS J P. Metallogenic provinces in an evolving Geodynamic framework[C]// HEDENQUUIST J W, THOMPSON J F H, GOLDFARB R J, et al. Economic Geology: One Hundredth Anniversary Volume (1905-2005). 2005: 1097-1113. |
[39] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1):13-27. |
[40] | WYBORN L A I, HEINRICH C A, JAQUES A. Australian Proterozoic mineral systems: essential ingredients and mappable criteria[C]. Melbourne: Australian Institute of Mining and Metallurgy Annual Conference, 1994: 109-115. |
[41] |
SAAGER R, MEYER M, MUFF R. Gold distribution in supracrustal rocks from Archean greenstone belts of southern Africa and from Paleozoic ultramafic complexes of the European Alps: metallogenic and geochemical implications[J]. Economic Geology, 1982, 77(1):1-24.
DOI URL |
[42] | 陈永清, 赵鹏大, 刘红光. 鲁西金矿成矿组分的聚集与演化[J]. 地球科学: 中国地质大学学报, 2001, 26(1):41-48. |
[43] | 张秋生, 刘连登. 矿源与成矿[M]. 北京: 地质出版社, 1982: 1-278. |
[44] | MITCHELL A H G, LEACH T M. Epithermal gold in the Philippines: island arc metallogenesis, geothermal systems and geology[M]. London: United Kingdom Academic Press, 1991: 1-457. |
[45] | 胡受奚. 花岗岩类成矿的某些基本问题[J]. 矿物岩石地球化学通讯, 1983, 3:17-20. |
[46] | BAK P. How nature works: the science of self-organized criticality[M]. Berlin: Springer Science & Business Media, 2013. |
[47] | MANDELBROT B B. The statistics of natural resources and the law of pareto[J]. Fractals in Petroleum Geology and Earth Processes, 1995: 1-12. |
[48] |
HRONSKY J M, GROVES D I. Science of targeting: definition, strategies, targeting and performance measurement[J]. Australian Journal of Earth Sciences, 2008, 55:101-122.
DOI URL |
[49] | 赵鹏大, 陈永清. 科学选靶的途径[J]. 地球科学: 中国地质大学学报, 2001, 36(2):1-8. |
[50] |
RAINES G L. Are fractal dimensions of the spatial distribution of mineral deposits meaningful?[J]. Natural Resources Research, 2008, 17(2):87-97.
DOI URL |
[51] |
AGTERBERG F P. Multifractal modeling of the sizes and grades of giant and supergiant deposits[J]. International Geology Review, 1995, 37(1):1-8.
DOI URL |
[52] |
CHENG Q. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5):503-532.
DOI URL |
[53] |
HRONSKY J M A, GROVES D I. Science of targeting: definition, strategies, targeting and performance measurement[J]. Australian Journal of Earth Sciences, 2008, 55(1):3-12.
DOI URL |
[54] | Supercontinent cycles through Earth history[C]. London: Geological Society of London, 2016. |
[55] | CARR P M, CATHLES III L M, BARRIE C T. On the size and spacing of volcanogenic massive sulfide deposits within a district with application to the Matagami district, Quebec[J]. Economic Geology, 2008, 3(7):1395-1409. |
[56] | SCHNEIDER E D, SAGAN D. Into the cool: energy flow, thermodynamics, and life[M]. Chicago: University of Chicago Press, 2005. |
[57] |
RICHARDS J P. Giant ore deposits formed by optimal alignments and combinations of geological processes[J]. Nature Geoscience, 2013, 6(11):911-916.
DOI URL |
[58] | 於崇文. 地质系统的复杂性(上、 下册)[M]. 北京: 地质出版社, 2003. |
[59] | ROBINSON L J. The spatial and temporal distribution of the metal mineralization in Eastern Australia and the relationship of the observed patterns to giant ore deposits[D]. Australia, Queensland: University of Queensland, 2007: 116. |
[60] | WALSHE J L, COOKE D R, NEUMAYR P. Five questions for fun and profit: a mineral systems perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits[J]. Mineral deposit research: meeting of the global challenge, 2005: 477-480. |
[61] |
MCCUAIG T C, BERESFORD S, HRONSKY J. Translating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 2010, 38:128-138.
DOI URL |
[62] | MCCUAIG T C, HRONSKY J M A. The mineral system concept: the key to exploration targeting[J]. Society of Economic Geologists Special Publication, 2014, 18:153-175. |
[63] | 赵鹏大, 陈永清. 地质异常矿体定位的基本途径[J]. 地球科学: 中国地质大学学报, 1998, 23(2):111-114. |
[64] | SINCLAIR A J. Geological controls in resource/reserve estimation[J]. Exploration Mining Geology, 1998, 7(1/2):29-44. |
[65] | 陈永清, 赵鹏大. 综合致矿地质异常信息提取与集成[J]. 地球科学: 中国地质大学学报, 2009, 34(2):325-335. |
[66] | 王世称, 陈永良, 夏立显. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000: 1-343. |
[67] | 陈永清, 汪新庆, 陈建国, 等. 基于GIS的矿产资源综合定量评价技术[M]. 北京: 地质出版社, 2007. |
[68] | 陈永清, 汪新庆, 陈建国, 等. 基于GIS的矿产资源综合定量评价[J]. 地质通报, 2007, 26(2):141-149. |
[69] | MCGAUGHEY W J, VALLEE M A. Integrating geology and borehole geophysics in a common earth model for improved three-dimensional delineation of mineral deposits[J]. Exploration and Mining Geology, 1998, 7(1/2):51-62. |
[70] | 张本仁. 成矿带地球化学研究的理论构想和方法[C]. 张本仁, 勘查地球物理、 勘查地球化学文集. 北京: 地质出版社, 1989: 1-20. |
[71] | BARNEET C T. Mineral exploration using modern data mining techniques[J]. First Break, 2006, 24:30. |
[72] | 陈永清, 夏庆霖, 黄静宁, 等. “证据权”法在西南“三江”南段矿产资源评价中的应用[J]. 中国地质, 2007, 34(1):132-141. |
[73] |
CHEN Y Q, ZHAO P D, CHEN J G, et al. Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in western Shandong uplift terrain, eastern China[J]. Natural Resources Research, 2001, 10(1):35-49.
DOI URL |
[74] |
ZHAO P D, CHEN Y Q. Digital geosciences and quantitative mineral exploration[J]. Journal of Earth Science, 2021, 32(2):269-275.
DOI URL |
[75] |
CHEN C, ZHU X, CHEN Y Q. Application of BEMD in extraction of magnetic anomaly components associated with Sn-W polymetallic mineralization in SE Yunnan, SW China[J]. Journal of Earth Science, 2021, 32(2):318-326.
DOI URL |
[76] |
CHEN Y Q, ZHANG L N, ZHAO B B. Application of Bi-dimensional empirical mode decomposition (BEMD) modeling for extracting gravity anomaly indicating the ore-controlling geological architectures and granites in the Gejiu tin-copper polymetallic ore field, southwestern China[J]. Ore Geology Reviews, 2017, 88:832-840.
DOI URL |
[77] |
GUO L F, CHEN Y Q, ZHAO B B. Application of singular value decomposition (SVD) to the extraction of gravity anomalies associated with Ag-Pb-Zn-W Polymetallic mineralization in the Bozhushan Ore Field, Southwestern China[J]. Journal of Earth Science, 2021, 32(2):310-317.
DOI URL |
[78] |
CHEN Y Q, ZHANG L N, ZHAO B B. Application of singular value decomposition (SVD) in extraction of gravity components indicating the deeply and shallowly buried granitic complex associated with Tin polymetallic mineralization in the Gejiu Tin ore field, Southwestern China[J]. Journal of Applied Geophysics, 2015, 123:63-70.
DOI URL |
[79] | 黄静宁, 赵鹏大, 陈永清, 等. 滇东南矿集区地球化学致矿信息提取[J]. 矿产勘查, 2018, 9(11):2233-2245. |
[80] | MCCAMMON R B, BOTBOL J M, LARSEN R S. Characteristic analysis-1981[J]. Final Program and a Possible Discovery: Math Geology, 1983, 15(1):59-84. |
[1] | 莫宣学. 大型-超大型矿床成矿地球动力学背景[J]. 地学前缘, 2020, 27(2): 13-19. |
[2] | 余学中,薛春纪,丛丽娟,徐胜利,张玄杰,贾志业. 中亚大型超大型矿床找矿中值得重视环形遥感影像[J]. 地学前缘, 2016, 23(2): 238-250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||