Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 262-279.DOI: 10.13745/j.esf.sf.2025.3.31
Previous Articles Next Articles
FENG Tingting(), CAI Shirou, ZHANG Zhenjie*(
)
Received:
2024-11-01
Revised:
2025-03-10
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
FENG Tingting, CAI Shirou, ZHANG Zhenjie. Mining elements of carbonatite-type rare earth deposits based on knowledge map[J]. Earth Science Frontiers, 2025, 32(4): 262-279.
属性 | 实体 |
---|---|
矿物 | barite、galena、pyrite、aegirine、biotite |
岩石 | carbonatite、gabbro、basalt、pegmatite、syenite |
元素 | REE、Ca、Mg、Eu、Sm |
年代 | Paleogene、Neoproterozoic、Paleozoic、Jurassic、Permian |
化学 | NaCl、SO4、SiO2、TiO2、Rb/Sr、208Pb/204Pb |
矿床 | Maoniuping、Dalucao、Lizhuang、Weishan、Bayan Obo |
构造 | mantle、dike、Mianning-Dechang、vein、Craton、fault |
Table 1 Example of correspondence between entity attributes and entities
属性 | 实体 |
---|---|
矿物 | barite、galena、pyrite、aegirine、biotite |
岩石 | carbonatite、gabbro、basalt、pegmatite、syenite |
元素 | REE、Ca、Mg、Eu、Sm |
年代 | Paleogene、Neoproterozoic、Paleozoic、Jurassic、Permian |
化学 | NaCl、SO4、SiO2、TiO2、Rb/Sr、208Pb/204Pb |
矿床 | Maoniuping、Dalucao、Lizhuang、Weishan、Bayan Obo |
构造 | mantle、dike、Mianning-Dechang、vein、Craton、fault |
无用实体 | 多余符号输出 | 方法名称 | 缩写/全称 |
---|---|---|---|
deep open | diopside (40 | ICP-MS | REE/rare earth element |
deposit | dolerite, | LA-ICP-MS | LREE/light REE |
detail | dolomite < | MC-ICP-MS | MD/Mianning-Dechang |
discrete | dolomite δ18O | EPMA | MNP/Maoniuping |
Table 2 Parts of entities to be fused
无用实体 | 多余符号输出 | 方法名称 | 缩写/全称 |
---|---|---|---|
deep open | diopside (40 | ICP-MS | REE/rare earth element |
deposit | dolerite, | LA-ICP-MS | LREE/light REE |
detail | dolomite < | MC-ICP-MS | MD/Mianning-Dechang |
discrete | dolomite δ18O | EPMA | MNP/Maoniuping |
节点属性 | 矿物 | 岩石 | 元素 | |||||
---|---|---|---|---|---|---|---|---|
图谱名称 | 白云鄂博 | 冕宁—德昌 | 白云鄂博 | 冕宁—德昌 | 白云鄂博 | 冕宁—德昌 | ||
1 | calcite | fluorite | carbonatite | carbonatite | Nb | Sr | ||
2 | apatite | calcite | dolomite | syenite | Sr | Pb | ||
3 | monazite | barite | granite | breccia | Ce | Ba | ||
4 | magnetite | quartz | syenite | granite | Nd | S | ||
5 | fluorite | bastnaesite | igneous | dolomite | Eu | Fe |
Table 3 Top five nodes of frequency
节点属性 | 矿物 | 岩石 | 元素 | |||||
---|---|---|---|---|---|---|---|---|
图谱名称 | 白云鄂博 | 冕宁—德昌 | 白云鄂博 | 冕宁—德昌 | 白云鄂博 | 冕宁—德昌 | ||
1 | calcite | fluorite | carbonatite | carbonatite | Nb | Sr | ||
2 | apatite | calcite | dolomite | syenite | Sr | Pb | ||
3 | monazite | barite | granite | breccia | Ce | Ba | ||
4 | magnetite | quartz | syenite | granite | Nd | S | ||
5 | fluorite | bastnaesite | igneous | dolomite | Eu | Fe |
节点名称 | 白云鄂博 | ||||||||
---|---|---|---|---|---|---|---|---|---|
图谱名称 | calcite | carbonatite | Sr | ||||||
中间节点数 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 |
0 | 0.192 9 | 2 | <1 s | 0.278 2 | 2 | <1 s | 0.12 | 2 | <1 s |
1 | 0.338 6 | 318 | <1 s | 0.463 3 | 679 | <1 s | 0.268 8 | 267 | <1 s |
2 | 0.454 6 | 18 511 | <1 s | 0.593 7 | 26 129 | 2 s | 0.385 8 | 16 726 | <1 s |
3 | 0.540 9 | 1 328 379 | 57 s | 0.688 6 | 1 855 502 | 71 s | 0.474 6 | 1 169 663 | 49 s |
4 | 0.605 3 | 86 737 483 | 3 709 s | 0.757 6 | 118 441 560 | 4 668 s | 0.541 7 | 77 172 134 | 3 820 s |
5 | — | — | — | — | — | — | — | — | — |
节点名称 | 冕宁—德昌 | ||||||||
图谱名称 | calcite | carbonatite | Sr | ||||||
中间节点数 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 |
0 | 0.156 9 | 2 | <1 s | 0.323 9 | 2 | <1 s | 0.132 4 | 2 | <1 s |
1 | 0.292 5 | 150 | <1 s | 0.492 4 | 317 | <1 s | 0.277 5 | 167 | <1 s |
2 | 0.398 9 | 4 395 | <1 s | 0.609 1 | 7 143 | <1 s | 0.384 9 | 4 887 | <1 s |
3 | 0.480 4 | 146 158 | 5 s | 0.693 | 223 796 | 7 s | 0.464 5 | 161 150 | 5 s |
4 | 0.540 8 | 4 491 471 | 171 s | 0.753 2 | 6 426 434 | 216 s | 0.523 5 | 4 900 533 | 181 s |
5 | 0.584 9 | 135 771 508 | 5 188 s | 0.796 1 | 182 967 342 | 6 537 s | 0.567 2 | 146 940 976 | 5 549 s |
Table 4 Relation weight statistics
节点名称 | 白云鄂博 | ||||||||
---|---|---|---|---|---|---|---|---|---|
图谱名称 | calcite | carbonatite | Sr | ||||||
中间节点数 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 |
0 | 0.192 9 | 2 | <1 s | 0.278 2 | 2 | <1 s | 0.12 | 2 | <1 s |
1 | 0.338 6 | 318 | <1 s | 0.463 3 | 679 | <1 s | 0.268 8 | 267 | <1 s |
2 | 0.454 6 | 18 511 | <1 s | 0.593 7 | 26 129 | 2 s | 0.385 8 | 16 726 | <1 s |
3 | 0.540 9 | 1 328 379 | 57 s | 0.688 6 | 1 855 502 | 71 s | 0.474 6 | 1 169 663 | 49 s |
4 | 0.605 3 | 86 737 483 | 3 709 s | 0.757 6 | 118 441 560 | 4 668 s | 0.541 7 | 77 172 134 | 3 820 s |
5 | — | — | — | — | — | — | — | — | — |
节点名称 | 冕宁—德昌 | ||||||||
图谱名称 | calcite | carbonatite | Sr | ||||||
中间节点数 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 | 权重 | 路径 | 用时 |
0 | 0.156 9 | 2 | <1 s | 0.323 9 | 2 | <1 s | 0.132 4 | 2 | <1 s |
1 | 0.292 5 | 150 | <1 s | 0.492 4 | 317 | <1 s | 0.277 5 | 167 | <1 s |
2 | 0.398 9 | 4 395 | <1 s | 0.609 1 | 7 143 | <1 s | 0.384 9 | 4 887 | <1 s |
3 | 0.480 4 | 146 158 | 5 s | 0.693 | 223 796 | 7 s | 0.464 5 | 161 150 | 5 s |
4 | 0.540 8 | 4 491 471 | 171 s | 0.753 2 | 6 426 434 | 216 s | 0.523 5 | 4 900 533 | 181 s |
5 | 0.584 9 | 135 771 508 | 5 188 s | 0.796 1 | 182 967 342 | 6 537 s | 0.567 2 | 146 940 976 | 5 549 s |
[1] | ZHU Y Q, TAN Y J, ZHANG J T, et al. A framework of Hadoop based Geology Big Data fusion and mining technologies[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44: 152-159. |
[2] | 周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学: 地球科学, 2021, 51(7): 1070-1079. |
[3] | 吴冲龙, 刘刚. 大数据与地质学的未来发展[J]. 地质通报, 2019, 38(7): 1081-1088. |
[4] | GUO H D. Big data drives the development of Earth science[J]. Big Earth Data, 2017, 1(1/2): 1-3. |
[5] | LI S, CHEN J P, LIU C. Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data[J]. Minerals, 2022, 12(5): 616. |
[6] | 周永章, 黎培兴, 王树功, 等. 矿床大数据及智能矿床模型研究背景与进展[J]. 矿物岩石地球化学通报, 2017, 36(2): 327-331, 344. |
[7] | 诸云强, 孙凯, 李威蓉, 等. 地球科学知识图谱比较分析与启示: 构建方法与内容视角[J]. 高校地质学报, 2023, 29(3): 382-394. |
[8] | ZHOU C H, WANG H, WANG C S, et al. Geoscience knowledge graph in the big data era[J]. Science China: Earth Sciences, 2021, 64(7): 1105-1114. |
[9] |
齐浩, 董少春, 张丽丽, 等. 地球科学知识图谱的构建与展望[J]. 高校地质学报, 2020, 26(1): 2-10.
DOI |
[10] | PEI Y, CHAI S L, LI X L, et al. Construction and application of a knowledge graph for gold deposits in the Jiapigou gold metallogenic belt, Jilin Province, China[J]. Minerals, 2022, 12(9): 1173. |
[11] | ZHANG X Y, HUANG Y, ZHANG C J, et al. Geoscience knowledge graph (GeoKG): development, construction and challenges[J]. Transactions in GIS, 2022, 26(6): 2480-2494. |
[12] | 邱芹军, 田苗, 吴麒瑞, 等. 基于多源异构数据的地质知识图谱构建与应用[J/OL]. 地学前缘, 1-17. [2025-01-15]. https://doi.org/10.13745/j.esf.sf.2024.11.69. |
[13] |
张前龙, 周永章, 郭兰萱, 等. 找矿知识图谱的智能化应用: 以钦杭成矿带斑岩铜矿为例[J]. 地学前缘, 2024, 31(4): 7-15.
DOI |
[14] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI |
[15] |
王成彬, 王明果, 王博, 等. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36.
DOI |
[16] | QIU Q J, MA K, LV H R, et al. Construction and application of a knowledge graph for iron deposits using text mining analytics and a deep learning algorithm[J]. Mathematical Geosciences, 2023, 55(3): 423-456. |
[17] | WANG B, WU L, XIE Z, et al. Understanding geological reports based on knowledge graphs using a deep learning approach[J]. Computers and Geosciences, 2022, 168: 105229. |
[18] | 冉一早, 董少春, 王汝成, 等. 铌钽矿床知识图谱的构建及应用实践[J]. 高校地质学报, 2023, 29(3): 359-371. |
[19] | YAN Q, XUE L F, LI Y S, et al. Mineral prospectivity mapping integrated with geological map knowledge graph and geochemical data: a case study of gold deposits at Raofeng area, Shaanxi Province[J]. Ore Geology Reviews, 2023, 161: 105651. |
[20] | 周冠云, 朱成河, 高存山, 等. 大数据框架下金刚石地质成矿信息挖掘及应用[J]. 地球学报, 2023, 44(5): 909-915. |
[21] |
张春菊, 刘文聪, 张雪英, 等. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报, 2023, 25(7): 1269-1281.
DOI |
[22] | LIN J J, ZHAO Y Z, HUANG W Y, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33(2): 681-690. |
[23] | DUSHYANTHA N, BATAPOLA N, ILANKOON I M S K, et al. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production[J]. Ore Geology Reviews, 2020, 122: 103521. |
[24] | CHEN P, ILTON E S, WANG Z M, et al. Global rare earth element resources: a concise review[J]. Applied Geochemistry, 2024, 175: 106158. |
[25] | CHANG Y, KONG L, JIA K J, et al. Chinese named entity recognition method based on BERT[C]// 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA). New York: IEEE, 2021: 294-299. |
[26] | SMITH M P, MOORE K, KAVECSÁNSZKI D, et al. From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements[J]. Geoscience Frontiers, 2016, 7(3): 315-334. |
[27] | HOSHINO M, SANEMATSU K, WATANABE Y. REE mineralogy and resources[M]// BÜNZLIJ G, PECHARSKYV K. Including actinides. Amsterdam: Elsevier, 2016: 129-291. |
[28] | 毛景文, 宋世伟, 刘敏, 等. 稀土矿床: 基本特点与全球分布规律[J]. 地质学报, 2022, 96(11): 3675-3697. |
[29] | LIU S, FAN H R, WANG Q W, et al. Carbonatite-related delicate REE mineralization processes revealed by fluorocarbonates and monazite: insights from the giant Bayan Obo REE-Nb-Fe deposit, China[J]. Ore Geology Reviews, 2023, 157: 105443. |
[30] | LI S L, ZHANG W, CAI J L, et al. Multiple pulses of fluids involved in the formation of carbonatite-related REE deposits as revealed by fluorite[J]. Ore Geology Reviews, 2023, 159: 105546. |
[31] | HAO X J, JI Z, LI X H, et al. Construction and application of a knowledge graph[J]. Remote Sensing, 2021, 13(13): 2511. |
[32] | 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. |
[33] | 程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2): 65-69, 85. |
[34] | 王凯怡, 范宏瑞, 谢奕汉. 白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示[J]. 岩石学报, 2002, 18(3): 340-348. |
[35] | 谢玉玲, 夏加明, 崔凯, 等. 中国碳酸岩型稀土矿床: 时空分布与成矿过程[J]. 科学通报, 2020, 65(33): 3794-3808. |
[36] | XU C, KYNICKY J, CHAKHMOURADIAN A R, et al. A case example of the importance of multi-analytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit, Central China[J]. Lithos, 2015, 227: 107-121. |
[37] | 杨立强, 刘江涛, 张闯, 等. 哀牢山造山型金成矿系统: 复合造山构造演化与成矿作用初探[J]. 岩石学报, 2010, 26(6): 1723-1739. |
[38] | WU Q R, LIU Z H, MIAO T, et al. Chinese mineral exploration named entity recognition for literature mining by fusing multi-features with an enhancement domain pre-training model[J]. Ore Geology Reviews, 2025, 176: 106396. |
[39] | CHEN J S, LIN W C, YANG S, et al. Development of anopen-source annotated glaucoma medication dataset from clinical notes in the electronic health record[J]. Translational Vision Science and Technology, 2022, 11(11): 20. |
[40] | 冯秋睿, 赵汀, 刘超. 基于本体的三稀矿产知识图谱构建[J]. 中国矿业, 2024, 33(4): 79-88. |
[41] |
叶育鑫, 刘家文, 曾婉馨, 等. 基于本体指导的矿产预测知识图谱构建研究[J]. 地学前缘, 2024, 31(4): 16-25.
DOI |
[42] | 邱芹军, 田苗, 马凯, 等. 区域地质调查文本中文命名实体识别[J]. 地质论评, 2023, 69(4): 1423-1433. |
[43] | LIU Y F, WEI S Q, HUANG H J, et al. Naming entity recognition of citrus pests and diseases based on the BERT-BiLSTM-CRF model[J]. Expert Systems with Applications, 2023, 234: 121103. |
[44] | LI W, DU Y J, LI X Y, et al. UD_BBC: named entity recognition in social network combined BERT-BiLSTM-CRF with active learning[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105460. |
[45] | QIU Q J, XIE Z, WU L, et al. BiLSTM-CRF for geological named entity recognition from the geoscience literature[J]. Earth Science Informatics, 2019, 12(4): 565-579. |
[46] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018, 6: 3498-4195. |
[47] | HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[DB/OL]. (2015-08-09) [2025-04-10]. https://doi.org/10.48550/arXiv.1508.01991. |
[48] |
刘文聪, 张春菊, 汪陈, 等. 基于BiLSTM-CRF的中文地质时间信息抽取[J]. 地球科学进展, 2021, 36(2): 211-220.
DOI |
[49] | 陈忠良, 袁峰, 李晓晖, 等. 基于BERT-BiLSTM-CRF模型的中文岩石描述文本命名实体与关系联合提取[J]. 地质论评, 2022, 68(2): 742-750. |
[50] | NIU Z Y, ZHONG G Q, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. |
[51] | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[DB/OL]. (2016-05-19) [2025-04-10]. https://doi.org/10.48550/arXiv.1409.0473. |
[52] | SUTTON C, ROHANIMANESH K, MCCALLUM A. Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data[J]. Journal of Machine Learning Research, 2007, 8(8): 693-723. |
[53] | 谢雪景, 谢忠, 马凯, 等. 结合BERT与BiGRU-Attention-CRF模型的地质命名实体识别[J]. 地质通报, 2023, 42(5): 846-855. |
[54] | WANG C B, TAN L Q, LI Y J, et al. Ontology-driven relational data mapping for constructing a knowledge graph of porphyry copper deposits[J]. Earth Science Informatics, 2024, 17(3): 2649-2660. |
[55] | KARYPIS G, HAN E H, KUMAR V. Chameleon: hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8): 68-75. |
[56] | 张福良, 李政林. 我国独居石资源开发利用现状及政策建议[J]. 现代矿业, 2015, 31(11): 1-4. |
[57] | COCHERIE A, ALBAREDE F. An improved U-Th-Pb age calculation for electron microprobe dating of monazite[J]. Geochimica et Cosmochimica Acta, 2001, 65(24): 4509-4522. |
[58] | 朱永峰, MASSONNE H J. 磷灰石中磁黄铁矿出溶结构的发现[J]. 岩石学报, 2005, 21(2): 405-410. |
[59] | 李自静, 刘琰. 川西冕宁-德昌REE矿带风化型矿床的矿石类型及成因[J]. 地球科学, 2018, 43(4): 1307-1325. |
[60] | 侯增谦, 田世洪, 谢玉玲, 等. 川西冕宁-德昌喜马拉雅期稀土元素成矿带: 矿床地质特征与区域成矿模型[J]. 矿床地质, 2008, 27(2): 145-176. |
[61] | CHAKHMOURADIAN A R, REGUIR E P, COUËSLAN C, et al. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations[J]. Mineralogy and Petrology, 2016, 110(2): 361-377. |
[62] | 刘琰, 陈超, 舒小超, 等. 青藏高原东部碳酸岩-正长岩杂岩体型REE矿床成矿模式: 以大陆槽REE矿床为例[J]. 岩石学报, 2017, 33(7): 1978-2000. |
[63] |
LOUVEL M, ETSCHMANN B, GUAN Q S, et al. Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids[J]. Nature Communications, 2022, 13: 1456.
DOI PMID |
[64] | 陈衍景, 翟明国, 蒋少涌. 华北大陆边缘造山过程与成矿研究的重要进展和问题[J]. 岩石学报, 2009, 25(11): 2695-2726. |
[65] | DUAN Z P, JIANG S Y, SU H M, et al. Textural features and in situ trace element analysis of fluorite from the Wujianfang fluorite deposit, Inner Mongolia (NE China): insights into fluid metasomatism and ore-forming process[J]. Ore Geology Reviews, 2022, 147: 104982. |
[66] | 谭侯铭睿, 黄小文, 漆亮, 等. 磷灰石化学组成研究进展: 成岩成矿过程示踪及对矿产勘查的指示[J]. 岩石学报, 2022, 38(10): 3067-3084. |
[67] | CAMPBELL L S, HENDERSON P. Apatite paragenesis in the Bayan Obo REE-Nb-Fe ore deposit, Inner Mongolia, China[J]. Lithos, 1997, 42(1/2): 89-103. |
[68] | 李晓春, 展云翔, 范宏瑞, 等. 内蒙古白云鄂博矿床巨量稀土的堆积及再活化历史: 来自矿物微区Sm-Nd同位素的制约[J]. 岩石学报, 2022, 38(10): 2920-2932. |
[69] | 娄方炬, 顾尚义. 贵州织金寒武纪磷块岩中磷灰石和白云石稀土元素的LA-ICP-MS分析: 对沉积环境和成岩过程的指示意义[J]. 中国稀土学报, 2020, 38(2): 225-239. |
[70] | 赵芝, 王登红. 氟碳铈矿: 稀土资源的半壁江山[J]. 自然资源科普与文化, 2021(3): 12-15. |
[71] | SZUCS A M, STAVROPOULOU A, O’DONNELL C, et al. Reaction pathways toward the formation of bastnäsite: replacement of calcite by rare earth carbonates[J]. Crystal Growth and Design, 2021, 21(1): 512-527. |
[72] | 舒小超, 刘琰, 李德良, 等. 川西冕宁-德昌稀土矿带霓长岩的地球化学特征及地质意义[J]. 岩石学报, 2019, 35(5): 1372-1388. |
[73] | LIU Y, HOU Z Q. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China[J]. Journal of Asian Earth Sciences, 2017, 137: 35-79. |
[74] | BENSON E K, WATTS K E. Apatite and monazite geochemistry record magmatic and metasomatic processes in rare earth element mineralization at mountain pass, California[J]. Economic Geology, 2024, 119(7): 1611-1642. |
[75] | 郑方顺, 宋国学. 铕异常在地质学中的应用[J]. 岩石学报, 2023, 39(9): 2832-2856. |
[76] | PACK A, RUSSELL S S, SHELLEY J M G, et al. Geo- and cosmochemistry of the twin elements yttrium and holmium[J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4592-4608. |
[77] | REN Y S, YANG X Y, YANG X M, et al. Mineralogical study on the distribution regularity of niobium in various types of ores in the giant Bayan Obo Fe-REE-Nb deposit[J]. Ore Geology Reviews, 2023, 161: 105602. |
[78] | BURNHAM A D, BERRY A J. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts[J]. Chemical Geology, 2014, 366: 52-60. |
[1] | CHENG Qiuming. A new paradigm for mineral resource prediction based on human intelligence-artificial intelligence Integration [J]. Earth Science Frontiers, 2025, 32(4): 1-19. |
[2] | LI Bowen, WANG Yongzhi, DING Zhengjiang, WANG Bin, WEN Shibo, DONG Yuhao, JI Zheng. Intelligent search technology for Jiaodong gold deposits based on large models and GraphRAG [J]. Earth Science Frontiers, 2025, 32(4): 155-164. |
[3] | ZHANG Zhiting, PENG Shuai, QUE Xiang, CHEN Qiyu. Few-shot geological relationship extraction based on prompt and metric learning [J]. Earth Science Frontiers, 2025, 32(4): 250-261. |
[4] | DONG Yuhao, WANG Yongzhi, TIAN Jiangtao, WANG Cheng, WEN Shibo, LI Bowen. Research progress on porphyry copper deposit prediction based on knowledge graphs [J]. Earth Science Frontiers, 2025, 32(4): 280-290. |
[5] | WANG Chengbin, WANG Mingguo, WANG Bo, CHEN Jianguo, MA Xiaogang, JIANG Shu. Knowledge graph-infused quantitative mineral resource forecasting [J]. Earth Science Frontiers, 2024, 31(4): 26-36. |
[6] | YE Yuxin, LIU Jiawen, ZENG Wanxin, YE Shuisheng. Ontology-guided knowledge graph construction for mineral prediction [J]. Earth Science Frontiers, 2024, 31(4): 16-25. |
[7] | ZHOU Yongzhang, XIAO Fan. Overview: A glimpse of the latest advances in artificial intelligence and big data geoscience research [J]. Earth Science Frontiers, 2024, 31(4): 1-6. |
[8] | JI Xiaohui, DONG Yuhang, YANG Zhongji, YANG Mei, HE Mingyue, WANG Yuzhu. Mineral question-answering system in Chinese based on multi-hop reasoning in knowledge graphs [J]. Earth Science Frontiers, 2024, 31(4): 37-46. |
[9] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[10] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
[11] | XU Zhihao, YAN Guoying, YANG Zongfeng, WANG Zhaojing, SHEN Junfeng, ZHANG Mengmeng, LI Peipei, XU Kexin. Typomorphic characteristics of magnetite and prediction of deep iron-rich orebody in the Bayan Obo ore deposit [J]. Earth Science Frontiers, 2023, 30(2): 426-439. |
[12] | SHEN Junfeng, YAN Guoying, ZHANG Mengmeng, WANG Zhaojing, XU Kexin, MENG Wenxiang. REE enrichment process in the Bayan Obo Fe-REE-Nb deposit: Genetic and mineralogical evidence [J]. Earth Science Frontiers, 2023, 30(2): 370-383. |
[13] | LI Xiaowei, SHAN Wei, YU Xuefeng, LI Dapeng, XIE Yuanhui, ZHANG Guokun, CHI Naijie, WANG Wenlu, ZHANG Yan, LI Zengsheng, MA Xiangxian. Petrogenesis of Early Cretaceous Qibaoshan alkaline intrusive rocks in the Wulian area and its geological significance [J]. Earth Science Frontiers, 2022, 29(5): 438-463. |
[14] | FAN Chaoxi, XU Cheng, CUI Ying, WEI Chunwan, KUANG Guangxi, SHI Aiguo, LI Zhuoqi. Carbonatite magma and crustal metasomatism: A review [J]. Earth Science Frontiers, 2022, 29(4): 330-344. |
[15] | YANG Daoming, PAN Ronghao, WANG Meng, HOU Tong. Current research progress and emerging trends in experimental study of mineralized carbonatite [J]. Earth Science Frontiers, 2022, 29(1): 54-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||