Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 54-64.DOI: 10.13745/j.esf.sf.2021.8.3
Previous Articles Next Articles
YANG Daoming(), PAN Ronghao, WANG Meng, HOU Tong*()
Received:
2021-04-21
Revised:
2021-07-02
Online:
2022-01-25
Published:
2022-02-22
Contact:
HOU Tong
CLC Number:
YANG Daoming, PAN Ronghao, WANG Meng, HOU Tong. Current research progress and emerging trends in experimental study of mineralized carbonatite[J]. Earth Science Frontiers, 2022, 29(1): 54-64.
Fig.1 Correlation of H2O and CO2 solubilities in mafic melts at 500 MPa (a) or in alkali-rich mafic melts at 100 and 500 MPa (b). Modified after [28].
Fig.2 (a) Schematic CO2-saturated liquid phase diagram (partial) for CaO-MgO-SiO2-CO2 system at 2.5 GPa (modified after [38]) and (b) phase diagram of CaCO3-(Na,K)2CO3 pseudobinary system (modified after [29])
Fig.4 (a) Phase equilibria of nephelinite and calcite (10%) with presence of volatiles (H2O/F/Cl) and (b) immiscibility field in (Na2O+K2O)-(SiO2+TiO2+Al2O3)-(CaO+MgO+FeO) ternary system. Modified after [12].
实验 | 压力p | 温度T/℃ | 氧逸度 | 初始物质H2O 含量/% |
---|---|---|---|---|
Veksler等[ | 100 MPa | 800~950 | NNO | 0~11.3 |
Martin等[ | 1~3 GPa | 1 150~1 260 | FMQ-FMQ+4 | 0~3.9 |
Nabyl等[ | 0.4~1.5 GPa | 725~975 | FMQ-FMQ+2 | 0.77~12 |
Table 1 Experimental conditions forthe carbonated alkaline magmatic liquid immiscibility experiments
实验 | 压力p | 温度T/℃ | 氧逸度 | 初始物质H2O 含量/% |
---|---|---|---|---|
Veksler等[ | 100 MPa | 800~950 | NNO | 0~11.3 |
Martin等[ | 1~3 GPa | 1 150~1 260 | FMQ-FMQ+4 | 0~3.9 |
Nabyl等[ | 0.4~1.5 GPa | 725~975 | FMQ-FMQ+2 | 0.77~12 |
Fig.6 Plots of Nb (left panel) and REE (right panel) partition coefficients in carbonatite-silicate melt vs. water content (a, b), pressure (c, d), temperature (e, f) and oxygen fugacity (g, h) of the starting materials. Data from [17,46,48].
Fig.7 Effect of melt polymerization on REE partition coefficients (a) and REE partition coefficients in silicate melts containing immiscible phosphate, sulfate, fluoride and chloride molten salts (b). Data are adapted from [17,46].
[1] | LE MAITRE R W. Igneous rocks: a classification and glossary of terms[M]. Cambridge: Cambridge University Press, 2002: 236. |
[2] |
FOLEY S F, YAXLEY G M, ROSENTHAL A, et al. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar[J]. Lithos, 2009, 112(Suppl 1):274-283.
DOI URL |
[3] |
HAMMOUDA T, MOINE B N, DEVIDAL J L, et al. Trace element partitioning during partial melting of carbonated eclogites[J]. Physics of the Earth and Planetary Interiors, 2009, 174(1/2/3/4):60-69.
DOI URL |
[4] |
DASGUPTA R, HIRSCHMANN M M. The deep carbon cycle and melting in Earth’s interior[J]. Earth and Planetary Science Letters, 2010, 298(1/2):1-13.
DOI URL |
[5] |
DASGUPTA R, HIRSCHMANN M M, WITHERS A C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions[J]. Earth and Planetary Science Letters, 2004, 227(1/2):73-85.
DOI URL |
[6] |
KISEEVA E S, LITASOV K D, YAXLEY G M, et al. Melting and phase relations of carbonated eclogite at 9-21 GPa and the petrogenesis of alkali-rich melts in the deep mantle[J]. Journal of Petrology, 2013, 54(8):1555-1583.
DOI URL |
[7] | 王凯怡, 杨奎峰, 范宏瑞, 等. 白云鄂博矿床研究若干问题的探讨[J]. 地质学报, 2012, 86(5):687-699. |
[8] | 陈唯. 碳酸岩型铌矿床成矿作用[J]. 矿物学报, 2015, 35(增刊):276. |
[9] | 陈唯. 碳酸岩中高普通铅副矿物原位微区U-Th-Pb测年[J]. 矿物学报, 2015, 35(增刊):694. |
[10] |
WOOLLEY A R, CHURCH A A. Extrusive carbonatites: a brief review[J]. Lithos, 2005, 85(1/2/3/4):1-14.
DOI URL |
[11] |
BAILEY D K, KEARNS S. New forms of abundant carbonatite-silicate volcanism: recognition criteria and further target locations[J]. Mineralogical Magazine, 2012, 76(2):271-284.
DOI URL |
[12] |
KJARSGAARD B A. Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa[J]. Journal of Petrology, 1998, 39(11/12):2061-2075.
DOI URL |
[13] |
CHAZOT G, MERGOIL-DANIEL J. Co-eruption of carbonate and silicate magmas during volcanism in the Limagne graben (French Massif Central)[J]. Lithos, 2012, 154:130-146.
DOI URL |
[14] | 谢玉玲, 曲云伟, 杨占峰, 等. 白云鄂博铁、 铌、 稀土矿床: 研究进展、 存在问题和新认识[J]. 矿床地质, 2019, 38(5):983-1003. |
[15] |
SMITH M P, MOORE K, KAVECSÁNSZKI D, et al. From mantle to critical zone: a review of large and giant sized deposits of the rare earth elements[J]. Geoscience Frontiers, 2016, 7(3):315-334.
DOI URL |
[16] |
WOOLEY A R, KJARSGAARD B A. Carbonatite occurrences of the world: map and database[J]. Journal of Petrology, 2008, 50(1):195-196.
DOI URL |
[17] |
VEKSLER I V, DORFMAN A M, DULSKI P, et al. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite[J]. Geochimica et Cosmochimica Acta, 2012, 79:20-40.
DOI URL |
[18] |
MCCREATH J A, FINCH A A, HERD D A, et al. Geochemistry of pyrochlore minerals from the Motzfeldt Center, South Greenland: the mineralogy of a syenite-hosted Ta, Nb deposit[J]. American Mineralogist, 2013, 98(2/3):426-438.
DOI URL |
[19] |
LEE W J, WYLLIE P J. Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites[J]. International Geology Review, 1994, 36(9):797-819.
DOI URL |
[20] | 刘琰. 川西冕宁—德昌稀土成矿带霓辉正长岩-碳酸岩杂岩体成岩成矿时代[J]. 地质学报, 2015, 89(增刊):164-167. |
[21] | 黄智龙, 许成, 刘丛强. 碳酸岩与铂族元素地球化学[J]. 地质论评, 2005, 51(4):443-451. |
[22] | 李波, 黄智龙, 许成, 等. 四川冕宁稀土矿床碳酸岩PGE地球化学初步研究[J]. 矿物学报, 2007, 27(增刊1):423-429. |
[23] | 许成, 黄智龙, 刘丛强, 等. 四川牦牛坪稀土矿床碳酸岩地球化学[J]. 中国科学D辑: 地球科学, 2002, 32(8):635-643. |
[24] |
GUZMICS T, MITCHELL R H, SZABÓ C, et al. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):177-196.
DOI URL |
[25] |
RANKIN A H, LE BAS M J. Liquid immiscibility between silicate and carbonate melts in naturally occuring ijolite magma[J]. Nature, 1974, 250(5463):206-209.
DOI URL |
[26] |
NIELSEN T F D, SOLOVOVA I P, VEKSLER I V. Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallised melt inclusions, Gardiner complex[J]. Contributions to Mineralogy and Petrology, 1997, 126(4):331-344.
DOI URL |
[27] |
WEIDENDORFER D, SCHMID T, M W, MATTSSON H B. Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites[J]. Contributions to Mineralogy and Petrology, 2016, 171(5):1-29.
DOI URL |
[28] |
SHISHKINA T A, BOTCHARNIKOV R E, HOLTZ F, et al. Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts[J]. Chemical Geology, 2014, 388:112-129.
DOI URL |
[29] |
WEIDENDORFER D, SCHMIDT M W, MATTSSON H B. A common origin of carbonatite magmas[J]. Geology, 2017, 45(6):507-510.
DOI URL |
[30] |
SCHMIDT M W, WEIDENDORFER D. Carbonatites in oceanic hotspots[J]. Geology, 2018, 46(5):435-438.
DOI URL |
[31] | BLANK J G, BROOKER R A. Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior[J]. Reviews in Mineralogy and Geochemistry, 1994, 30(1):157-186. |
[32] |
BROOKER R A, KOHN S C, HOLLOWAY J R, et al. Structural controls on the solubility of CO2 in silicate melts: Part I: bulk solubility data[J]. Chemical Geology, 2001, 174(1/2/3):225-239.
DOI URL |
[33] |
DAWSON J B. Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika[J]. Nature, 1962, 195(4846):1075-1076.
DOI URL |
[34] |
GITTINS J. Carbonatite origin and diversity[J]. Nature, 1989, 338(6216):548.
DOI URL |
[35] | 舒小超, 刘琰, 李德良, 等. 川西冕宁—德昌稀土矿带霓长岩的地球化学特征及地质意义[J]. 岩石学报, 2019, 35(5):1372-1388. |
[36] |
DAWSON J B, GARSON M S, ROBERTS B. Altered former alkalic carbonatite lava from Oldoinyo Lengai, Tanzania: inferences for calcite carbonatite lavas[J]. Geology, 1987, 15(8):765.
DOI URL |
[37] |
GUZMICS T, MITCHELL R H, SZABÓ C, et al. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma[J]. Contributions to Mineralogy and Petrology, 2012, 164(1):101-122.
DOI URL |
[38] |
HUANG W L, WYLLIE P J. Melting relationships in the systems CaO-CO2 and MgO-CO2 to 33 kilobars[J]. Geochimica et Cosmochimica Acta, 1976, 40(2):129-132.
DOI URL |
[39] |
KJARSGAARD B, PETERSON T. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence[J]. Mineralogy and Petrology, 1991, 43(4):293-314.
DOI URL |
[40] |
LEE W J, WYLLIE P J. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems[J]. Journal of Petrology, 1998, 39(11/12):2005-2013.
DOI URL |
[41] |
TWYMAN J D, GITTINS J. Alkalic carbonatite magmas: parental or derivative?[J]. Geological Society of London Special Publications, 1987, 30(1):85-94.
DOI URL |
[42] | KJARSGAARD B A, HAMILTON D L, PETERSON T D. Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai[J]. Carbonatite Volcanism, 1995, 4:163-190. |
[43] |
BROOKER R A, KJARSGAARD B A. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5 GPa with applications to carbonatite genesis[J]. Journal of Petrology, 2011, 52(7/8):1281-1305.
DOI URL |
[44] |
VEKSLER I V, PETIBON C, JENNER G A, et al. Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave[J]. Journal of Petrology, 1998, 39(11/12):2095-2104.
DOI URL |
[45] |
MARTIN L H J, SCHMIDT M W, MATTSSON H B, et al. Element partitioning between immiscible carbonatite-kamafugite melts with application to the Italian ultrapotassic suite[J]. Chemical Geology, 2012, 320/321:96-112.
DOI URL |
[46] |
MARTIN L H J, SCHMIDT M W, MATTSSON H B, et al. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1-3 GPa[J]. Journal of Petrology, 2013, 54(11):2301-2338.
DOI URL |
[47] |
MITCHELL R H. Peralkaline nephelinite-natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania[J]. Contributions to Mineralogy and Petrology, 2009, 158(5):589-598.
DOI URL |
[48] |
NABYL Z, MASSUYEAU M, GAILLARD F, et al. A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites[J]. Geochimica et Cosmochimica Acta, 2020, 282:297-323.
DOI URL |
[49] |
VEKSLER I V, NIELSEN T F D, SOKOLOV S V. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis[J]. Journal of Petrology, 1998, 39(11/12):2015-2031.
DOI URL |
[50] |
FOUSTOUKOS D I, MYSEN B O. The structure of water-saturated carbonate melts[J]. American Mineralogist, 2015, 100(1):35-46.
DOI URL |
[51] |
SHIMIZU N, AKIMOTO S I. Partitioning of strontium between clinopyroxene and liquid at high pressures: preliminary experiments[J]. Earth and Planetary Science Letters, 1971, 13(1):134-138.
DOI URL |
[52] |
SHIMIZU N. An experimental study of the partitioning of K, Rb, Cs, Sr and Ba between clinopyroxene and liquid at high pressures[J]. Geochimica et Cosmochimica Acta, 1974, 38(12):1789-1798.
DOI URL |
[53] | HAMILTON D L, BEDSON P, ESSON J. The behaviour of trace elements in the evolution of carbonatites[M]//BELL K. Carbonatites, genesis and evolution. London: Unwin Hyman, 1989: 405-427. |
[54] | 李慧, 尚林波, 樊文苓. 铜在熔体流体间分配实验的研究进展[J]. 矿物学报, 2012, 32(1):28-32. |
[55] | KELLER J, SPETTEL B. The trace element composition and petrogenesis of natrocarbonatites[J]. Carbonatite Volcanism, 1995, 4:70-86. |
[56] |
GUZMICS T, BERKESI M, BODNAR R J, et al. Natrocarbonatites: a hidden product of three-phase immiscibility[J]. Geology, 2019, 47(6):527-530.
DOI URL |
[57] | 郑旭, 刘琰, 欧阳怀, 等. 川西冕宁木落寨碳酸岩型稀土矿床流体演化对成矿的制约: 来自包裹体和稳定同位素的证据[J]. 岩石学报, 2019, 35(5):1389-1406. |
[58] | 宋文磊, 许成, 王林均, 等. 与碳酸岩-碱性杂岩体相关的内生稀土矿床成矿作用研究进展[J]. 北京大学学报(自然科学版), 2013, 49(4):725-740. |
[59] |
PANINA L I. Multiphase carbonate-salt immiscibility in carbonatitemelts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia)[J]. Contributions to Mineralogy and Petrology, 2005, 150(1):19-36.
DOI URL |
[60] |
KYNICKY J, SMITH M P, SONG W L, et al. The role of carbonate-fluoride melt immiscibility in shallow REE deposit evolution[J]. Geoscience Frontiers, 2019, 10(2):527-537.
DOI URL |
[61] |
MITCHELL R H. Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite[J]. Mineralogical Magazine, 1997, 61(409):779-789.
DOI URL |
[62] |
GUZMICS T, ZAJACZ Z, MITCHELL R H, et al. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions[J]. Contributions to Mineralogy and Petrology, 2015, 169(2):1-18.
DOI URL |
[63] |
FENG M, SONG W L, KYNICKY J, et al. Primary rare earth element enrichment in carbonatites: evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia[J]. Ore Geology Reviews, 2020, 117:103294.
DOI URL |
[64] | 范宏瑞, 牛贺才, 李晓春, 等. 中国内生稀土矿床类型、 成矿规律与资源展望[J]. 科学通报, 2020, 65(33):3778-3793. |
[1] | LI Xiaowei, SHAN Wei, YU Xuefeng, LI Dapeng, XIE Yuanhui, ZHANG Guokun, CHI Naijie, WANG Wenlu, ZHANG Yan, LI Zengsheng, MA Xiangxian. Petrogenesis of Early Cretaceous Qibaoshan alkaline intrusive rocks in the Wulian area and its geological significance [J]. Earth Science Frontiers, 2022, 29(5): 438-463. |
[2] | FAN Chaoxi, XU Cheng, CUI Ying, WEI Chunwan, KUANG Guangxi, SHI Aiguo, LI Zhuoqi. Carbonatite magma and crustal metasomatism: A review [J]. Earth Science Frontiers, 2022, 29(4): 330-344. |
[3] | DENG Miao, WEI Chunwan, XU Cheng, SHI Aiguo, LI Zuoqi, FAN Chaoxi, KUANG Guangxi. Rare earth mineralization in Bayan Obo super-large deposit: A review [J]. Earth Science Frontiers, 2022, 29(1): 14-28. |
[4] | LI Tingxin, CAI Yongfeng, LIU Yanguang, LIU Guihong, ZHANG Hongliang, QIN Xiangxi. Tracer test and simulation of thermal energy storage in carbonate rocks of the Xian County geothermal field [J]. Earth Science Frontiers, 2020, 27(1): 152-158. |
[5] | ZHANG Shuanhong,ZHAO Yue. The 1.331.30 Ga mafic large igneous province and REE-Nb metallogenic event in the northern North China Craton. [J]. Earth Science Frontiers, 2018, 25(5): 34-50. |
[6] | CHAO Hui-Xia, SU Sheng-Rui, YANG Xin-Ke. Research on the geological characteristics of the Miaoya REE deposit, Hubei Province. [J]. Earth Science Frontiers, 2016, 23(4): 102-108. |
[7] | WANG Chuan-Gang. Availability analysis of oil pool forming for marine source rock in Ordos Basin. [J]. Earth Science Frontiers, 2012, 19(1): 253-263. |
[8] | ZHANG Hui TANG Yong LIU Cong-Jiang CHEN Jian-Feng. An experimental study of REE partitioning between phosphorusrich peraluminous melt and coexisting aqueous fluid at 1 kbar and 800 ℃ [J]. Earth Science Frontiers, 2009, 16(1): 114-124. |
[9] | ZHANG Chao-Jun WANG Chang-Xun LUO Xiu-Hu LIU Yun-Xiang ZHANG Jian-Liang JU Ke-Yuan. Geological attributes and conditions of hydrocarbon accumulation of Cambrian folds in the southern Yingmaili swell,Tarim basin. [J]. Earth Science Frontiers, 2008, 15(5): 349-356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||