[1] |
周成虎, 王华, 王成善, 等. 大数据时代的地学知识图谱研究[J]. 中国科学: 地球科学, 2021, 51(7): 1070-1079.
|
[2] |
周永章, 张前龙, 黄永健, 等. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘, 2021, 28(3): 67-75.
DOI
|
[3] |
季晓慧, 董雨航, 杨中基, 等. 基于知识图谱多跳推理的中文矿物知识问答方法与系统[J]. 地学前缘, 2024, 31(4): 37-46.
DOI
|
[4] |
黄徐胜, 朱月琴, 付立军, 等. 基于BERT的金矿地质实体关系抽取模型研究[J]. 地质力学学报, 2021, 27(3): 391-399.
|
[5] |
邱芹军, 王斌, 徐德馨, 等. 地质领域文本实体关系联合抽取方法[J]. 高校地质学报, 2023, 29(3): 419-428.
|
[6] |
SHIN T, RAZEGHI Y, LOGAN IV R L, et al. AutoPrompt: eliciting knowledge from language models with automatically generated prompts[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational Linguistics, 2020: 4222-4235.
|
[7] |
SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[J]. Advances in neural information processing systems, 2017, 30: 4080-4090.
|
[8] |
HAN X, ZHAO W L, DING N, et al. PTR: prompt tuning with rules for text classification[J]. AI Open, 2022, 3: 182-192.
|
[9] |
CHEN X, ZHANG N, XIE X, et al. KnowPrompt: knowledge-aware prompt-tuning with synergistic optimization for relation extraction[C]// Proceedings of the ACM Web Conference 2022. Lyon: ACM, 2022: 2778-2788.
|
[10] |
HE K, HUANG Y C, MAO R, et al. Virtual prompt pre-training for prototype-based few-shot relation extraction[J]. Expert Systems with Applications, 2023, 213: 118927.
|
[11] |
ZHAO X Y, YANG M, QU Q, et al. Few-shot relation extraction with autom-atically generated prompts[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(3): 4971-4983.
|
[12] |
GAO T, HAN X, LIU Z, et al. Hybrid attention-based prototypical networks for noisy few-shot relation classification[C]// Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI Press, 2019, 33(1): 6407-6414.
|
[13] |
YANG K, ZHENG N, DAI X, et al. Enhance prototypical network with text descriptions for few-shot relation classification[C]// Proceedings of the 29th ACM international conference on information & knowledge management. New York: ACM, 2020: 2273-2276.
|
[14] |
HAN J, CHENG B, LU W. Exploring task difficulty for few-shot relation extraction[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: Association for Computational Linguistics, 2021: 2605-2616.
|
[15] |
LIU Y, HU J, WAN X, et al. A Simple yet effective relation information guided approach for few-shot relation extraction[C]//Findings of the Association for Computational Linguistics:ACL 2022. Dublin:Association for Computational Linguistics, 2022: 757-763.
|
[16] |
BORCHERT P, DE WEERDT J, MOENS M F. Efficient information extraction in few-shot relation classification through contrastive representation learning[C]//Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers). Mexico City: Association for Computational Linguistics, 2024: 638-646.
|
[17] |
SUN Q, LIU Y, CHUA T S, et al. Meta-transfer learning for few-shot learning[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. California: IEEE, 2019: 403-412.
|
[18] |
LIU X, ZHENG Y, DU Z, et al. GPT understands, too[J]. AI Open, 2024, 5: 208-215.
|
[19] |
LESTERB, AL-RFOUR, CONSTANTN. The power of scale for parameter-efficient prompt tuning[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana: Association for Computational Linguistics, 2021: 3045-3059.
|
[20] |
DEVLINJ, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
|
[21] |
孙东, 杨涛, 曹楠, 等. 泸定MS6.8地震同震地质灾害特点及防控建议[J]. 地学前缘, 2023, 30(3): 476-493.
DOI
|
[22] |
李文佳. 面向自然语言的地质对象知识表达模型构建关键技术研究[D]. 武汉: 中国地质大学(武汉), 2022.
|
[23] |
田苗. 地质实体关系抽取方法及应用研究[D]. 宜昌: 三峡大学, 2023.
|
[24] |
张利军, 鲁文豪, 张建东, 等. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510.
DOI
|
[25] |
宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469.
DOI
|
[26] |
HAN X, ZHU H, YU P, et al. FewRel: a large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018: 4803-4809.
|
[27] |
GAO T, HAN X, ZHU H, et al. FewRel 2.0: towards more challenging few-shot relation classification[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 6250-6255.
|