[1] |
李三忠, 刘丽军, 索艳慧, 等. 碳构造: 一个地球系统科学新范式[J]. 科学通报, 2023, 68(4): 309-338.
|
[2] |
郭正堂. 双碳战略与地球科学[R]. 天津: 第四届表层地球系统科学国际研讨会, 2023.
|
[3] |
National Oceanic and Atmospheric Administration, Earth System Research Laboratories. Trends in atmospheric carbon dioxide (CO2) [EB/OL]. (2024-05-05)[2024-05-14]. https://gml.noaa.gov/ccgg/trends/.
|
[4] |
World Meteorological Organization. State of the global climate 2022[M]. Geneva: World Meteorological Organization, 2023.
|
[5] |
鲁政委, 钱立华, 阳能. 碳关税: 欧美的区别与应对思考[N/OL]. 金融时报, (2023-02-08)[2024-05-14]. https://www.financialnews.com.cn/pl/zj/202302/t20230208_264330.html.
|
[6] |
谢和平. 发展低碳技术推进绿色经济[J]. 中国能源, 2010, 32(9): 5-10.
|
[7] |
National Research Council. Climate change: evidence and causes: update 2020[M]. Washington DC: The National Academies Press, 2020.
|
[8] |
IPCC. Climate Change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2021.
|
[9] |
赵改善. 二氧化碳地质封存地球物理监测: 现状、 挑战与未来发展[J]. 石油物探, 2023, 62(2): 194-211.
DOI
|
[10] |
International Energy Agency. World energy outlook 2010[R]. Paris: International Energy Agency, 2011.
|
[11] |
RICHARDS K R. A brief overview of carbon sequestration economics and policy[J]. Environmental Management, 2004, 33(4): 545-558.
PMID
|
[12] |
张贤, 杨晓亮, 鲁玺. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 中国21世纪议程管理中心, 全球碳捕集与封存研究院, 清华大学, 2023.
|
[13] |
蔡博峰, 李琦, 张贤. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国 CCUS 路径研究[R]. 北京: 生态环境部环境规划院, 2021.
|
[14] |
METZ B, DAVIDSON O, CONINCK H D, et al. IPCC special report on carbon dioxide capture and storage[M]. New York: Cambridge University Press, 2005.
|
[15] |
谢和平, 谢凌志, 王昱飞, 等. 全球二氧化碳减排不应是CCS, 应是CCU[J]. 四川大学学报(工程科学版), 2012, 44(4): 1-5.
|
[16] |
王晓桥, 马登龙, 夏锋社, 等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程, 2020, 27(2): 23-34.
|
[17] |
BLACKFORD J, BULL J M, CEVATOGLU M, et al. Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS)[J]. International Journal of Greenhouse Gas Control, 2015, 38: 221-229.
|
[18] |
GYÖRE D, GILFILLAN S M V, STUART F M. Tracking the interaction between injected CO2 and reservoir fluids using noble gas isotopes in an analogue of large-scale carbon capture and storage[J]. Applied Geochemistry, 2017, 78: 116-128.
|
[19] |
ROBERTS J J, GILFILLAN S M V, STALKER L, et al. Geochemical tracers for monitoring offshore CO2 stores[J]. International Journal of Greenhouse Gas Control, 2017, 65: 218-234.
|
[20] |
JOHNSON G, DALKHAA C, SHEVALIER M, et al. Pre-, Syn- and Post-CO2 injection geochemical and isotopic monitoring at the Pembina Cardium CO2 monitoring pilot, Alberta, Canada[J]. Energy Procedia, 2014, 63: 4150-4154.
|
[21] |
WEIMER J E, SINOPOLI B, KROGH B H. A relaxation approach to dynamic sensor selection in large-scale wireless networks[C]// The 28th international conference on distributed computing systems workshops. New York: Institute of Electrical and Electronics Engineers, 2008: 501-506.
|
[22] |
GULATI K, KUMAR BODDU R S, KAPILA D, et al. A review paper on wireless sensor network techniques in Internet of Things (IoT)[J]. Materials Today: Proceedings, 2022, 51: 161-165.
|
[23] |
WANG H Q, ZHOU J T, LI X, et al. Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China[J]. Journal of Environmental Sciences, 2023, 123: 367-386.
DOI
PMID
|
[24] |
GARCÍA PLAZA E, NÚÑEZ LÓPEZ P J, BEAMUD GONZÁLEZ E M. Efficiency of vibration signal feature extraction for surface finish monitoring in CNC machining[J]. Journal of Manufacturing Processes, 2019, 44: 145-157.
|
[25] |
杨慧, 范怀伟, 王文峰, 等. 空地一体化的地质碳封存泄露风险监测方法[J]. 工程地质学报, 2023, 31(4): 1461-1473.
|
[26] |
罗淑芹. 基于TDLAS的CO2气体检测分析系统[D]. 哈尔滨: 哈尔滨工业大学, 2013.
|
[27] |
SEO H S, KOH Y J, NAM H, et al. Development of a rapid and accurate capor generation system for real-time monitoring of a Chemical Warfare Agent (CWA) by Coupling Fourier Transform Infrared (FT-IR) spectroscopy[J]. ACS Omega, 2023, 8(20): 18058-18063.
|
[28] |
张琳, 邵晟宇, 杨柳, 等. 红外光谱法气体定量分析研究进展[J]. 分析仪器, 2009(2): 6-9.
|
[29] |
耿晔, 张文帅, 闫学军, 等. 济南市固定污染源CO2在线监测系统比对监测解析[J]. 环境科技, 2023, 36(4): 58-63.
|
[30] |
LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2009, 34(10): 1594-1596.
PMID
|
[31] |
施俊宇. 基于光声光谱检测技术的二氧化碳气体检测系统[D]. 杭州: 浙江工业大学, 2017.
|
[32] |
李军. 基于数值迭代的非色散红外二氧化碳高温补偿方法[J]. 仪表技术与传感器, 2017(4): 104-106.
|
[33] |
刘崎, 汪磊, 朱向冰, 等. 用于二氧化碳浓度红外检测的温度补偿研究[J]. 红外技术, 2023, 45(6): 671-677.
|
[34] |
LI Q Y, LIU N Z. Coverage optimization algorithm based on control nodes position in wireless sensor networks[J]. International Journal of Communication Systems, 2022, 35(5): e4599.
|
[35] |
武永波. 基于物联网的滑坡灾害监测预警技术研究[D]. 武汉: 中国地质大学(武汉), 2021.
|
[36] |
AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393-422.
|
[37] |
孙玉文. 基于无线传感器网络的农田环境监测系统研究与实现[D]. 南京: 南京农业大学, 2013.
|
[38] |
赵仕俊, 张朝晖. 无线传感器网络正六边形节点覆盖模型研究[J]. 计算机工程, 2010, 36(20): 113-115, 118.
DOI
|
[39] |
王志刚. 无线传感器网络节点部署与无人机辅助数据采集优化研究[D]. 西宁: 青海师范大学, 2023.
|
[40] |
瞿贻. 可移动节点辅助的无线传感器网络能量优化研究[D]. 北京: 清华大学, 2016.
|
[41] |
李润之. 基于移动平台的无线传感器网络拓扑结构探测研究[D]. 长沙: 国防科技大学, 2020.
|
[42] |
WU Y B, NIU R Q, WANG Y, et al. A fast deploying monitoring and real-time early warning system for the baige landslide in Tibet, China[J]. Sensors, 2020, 20(22): 6619.
|
[43] |
王凤杰. 森林碳汇地面监测系统的研制及监测节点分布优化研究[D]. 泰安: 山东农业大学, 2014.
|
[44] |
高昌萱. 面向海洋牧场的传感监测网络部署研究[D]. 大连: 大连海事大学, 2019.
|