Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 55-72.DOI: 10.13745/j.esf.sf.2022.1.2
Previous Articles Next Articles
MA Chang1(), GE Jiawang1,2,*(
), ZHAO Xiaoming1,2, LIAO Jin3, YAO Zhe3, ZHU Jitian3, FANG Xiaoyu2, XIANG Zhu1
Received:
2021-08-10
Revised:
2021-09-28
Online:
2022-07-25
Published:
2022-07-28
Contact:
GE Jiawang
CLC Number:
MA Chang, GE Jiawang, ZHAO Xiaoming, LIAO Jin, YAO Zhe, ZHU Jitian, FANG Xiaoyu, XIANG Zhu. Quaternary Qiongdongnan Basin in South China Sea: Shelf-edge trajectory migration and deep-water depositional models[J]. Earth Science Frontiers, 2022, 29(4): 55-72.
气候条件 | 物源供给 | 可容纳空间 | 沉积模式 |
---|---|---|---|
寒冷干旱 | 低物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 |
中可容纳空间 | 发育海底水道峡谷,泥质的斜坡和盆地平原 | ||
高可容纳空间 | 深水区沉积大量泥质运输体系 | ||
高物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 | |
中可容纳空间 | 发育浊积岩朵叶体、水道-天然堤复合体,三角洲前缘,高水位情况下的浊积扇朵叶-水道充填复合体的海底扇 | ||
高可容纳空间 | 三角洲前缘和海侵形成的泥岩 | ||
温暖潮湿 | 低物源供给 | 低可容纳空间 | 陆坡发育厚层砂体,砂质盆底扇 |
中可容纳空间 | 泥质陆坡、盆底扇平原 | ||
高物源供给 | 低可容纳空间 | 分布面积广泛、厚度大、体积大的盆底扇,砂质河道充填 | |
中可容纳空间 | 砂泥交互的沉积体系,海底扇有浊积岩朵叶、水道充填,深水泥质沉积 |
Table 1 List of the tri-factor combinations for various shelf-edge and deep-water depositional models. Modified after [4].
气候条件 | 物源供给 | 可容纳空间 | 沉积模式 |
---|---|---|---|
寒冷干旱 | 低物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 |
中可容纳空间 | 发育海底水道峡谷,泥质的斜坡和盆地平原 | ||
高可容纳空间 | 深水区沉积大量泥质运输体系 | ||
高物源供给 | 低可容纳空间 | 陆坡发育砂岩、浊积岩,富含砂质的海底扇 | |
中可容纳空间 | 发育浊积岩朵叶体、水道-天然堤复合体,三角洲前缘,高水位情况下的浊积扇朵叶-水道充填复合体的海底扇 | ||
高可容纳空间 | 三角洲前缘和海侵形成的泥岩 | ||
温暖潮湿 | 低物源供给 | 低可容纳空间 | 陆坡发育厚层砂体,砂质盆底扇 |
中可容纳空间 | 泥质陆坡、盆底扇平原 | ||
高物源供给 | 低可容纳空间 | 分布面积广泛、厚度大、体积大的盆底扇,砂质河道充填 | |
中可容纳空间 | 砂泥交互的沉积体系,海底扇有浊积岩朵叶、水道充填,深水泥质沉积 |
Fig.6 Scatter plots of shelf-edge accretion distance vs. progradation distance (a) and related shelf-edge trajectory angle statistics for the three stratigraphic sequences of the Quaternary Qiongdongnan Basin
Fig.7 Sectional views of shelf-edge trajectory migrations on the profiles of survey lines 1 (a) and 10 (b) in the Quaternary Qiongdongnan Basin (survey line locations see Fig.2)
Fig.8 Statistics of shelf-edge accretion (a) and progradation (b) distances for the three stratigraphic sequences of the Quaternary Qiongdongnan Basin
测线 | 层位 | A/m | P/m | Ra/ (m·Ma-1) | Rp/ (m·Ma-1) | Fc/ (m2·Ma-1) |
---|---|---|---|---|---|---|
1 | T27-T20 | 174.66 | 6 237.50 | 194.07 | 6 930.56 | 1 210.49 |
T20-T14 | 243.34 | 11 362.50 | 243.34 | 11 362.50 | 2 764.95 | |
T14-T0 | 826.40 | 6 737.50 | 1 033.00 | 8 421.88 | 6 959.84 | |
2 | T27-T20 | 125.48 | 9 287.50 | 139.42 | 10 319.44 | 1 294.88 |
T20-T14 | 354.60 | 8 712.50 | 354.60 | 8 712.50 | 3 089.45 | |
T14-T0 | 756.64 | 5 587.50 | 945.80 | 6 984.38 | 5 284.66 | |
3 | T27-T20 | 51.12 | 7 300.00 | 56.80 | 8 111.11 | 414.64 |
T20-T14 | 369.52 | 10 650.00 | 369.52 | 10 650.00 | 3 935.39 | |
T14-T0 | 701.36 | 2 037.50 | 876.70 | 2 546.88 | 1 786.28 | |
4 | T27-T20 | 162.00 | 5 575.00 | 180.00 | 6 194.44 | 1 003.50 |
T20-T14 | 293.84 | 9 212.50 | 293.84 | 9 212.50 | 2 707.00 | |
T14-T0 | 708.16 | 5 150.00 | 885.20 | 6 437.50 | 4 558.78 | |
5 | T27-T20 | 105.46 | 4 862.50 | 117.18 | 5 402.78 | 569.78 |
T20-T14 | 105.36 | 8 362.50 | 105.36 | 8 362.50 | 881.07 | |
T14-T0 | 853.04 | 1 712.50 | 1 066.30 | 2 140.63 | 1 826.04 | |
6 | T27-T20 | 62.96 | 3 962.50 | 69.96 | 4 402.78 | 277.20 |
T20-T14 | 199.40 | 4 175.00 | 199.40 | 4175.00 | 832.50 | |
T14-T0 | 988.44 | 1 587.50 | 1 235.55 | 1 984.38 | 1 961.44 | |
7 | T27-T20 | 58.68 | 3 600.00 | 65.20 | 4 000.00 | 234.72 |
T20-T14 | 358.52 | 4 662.50 | 358.52 | 4 662.50 | 1 671.60 | |
T14-T0 | 768.80 | 1 225.00 | 961.00 | 1 531.25 | 1 177.23 | |
8 | T27-T20 | 263.76 | 2 850.00 | 293.07 | 3 166.67 | 835.24 |
T20-T14 | 136.00 | 2 275.00 | 136.00 | 2 275.00 | 309.40 | |
T14-T0 | 751.48 | 2 675.00 | 939.35 | 3 343.75 | 2 512.76 | |
9 | T27-T20 | 79.52 | 4 812.50 | 88.36 | 5 347.22 | 425.21 |
T20-T14 | 84.24 | 1 687.50 | 84.24 | 1 687.50 | 142.16 | |
T14-T0 | 768.48 | 1 187.5 | 960.60 | 1 484.38 | 1 140.71 | |
10 | T27-T20 | 95.64 | 2 387.50 | 106.27 | 2 652.78 | 253.71 |
T20-T14 | 77.88 | 4 250.00 | 77.88 | 4 250.00 | 330.99 | |
T14-T0 | 768.04 | 25.00 | 960.05 | 31.25 | 24.00 | |
11 | T27-T20 | 95.32 | 3 387.50 | 105.91 | 3 763.89 | 358.77 |
T20-T14 | 94.44 | 3 850.00 | 94.44 | 3 850.00 | 363.59 | |
T14-T0 | 762.44 | 987.50 | 953.05 | 1 234.38 | 941.14 | |
12 | T27-T20 | 123.28 | 612.50 | 136.98 | 680.56 | 83.90 |
T20-T14 | 294.28 | 262.50 | 294.28 | 262.50 | 77.25 | |
T14-T0 | 647.92 | 150.00 | 809.90 | 187.50 | 121.49 |
Table 2 Statistical table of sediment supply parameters for the Qiongdongnan Basin
测线 | 层位 | A/m | P/m | Ra/ (m·Ma-1) | Rp/ (m·Ma-1) | Fc/ (m2·Ma-1) |
---|---|---|---|---|---|---|
1 | T27-T20 | 174.66 | 6 237.50 | 194.07 | 6 930.56 | 1 210.49 |
T20-T14 | 243.34 | 11 362.50 | 243.34 | 11 362.50 | 2 764.95 | |
T14-T0 | 826.40 | 6 737.50 | 1 033.00 | 8 421.88 | 6 959.84 | |
2 | T27-T20 | 125.48 | 9 287.50 | 139.42 | 10 319.44 | 1 294.88 |
T20-T14 | 354.60 | 8 712.50 | 354.60 | 8 712.50 | 3 089.45 | |
T14-T0 | 756.64 | 5 587.50 | 945.80 | 6 984.38 | 5 284.66 | |
3 | T27-T20 | 51.12 | 7 300.00 | 56.80 | 8 111.11 | 414.64 |
T20-T14 | 369.52 | 10 650.00 | 369.52 | 10 650.00 | 3 935.39 | |
T14-T0 | 701.36 | 2 037.50 | 876.70 | 2 546.88 | 1 786.28 | |
4 | T27-T20 | 162.00 | 5 575.00 | 180.00 | 6 194.44 | 1 003.50 |
T20-T14 | 293.84 | 9 212.50 | 293.84 | 9 212.50 | 2 707.00 | |
T14-T0 | 708.16 | 5 150.00 | 885.20 | 6 437.50 | 4 558.78 | |
5 | T27-T20 | 105.46 | 4 862.50 | 117.18 | 5 402.78 | 569.78 |
T20-T14 | 105.36 | 8 362.50 | 105.36 | 8 362.50 | 881.07 | |
T14-T0 | 853.04 | 1 712.50 | 1 066.30 | 2 140.63 | 1 826.04 | |
6 | T27-T20 | 62.96 | 3 962.50 | 69.96 | 4 402.78 | 277.20 |
T20-T14 | 199.40 | 4 175.00 | 199.40 | 4175.00 | 832.50 | |
T14-T0 | 988.44 | 1 587.50 | 1 235.55 | 1 984.38 | 1 961.44 | |
7 | T27-T20 | 58.68 | 3 600.00 | 65.20 | 4 000.00 | 234.72 |
T20-T14 | 358.52 | 4 662.50 | 358.52 | 4 662.50 | 1 671.60 | |
T14-T0 | 768.80 | 1 225.00 | 961.00 | 1 531.25 | 1 177.23 | |
8 | T27-T20 | 263.76 | 2 850.00 | 293.07 | 3 166.67 | 835.24 |
T20-T14 | 136.00 | 2 275.00 | 136.00 | 2 275.00 | 309.40 | |
T14-T0 | 751.48 | 2 675.00 | 939.35 | 3 343.75 | 2 512.76 | |
9 | T27-T20 | 79.52 | 4 812.50 | 88.36 | 5 347.22 | 425.21 |
T20-T14 | 84.24 | 1 687.50 | 84.24 | 1 687.50 | 142.16 | |
T14-T0 | 768.48 | 1 187.5 | 960.60 | 1 484.38 | 1 140.71 | |
10 | T27-T20 | 95.64 | 2 387.50 | 106.27 | 2 652.78 | 253.71 |
T20-T14 | 77.88 | 4 250.00 | 77.88 | 4 250.00 | 330.99 | |
T14-T0 | 768.04 | 25.00 | 960.05 | 31.25 | 24.00 | |
11 | T27-T20 | 95.32 | 3 387.50 | 105.91 | 3 763.89 | 358.77 |
T20-T14 | 94.44 | 3 850.00 | 94.44 | 3 850.00 | 363.59 | |
T14-T0 | 762.44 | 987.50 | 953.05 | 1 234.38 | 941.14 | |
12 | T27-T20 | 123.28 | 612.50 | 136.98 | 680.56 | 83.90 |
T20-T14 | 294.28 | 262.50 | 294.28 | 262.50 | 77.25 | |
T14-T0 | 647.92 | 150.00 | 809.90 | 187.50 | 121.49 |
Fig.9 Scatter plots of shelf-edge accretion rate vs. progradation rate (a) and sediment net flux vs. progradation rate (b) in the eastern and western parts of the three stratigraphic sequences of the Quaternary Qiongdongnan Basin
Fig.11 Factors controlling the shelf-edge trajectory in the Quaternary Qiongdongnan Basin. Data of sea level change from [20,37]; source supply from [30,31,34-35,44]; tectonic subsidence from [23-24]; climate change from [38,41⇓-43].
Fig.12 Profile (top panel) and depositional interpretation (bottom panel) on the profile of survey line 1 in the Quaternary Qiongdongnan Basin (see Fig.2 for location of survey line 1)
Fig.13 Depositional interpretations on the profiles of survey lines 6 (top panel) and 10 (bottom panel) in the Quaternary Qiongdongnan Basin (survey line locations shown in Fig.2)
[1] | HELLAND-HANSEN W, MARTINSEN O J. Shoreline trajectories and sequences; description of variable depositional-dip scenarios[J]. Journal of Sedimentary Research, 1996, 66(4): 670-688. |
[2] | RYAN M C, HELLAND-HANSEN W, JOHANNESSEN E P, Erosional vs. et al. accretionary shelf margins: the influence of margin type on deep-water sedimentation: an example from the Porcupine Basin, offshore western Ireland[J]. Basin Research, 2010, 21(5): 676-703. |
[3] | GONG C L, WANG Y M, STEEL R J, et al. Growth styles of shelf-margin clinoforms: prediction of sand- and sediment-budget partitioning into and across the shelf[J]. Journal of Sedimentary Research, 2015, 85(3): 209-229. |
[4] | GONG C L, RONALD J S, WANG Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101. |
[5] | CHEN S, STEEL R J, OLARIU C, et al. Growth of the late miocene to pliocene paleo-orinoco shelf-margin prism[J]. Bulletin of the Geological Society of America, 2018, 130(1/2): 35-43. |
[6] | 何云龙. 琼东南盆地陆坡区重力流沉积特征及其成因机制[D]. 武汉: 中国地质大学(武汉), 2012. |
[7] | 任金锋. 琼东南盆地陆架边缘斜坡地形的定量演化过程[D]. 武汉: 中国地质大学(武汉), 2016. |
[8] | 刘晓锋. 琼东南盆地深水区沉积古环境和物源演化[D]. 青岛: 中国海洋大学, 2015. |
[9] | LI S T, LIN C S, ZHANG Q M, et al. Episodic rifting of continental marginal basins and tectonic events since 10 Ma in the South China Sea[J]. Chinese Science Bulletin, 1999, 44(1): 10-22. |
[10] | XIE X N, DIETMAR MüLLER R, JIANYE R, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2007, 247(3): 129-144. |
[11] | 龚再升. 中国近海含油气盆地新构造运动与油气成藏[J]. 地球科学: 中国地质大学学报, 2004, 29(5): 513-517. |
[12] | 何云龙, 解习农, 李俊良, 等. 琼东南盆地陆坡体系发育特征及其控制因素[J]. 地质科技情报, 2010, 29(2): 118-122. |
[13] | 解习农, 孙志鹏, 张道军, 等. 琼东南盆地深水峡谷体系沉积充填及有利储层预测[Z]. 中国广东广州: 2015. 8. |
[14] | 赵蒙维. 琼东南盆地新生代古海洋环境演变[D]. 青岛: 中国海洋大学, 2013. |
[15] | 雷振宇, 苏明, 张莉, 等. 南海北部陆坡琼东南盆地晚中新世以来沉积物来源及输送样式[J]. 海洋学研究, 2016, 34(2): 35-42. |
[16] | VAIL P R. The stratigraphic signatures of tectonics, eustacy and sedimentology an overview[J]. Cycles & Events in Stratigraphy. 1991, 23(1): 8-41 |
[17] | PYLES D R, SYVITSKI J, SLATT R M. Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope-to-basin profile: an outcrop perspective[J]. Marine and Petroleum Geology, 2011, 28(3): 675-697. |
[18] | 陈宏言, 孙志鹏, 翟世奎, 等. 琼东南盆地井震地层对比分析及区域地层格架的建立[J]. 海洋学报. 2015, 37(5): 1-14. |
[19] | 杜同军. 琼东南盆地层序地层和深水区沉积充填特征[D]. 青岛: 中国海洋大学, 2013. |
[20] | 谢金有, 祝幼华, 李绪深, 等. 南海北部大陆架莺琼盆地新生代海平面变化[J]. 海相油气地质, 2012, 17(1): 49-58. |
[21] | 孙辉. 南海西北部深水区重力流沉积体系特征及其控制因素分析[D]. 武汉: 中国地质大学(武汉), 2015. |
[22] | ZHUO H, WANG Y, SUN Z, et al. Along-strike variability in shelf-margin morphology and long-term growth pattern: a case study from the northern margin of the South China Sea[J]. Basin Research, 2019, 31(3): 431-460. |
[23] | 魏魁生, 崔旱云, 叶淑芬, 等. 琼东南盆地高精度层序地层学研究[J]. 地球科学: 中国地质大学学报, 2001, 26(1): 59-66. |
[24] | 万玲, 姚伯初, 吴能友, 等. 南海西部海域新生代地质构造[J]. 海洋地质与第四纪地质, 2005, 25(2): 45-52. |
[25] | 张云帆, 孙珍, 郭兴伟, 等. 琼东南盆地新生代沉降特征[J]. 热带海洋学报, 2008, 27(5): 30-36. |
[26] | 袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2): 376-383. |
[27] | 田姗姗. 琼东南盆地裂后期构造沉降分析及古地貌恢复[D]. 武汉: 中国地质大学(武汉), 2010. |
[28] | 秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 青岛: 中国科学院海洋研究所, 2012. |
[29] | 李亚敏, 施小斌, 徐辉龙, 等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报(地球科学版), 2012, 42(1): 47-57. |
[30] | CLIFT P D, SUN Z. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: implications for Tibetan uplift and monsoon intensification[J]. Journal of Geophysical Research, 2006, 111: B06405. |
[31] | WAN S, LI A, CLIFT P D, et al. Development of the East Asian summer monsoon: evidence from the sediment record in the South China Sea since 8.5 Ma[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 241(1): 139-159. |
[32] | ZHAO R, CHEN S, STEEL R J, et al. A model for oblique accretion on the South China Sea margin: Red River (Song Hong) sediment transport into Qiongdongnan Basin since Upper Miocene[J]. Marine Geology, 2019, 416: 106001. |
[33] | 刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J]. 中国科学(D辑: 地球科学), 2007, 37(9): 1176-1184. |
[34] |
邵磊, 李昂, 吴国瑄, 等. 琼东南盆地沉积环境及物源演变特征[J]. 石油学报, 2010, 31(4): 548-552.
DOI |
[35] | SHI X, KOHN B, SPENCER S, et al. Cenozoic denudation history of southern Hainan Island, South China Sea: constraints from low temperature thermochronology[J]. Tectonophysics. 2011, 504(1-4): 100-115. |
[36] | ZHUO H T, WANG Y M, SHI H S, et al. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: evidence from 3D seismic data[J]. Quaternary Science Reviews, 2015, 129: 128-146. |
[37] | STOW D A V, HOWELL D G, NELSON C H. Sedimentary, tectonic, and sea-level controls on submarine fan and slope-apron turbidite systems[J]. Geo-Marine Letters, 1984, 3(2): 57-64. |
[38] | 金海燕, 翦知湣. 中更新世气候转型期南海北部和南部的气候变化差异[J]. 第四纪研究, 2008, 28(3): 381-390. |
[39] | 张一凡, 刘东生, 张训华. 琼东南盆地新生代孢粉组合及其古气候意义[J]. 海洋地质与第四纪地质, 2017, 37(1): 93-101. |
[40] | 黄翡, 孙湘君. 南海北部更新世高分辨率孢粉序列与气候变化[J]. 微体古生物学报, 2002, 19(3): 256-262. |
[41] | 李小洁. 南海北部沉积物记录的早更新世气候变化[D]. 北京: 中国科学院大学, 2015. |
[42] | 冯文科, 黎维峰. 南海北部深海平原晚更新世以来沉积环境和古气候变化[J]. 海洋地质与第四纪地质. 1986, 6(3): 11-26. |
[43] | CLARK P U, ARCHER D, POLLARD D, et al. The middle Pleistocene transition: characteristics, mechanisms, and implication for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25(23): 3150-3184. |
[44] | ZHAO Z, SUN Z, WANG Z, et al. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea[J]. Marine Geology, 2015, 361: 11-24. |
[45] | 赵晓明, 刘丽, 谭程鹏, 等. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲陆坡区为例[J]. 古地理学报, 2018, 20(5): 825-840. |
[46] | 赵晓明, 葛家旺, 谭程鹏, 等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气, 2019, 3(5): 1-12. |
[47] | ZHAO X M, LI M H, QI K, et al. Development of a distinct submarine depositional system on a topographically complex Niger Delta slope[J]. Geological Journal, 2020, 55(5): 3732-3747. |
[48] | ZHAO X M, QI K, PATACCI M, et al. Submarine channel network evolution above an extensive mass-transport complex: a 3D seismic case study from the Niger delta continental slope[J]. Marine and Petroleum Geology, 2019, 104: 231-248. |
[49] | LUO J, ZHU P, GEOMATICS. Gravity induced deposits in the continental slope of Qiongdongnan Basin based on ultrahigh resolution AUV data[J]. Geological Science and Technology Information, 2019, 38(6): 42-50. |
[50] | CHENG C, JIANG T, KUANG Z, et al. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 129: 105118. |
[51] | 杜浩, 石万忠, 梁金强, 等. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响[J]. 石油地球物理勘探, 2021, 56(4): 869-881. |
[52] |
孙启良, 解习农, 吴时国. 南海北部海底滑坡的特征、灾害评估和研究展望[J]. 地学前缘, 2021, 28(2): 258-270.
DOI |
[1] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[2] | CHEN Fei, ZENG Weite, TONG Changliang, ZHANG Congwei, FU Biao, CHEN Yang, CHEN Bo. Quaternary sequence framework and sedimentary evolution of Qiongzhou Straits [J]. Earth Science Frontiers, 2024, 31(3): 100-112. |
[3] | CHEN Wenlin, ZHENG Qiugen, HUANG Yiming, ZHANG Yi, LIN Changsong. Recover the Liyue Basin position in the southern margin of the South China Sea before seafloor spreading [J]. Earth Science Frontiers, 2023, 30(5): 420-429. |
[4] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. Electron spin resonance dating for the Central Churia Thrust of the Nepal Himalaya [J]. Earth Science Frontiers, 2023, 30(4): 260-269. |
[5] | LIU Zhen, ZHU Maolin, PAN Gaofeng, XIA Lu, LU Chaojin, LIU Mingjie, LIU Jingjing, HOU Yingjie. A dissolution porosity increase model for sandstone reservoir in the Yanchang Formation in central and southern Ordos Basin—model building and model applications [J]. Earth Science Frontiers, 2023, 30(2): 96-108. |
[6] | SUN Tao, WU Tao, GE Yang, FAN Qi, LI Lixia, LÜ Xin. Noble gas geochemical characteristics of shallow hydrate in the deep water of the Qiongdongnan Basin and their significance [J]. Earth Science Frontiers, 2022, 29(5): 476-482. |
[7] | ZHANG Zili, ZHU Xiaomin, LIAO Fengying, LI Qi, ZHANG Ruifeng, CAO Lanzhu, SHI Ruisheng. Features and control factors of gentle-sloped fluvial sandbodies in rift basins: An example from the Wen’an Slope, Baxian Sag [J]. Earth Science Frontiers, 2021, 28(1): 141-154. |
[8] | CHEN Huanqing, ZHU Xiaomin, ZHANG Gongcheng, ZHANG Yaxiong, ZHANG Qin, LIU Changli. Classification and combination model characteristics of pathway system in marine faulted basin: Taking the Paleogene Lingshui Formation, Qiongdongnan Basin as an example [J]. Earth Science Frontiers, 2021, 28(1): 282-294. |
[9] | SUN Chunyan,TANG Yao,ZHAO Hao,ZHANG Shiqiang,WANG Donglin,HE Huice,LING Fan,LI Jianhua,HE Yan. Application of widefield electromagnetic method to biogas exploration and prediction of prospective target area in the northern Dongting Basin. [J]. Earth Science Frontiers, 2018, 25(4): 210-225. |
[10] | HAO Fang, LIU Jian-Zhang, ZOU Hua-Yao, LI Peng-Peng. Mechanisms of natural gas accumulation and leakage in the overpressured sequences in the Yinggehai and Qiongdongnan basins, offshore South China Sea [J]. Earth Science Frontiers, 2015, 22(1): 169-180. |
[11] | . Magnetostratigraphy of the red soil sequences in southern China: Recent developments. [J]. Earth Science Frontiers, 2011, 18(4): 158-170. |
[12] | GAO Yu-Ya, LI Xian-Hua, LI Qiu-Li, ZHONG Sun-Lin-. Quaternary zircon geochronology by secondary ion mass spectrometry: A case study of the Chinkuashi dacite from northeastern Taiwan. [J]. Earth Science Frontiers, 2010, 17(2): 146-155. |
[13] | XIE Zong-Kui. Research on the Quaternary finefraction lithofacies and sedimentation model in Tainan Area, Qaidam Basin. [J]. Earth Science Frontiers, 2009, 16(5): 245-250. |
[14] | CHEN Bai-Lin WANG Chun-Yu CUI Ling-Ling LIU Jian-Min. Developing model of thrust fault system in western part of northern Qilian Mountains marginHexi Corridor basin during late Quaternary. [J]. Earth Science Frontiers, 2008, 15(6): 260-277. |
[15] | ZHANG Jian-Xin LU Jiang GENG Xu-Dong. The evolution of Cd in sediment of Dongting lake area and its significance based on ARIMA model [J]. Earth Science Frontiers, 2008, 15(5): 219-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||