

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 207-221.DOI: 10.13745/j.esf.sf.2025.10.20
Previous Articles Next Articles
QU Cixiao1,2(
), WANG Mingyu1,*(
)
Received:2025-07-14
Revised:2025-09-10
Online:2026-01-25
Published:2025-11-10
CLC Number:
QU Cixiao, WANG Mingyu. Effective modeling framework and pertaining key breakthroughs for efficient prediction of VOCs transport and diffusion fluxes in fractured media[J]. Earth Science Frontiers, 2026, 33(1): 207-221.
| [1] |
CHRYSIKOPOULOS C V, KIM T J. Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media[J]. Transport in Porous Media, 2000, 38(1/2): 167-187.
DOI |
| [2] | 沈欢, 黄勇, 苏悦, 等. 裂隙介质中lnapl污染物迁移研究进展[J]. 环境科技, 2021, 34(2): 68-72. |
| [3] | 罗凌云. Lnapl在包气带形成的透镜体形状及水位波动对其的影响[D]. 长春: 吉林大学, 2017. |
| [4] | 杨明星. 石油有机污染组分在水位波动带中的分异演化机理研究[D]. 长春: 吉林大学, 2014. |
| [5] | 李永涛. LNAPLs在包气带中运移机理及模拟研究[D]. 西安: 长安大学, 2010. |
| [6] | 薛强. 石油污染物在地下环境系统中运移的多相流模型研究[J]. 岩石力学与工程学报, 2005(17): 3201. |
| [7] | 王刘炜, 杨小东, 侯德义. 裂隙介质VOCs赋存迁移特征与场地修复难点[J]. 中国环境科学, 2022, 42(10): 4780-4789. |
| [8] | 章立勇, 林匡飞, 徐圣友, 等. 硫酸盐还原条件下三氯乙烯的降解研究[J]. 环境污染与防治, 2009, 31(2): 1-3. |
| [9] | 陈华清, 李义连. 浅层地下水pce/tce污染原位曝气修复模拟研究[J]. 环境科学与技术, 2009, 32(11): 53-57. |
| [10] |
KAO C. Enhanced PCE dechlorination by biobarrier systems under different redox conditions[J]. Water Research, 2003, 37(20): 4885-4894.
PMID |
| [11] |
郭永丽, 肖琼, 章程, 等. 石油类污染的岩溶地下水环境特征: 以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547.
DOI |
| [12] | 王明玉. 中国地下水污染有效防控探析[J]. 中国科学院院刊, 2012, 27(4): 462-468. |
| [13] | XING K, SHI X, KOKKINAKI A, et al. Residual NAPL architectures in fractures: insights from microfluidic experiments[J]. Geophysical Research Letters, 2025, 52(8): e2025GL114826. |
| [14] |
PURSWANI P, SANTOS J E, HYMAN J D, et al. Numerical investigation of multiphase flow through self-affine rough fractures[J]. Advances in Water Resources, 2025, 195: 104852.
DOI URL |
| [15] |
HU R, ZHOU C X, WU D S, et al. Roughness control on multiphase flow in rock fractures[J]. Geophysical Research Letters, 2019, 46(21): 12002-12011.
DOI |
| [16] |
YANG Z, NEUWEILER I, MéHEUST Y, et al. Fluid trapping during capillary displacement in fractures[J]. Advances in Water Resources, 2016, 95: 264-275.
DOI URL |
| [17] |
DOU Z, ZHOU Z, SLEEP B E. Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: lattice boltzmann simulations[J]. Advances in Water Resources, 2013, 61: 1-11.
DOI URL |
| [18] | KIRKMAN A J, KOONS B. Unifying NAPL drawdown and transmissivity testing in unconfined, confined, perched, and fractured settings using the Z-factor and MH principles[J]. Groundwater Monitoring & Remediation, 2020, 40(1): 47-64. |
| [19] |
WALTON K M, UNGER A J A, IOANNIDIS M A, et al. Benchmarking NAPL Redirection and matrix entry at fracture intersections below the water table[J]. Water Resources Research, 2019, 55(4): 2672-2689.
DOI URL |
| [20] | 刘忠, 赵晓, 李渊博, 等. 强烈非均质裂隙介质优先流及其工程意义: 以hn地下水封洞库为例[J]. 安全与环境工程, 2023, 30(6): 154-161, 176. |
| [21] |
LIANG H, FALTA R W. Modeling field-scale cosolvent flooding for DNAPL source zone remediation[J]. Journal of Contaminant Hydrology, 2008, 96(1/2/3/4): 1-16.
DOI URL |
| [22] |
QIN X S, HUANG G H, HE L. Simulation and optimization technologies for petroleum waste management and remediation process control[J]. Journal of Environmental Management, 2009, 90(1): 54-76.
DOI PMID |
| [23] | YUE L U, YICHAO L I U, HONGXIA X U, et al. Influence of flow velocity and dip angle on perchloroethylene migration in fractured media[J]. Geological Journal of China Universities, 2022, 28(4): 554-564. |
| [24] |
YANG Z, NIEMI A, FAGERLUND F, et al. Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools[J]. Journal of Contaminant Hydrology, 2013, 149: 88-99.
DOI PMID |
| [25] |
LI B, LIU R, JIANG Y. Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections[J]. Journal of Hydrology, 2016, 538: 440-453.
DOI URL |
| [26] | JOHNSON J, BROWN S, STOCKMAN H. Fluid flow and mixing in rough-walled fracture intersections[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B12): 2005JB004087. |
| [27] |
TARTAKOVSKY A, MEAKIN P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics[J]. Physical Review E, 2005, 72(2): 026301.
DOI URL |
| [28] |
LEE H B, KIM B W. Effect of NAPL exposure on the wettability and two-phase flow in a single rock fracture[J]. Hydrological Processes, 2015, 29(23): 4919-4931.
DOI URL |
| [29] |
MCLAREN R G, SUDICKY E A, PARK Y-J, et al. Numerical simulation of DNAPL emissions and remediation in a fractured dolomitic aquifer[J]. Journal of Contaminant Hydrology, 2012, 136/137: 56-71.
DOI URL |
| [30] |
REICHENBERGER V, JAKOBS H, BASTIAN P, et al. A mixed-dimensional finite volume method for two-phase flow in fractured porous media[J]. Advances in Water Resources, 2006, 29(7): 1020-1036.
DOI URL |
| [31] |
GIMENEZ J M, IDELSOHN S R, OñATE E. Modeling and simulation of multiphase flow in highly fractured porous media with a data-driven multiscale approach[J]. Computational Mechanics, 2025, 75(6): 1847-1866.
DOI |
| [32] |
SHEN H, HUANG Y, ILLMAN W A, et al. Migration behaviour of LNAPL in fractures filled with porous media: laboratory experiments and numerical simulations[J]. Journal of Contaminant Hydrology, 2023, 253: 104118.
DOI URL |
| [33] |
LI L, VOSKOV D. A novel hybrid model for multiphase flow in complex multi-scale fractured systems[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108657.
DOI URL |
| [34] |
HUSSAIN S T, RAHMAN S S, AZIM R A, et al. Multiphase fluid flow through fractured porous media supported by innovative laboratory and numerical methods for estimating relative permeability[J]. Energy & Fuels, 2021, 35(21): 17372-17388.
DOI URL |
| [35] |
YAN B, MI L, CHAI Z, et al. An enhanced discrete fracture network model for multiphase flow in fractured reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 161: 667-682.
DOI URL |
| [36] |
REN G, JIANG J, YOUNIS R M. A model for coupled geomechanics and multiphase flow in fractured porous media using embedded meshes[J]. Advances in Water Resources, 2018, 122: 113-130.
DOI URL |
| [37] | PARKER B L, CHERRY J A, CHAPMAN S W. Discrete fracture network approach for studying contamination in fractured rock[J]. Aqua Mundi, 2012, 3(2): 101-116. |
| [38] | ZHOU Z, YANG Z, XUE S, et al. Liquid Breakthrough Time in an Unsaturated Fracture Network[J]. Water Resources Research, 2022, 58(3): e2021WR031012. |
| [39] |
CHEN Y F, GUO N, WU D S, et al. Numerical investigation on immiscible displacement in 3D rough fracture: comparison with experiments and the role of viscous and capillary forces[J]. Advances in Water Resources, 2018, 118: 39-48.
DOI URL |
| [40] |
GELLER J T, HOLMAN H-Y, SU G, et al. Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones[J]. Journal of Contaminant Hydrology, 2000, 43(1): 63-90.
DOI URL |
| [41] |
HE T, QU C, WANG M. A framework and generic models for quantifying surface environmental impact of VOCs emissions from the complex fractured rocks[J]. Environmental Pollution, 2024, 362: 124820.
DOI URL |
| [42] |
YOU X, LIU S, DAI C, et al. Contaminant occurrence and migration between high-and low-permeability zones in groundwater systems: a review[J]. Science of The Total Environment, 2020, 743: 140703.
DOI URL |
| [43] |
LIMA G D P, MEYER J R, KHOSLA K, et al. Spatial variability of microbial communities in a fractured sedimentary rock matrix impacted by a mixed organics plume[J]. Journal of Contaminant Hydrology, 2018, 218: 110-119.
DOI PMID |
| [44] | 曲辞晓. 离散圆盘裂隙网络组构对渗流与溶质运移的控制过程及规律研究[D]. 北京: 中国科学院大学, 2021. |
| [45] |
NIAN G, CHEN Z, BAO M, et al. Rainfall infiltration boundary conditions and stability of a fractured-rock slope based on a dual-continuum model[J]. Hydrogeology Journal, 2022, 30(3): 829-847.
DOI |
| [46] |
BEDOYA-GONZALEZ D, KESSLER T, RINDER T, et al. A dual-continuum model (TOUGH2) for characterizing flow and discharge in a mechanically disrupted sandstone overburden[J]. Hydrogeology Journal, 2022, 30(6): 1717-1736.
DOI |
| [47] |
DONG P, YIN M, ZHANG Y, et al. A fractional-order dual-continuum model to capture non-fickian solute transport in a regional-scale fractured aquifer[J]. Journal of Contaminant Hydrology, 2023, 258: 104231.
DOI URL |
| [48] | 王碧莲, 王明玉, 庞云天. 典型潜水层苯系物污染羽稳定性主控因子及统计建模[J]. 地球科学, 2023, 48(9): 3454-3465. |
| [49] | 龚莉, 史浙明, 张宗文, 等. 基于多元分析的某地区垃圾填埋场地下水生态环境风险定量评价[J]. 现代地质, 2024, 38(3): 734-743. |
| [50] |
杨冰, 孟童, 郭华明, 等. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391.
DOI |
| [51] |
宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469.
DOI |
| [52] |
褚宴佳, 何宝南, 陈珍, 等. 基于随机森林模型识别浅层地下水tds异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468.
DOI |
| [53] |
ZHANG C H, WANG Y, WU L J, et al. Physics-informed and data-driven machine learning of rock mass classification using prior geological knowledge and TBM operational data[J]. Tunnelling and Underground Space Technology, 2024, 152: 105923.
DOI URL |
| [54] |
DEGEN D, CAVIEDES VOULLIèME D, BUITER S, et al. Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations[J]. Geoscientific Model Development, 2023, 16(24): 7375-7409.
DOI URL |
| [55] | SUN H, YANG X, GONG J, et al. Joint physics and data driven full-waveform inversion for underground dielectric targets imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11. |
| [56] |
BORATE P, RIVIèRE J, MARONE C, et al. Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes[J]. Nature Communications, 2023, 14(1): 3693.
DOI PMID |
| [57] |
BAI T, TAHMASEBI P. Characterization of groundwater contamination: a transformer-based deep learning model[J]. Advances in Water Resources, 2022, 164: 104217.
DOI URL |
| [58] |
MERAY A, WANG L, KURIHANA T, et al. Physics-informed surrogate modeling for supporting climate resilience at groundwater contamination sites[J]. Computers & Geosciences, 2024, 183: 105508.
DOI URL |
| [59] |
LI C, HAN Z, LI Y, et al. Physical information-fused deep learning model ensembled with a subregion-specific sampling method for predicting flood dynamics[J]. Journal of Hydrology, 2023, 620: 129465.
DOI URL |
| [60] |
HE T, QU C, WANG M. Machine learning-enhanced prediction for soil-to-air VOC emission and environmental impact pertaining contaminated fractured aquifers[J]. Environmental Science & Technology, 2025, 59(14): 7176-7186.
DOI URL |
| [61] | WANG M, KULATILAKE P H S W, UM J, et al. Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modelin[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(7): 887-904. |
| [62] | 王明玉, 刘庆哲, 曲辞晓, 等. 基于圆盘裂隙物理模型的岩体单一裂隙渗流规律试验研究[J]. 岩土力学, 2020, 41(11): 3523-3530. |
| [63] | QU C X, WANG M Y, WANG P. Experimental and numerical investigation of groundwater head losses on and nearby short intersections between disc-shaped fractures[J]. Journal of Groundwater Science and Engineering, 2022, 10(1): 33. |
| [64] |
GUO J, ZHENG J, Lü Q, et al. A procedure to estimate the accuracy of circular and elliptical discs for representing the natural discontinuity facet in the discrete fracture network models[J]. Computers and Geotechnics, 2020, 121: 103483.
DOI URL |
| [65] |
LONG J C S, GILMOUR P, WITHERSPOON P A. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures[J]. Water Resources Research, 1985, 21(8): 1105-1115.
DOI URL |
| [66] | HYMAN J D, SWEENEY M R, FRASH L P, et al. Scale-bridging in three-dimensional fracture networks: Characterizing the effects of variable fracture apertures on network-scale flow channelization[J]. Geophysical Research Letters, 2021, 48(19): e2021GL094400. |
| [67] | 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600. |
| [68] | 陈兰鑫. 洞庭湖生态环境监测系统知识图谱的构建[D]. 长沙: 湖南农业大学, 2019. |
| [69] | 杨明悦, 宁忠瑞. 知识图谱在黄河宁夏段健康诊断与智能管理系统中的应用研究[J]. 水资源开发与管理, 2020(10): 46-52. |
| [70] | 王新龙, 薛晓鹏, 孙如飞. 基于粒子群与知识图谱的突发水污染事件溯源方法[J]. 水力发电, 2020, 46(2): 17-21, 131. |
| [71] | 李星辰. 场地污染大数据知识图谱构建及可视化分析研究[D]. 北京: 北京建筑大学, 2023. |
| [72] |
WANG M, KULATILAKE P H S W. Understanding of hydraulic properties from configurations of stochastically distributed fracture networks[J]. Hydrological Processes, 2008, 22(8): 1125-1135.
DOI URL |
| [73] | 张嘉, 王明玉. 纵向弥散作用与渗透介质非均质性定量关系的模拟研究[J]. 地学前缘, 2010, 17(6): 152-158. |
| [74] | 中国科学院大学. 复杂场地挥发类有机污染物多界面多相态扩散通量模拟软件系统V1.0, 中国, 2024SR2047608[Z]. 2024-12-11. |
| [1] | XU Lin, MA Haichun, WANG Jingping, ZHANG Qing, HUANG Yihang, QIAN Jiazhong, WANG Wanlin. Advances in groundwater nonlinear seepage in fractured media under conditions of high in-situ stress and temperature [J]. Earth Science Frontiers, 2026, 33(1): 313-327. |
| [2] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
| [3] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||