Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 1-11.DOI: 10.13745/j.esf.sf.2025.9.68
Previous Articles Next Articles
CHENG Qiuming1,2(), YANG Yilin3, ZHOU Yuanzhi1,2, ZHANG Yuanzhi1,4
Received:
2025-09-18
Revised:
2025-09-21
Online:
2025-09-25
Published:
2025-10-14
CLC Number:
CHENG Qiuming, YANG Yilin, ZHOU Yuanzhi, ZHANG Yuanzhi. Earth science in the era of foundation models: How AlphaEarth is reshaping quantitative geoscience[J]. Earth Science Frontiers, 2025, 32(5): 1-11.
Fig.1 Schematic diagram of AEF and the proposed AEF+ framework. (A) AEF embedding vector matrix; (B) AEF+ extension incorporating geological (G), geophysical (Gy), and geochemical (Gc) embeddings.
Fig.2 Lithologic classification map and prediction results for the Jining Area. (A) A geology map; (B) Lithologic classification results for the Jining area obtained using the random forest method based on the AEF dataset and field-validated lithology points. The legend colors are consistent between (A) and (B). Modified after [25].
Fig.3 Lithology distribution prediction through integration of geochemical and AEF data. (A) Stream sediment geochemical data at 1∶50000 scale, showing element associations identified by principal component analysis. (B) Lithology identification results from fused geochemical and AEF data.
Fig.4 Delineation of mineralized alteration zones in the Duolong ore district, Tibet. Modified after [28]. (A) Erosion Index distribution map extracted from ASTER imagery; (B) Erosion Index distribution map derived from random forest regression using AEF data.
Fig.5 Alteration mineral classification map derived from ASTER imagery (A) and alteration mineral information distribution map extracted using a random forest multi-regression model based on AEF data (B).
Fig.6 Comprehensive surface change intensity map (Δθ, unit: degrees) around Mayon Volcano, Philippines, for 2018 relative to 2017, calculated using AEF data.
Fig.7 Estimation of river suspended sediment concentration in the Pearl River Delta using Landsat 8 and AEF data, respectively. (A) Results derived from Landsat 8 data; (B) Results derived from AEF data.
[1] | 成秋明. 什么是数学地球科学及其前沿领域?[J]. 地学前缘, 2021, 28(3): 6-25. |
[2] | CHENG Q M. Mathematical geosciences: local singularity analysis of nonlinear Earth systems[C]// DAYA SAGAR B, CHENG Q M, AGTERBERG F. Handbook of mathematical geosciences. Cham: Springer, 2018: 179-208. |
[3] | JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. |
[4] | KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: a new paradigm for scientific discovery[J]. IEEE TKDE, 2017, 29(10): 2318-2331. |
[5] | HINZE W J, VON FRESE R R B, SAAD A H. Gravity and magnetic exploration:principles, practices, and applications[M]. Cambridge: Cambridge University Press, 2013. |
[6] | DENTITH M, MUDGE S T. Geophysics for the mineral exploration geoscientist[M]. Cambridge: Cambridge University. Press, 2014. |
[7] | ANDERSON S, GISLASON S. Geochemistry of the Earth’s surface[J]. Applied Geochemistry, 2011, 26: S1-S2. |
[8] | SMITH D B, CANNON W F, WOODRUFF L G, et al. Geochemical and mineralogical data for soils of the conterminous United States[R]. Reston: US Geological Survey Data Series, 2013, 801: 19. |
[9] | WULDER M A, MASEK J G, COHEN W B, et al. Opening the archive: How free data has enabled the science and monitoring promise of Landsat[J]. Remote Sensing of Environment, 2012, 122: 2-10. |
[10] | DRUSCH M, DEL BELLO U, CARLIER S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120(15): 25-36. |
[11] | GONG J, CHENG P, WANG Y. Three-dimensional modeling and application in geological exploration engineering[J]. Computers & Geosciences, 2004, 30(4): 391-404. |
[12] | BROWN C F, KAZMIERSKI M R, PASQUARELLA V J, et al. AlphaEarth Foundations: an embedding field model for accurate and efficient global mapping from sparse label data[EB/OL]. 2025. [2025-09-17]. https://doi.org/10.48550/arXiv.2507.22291. |
[13] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[14] | CHENG Q, AGTERBERG F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research, 1999, 8(1): 27-35. |
[15] | RODRIGUEZ-GALIANO V, SANCHEZ-CASTILLO M, CHICA-OLMO M, et al. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71: 804-818. |
[16] | KIM Y, NAKATA N. Geophysical inversion versus machine learning in inverse problems[J]. The Leading Edge, 2018, 37: 894-901. |
[17] | BANERJEE S, CARLIN B P, GELFAND A E. Hierarchical Modeling and analysis for spatial data[M]. Boca Raton: CRC Press, 2014. |
[18] | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[19] | GOODCHILD M F, LI L. Replication across space and time must be weak in the social and environmental sciences[J]. PNAS, 2021, 118(35): e2015759118. |
[20] | CRESSIE N, WIKLE C K. Statistics for spatio-temporal data[M]. New York: Wiley, 2011. |
[21] | ZHAO T, WANG S, OUYANG C J, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. The Innovation, 2024, 5(5): 100691. |
[22] | WILKINSON M D, DUMONTIER M, AALBERSBERG I J J, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Scientific Data, 2016, 3(1): 1-9. |
[23] | DRURY S A. Image interpretation in geology[M]. Sydney: Allen & Unwin, 1987. |
[24] | HUNT G R. Spectral signatures of particulate minerals in the visible and near infrared[J]. Geophysics, 1977, 42(3): 501-513. |
[25] | GE Y, ZHANG Z, CHENG Q, et al. Geological mapping of basalt using stream sediment geochemical data: case study of covered areas in Jining, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2022, 232: 106888. |
[26] | AGTERBERG F P. Geomathematics[M]. Amsterdam: Elsevier, 1974. |
[27] | CARRANZA E J M. Geochemical anomaly and mineral prospectivity mapping in GIS[M]//Handbook of exploration and environmental geochemistry. Amsterdam: Elsevier, 2008. |
[28] | FU H Z, CHENG Q M, JING L H, et al. Deep learning-based hydrothermal alteration mapping using GaoFen-5 hyperspectral data in the Duolong Ore District, Western Tibet, China[J]. Journal of Applied Remote Sensing, 2021, 15(4): 044512. |
[29] | SINGH A. Digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6): 989-1003. |
[30] | JOYCE K E, BELLISS S E, SAMSONOV S V, et al. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters[J]. Progress in Physical Geography, 2009, 33(2): 183-207. |
[31] | GOETZ A F H, VANE G, SOLOMON J E, et al. Imaging spectrometry for Earth remote sensing[J]. Science, 1985, 228(4704): 1147-1153. |
[32] | GILLESPIE A R, KAHLE A B, WALKER R E. Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches[J]. Remote Sensing of Environment, 1986, 20(3): 209-235. |
[33] | CRACKNELL A P. Synergy in remote sensing: what’s in a pixel?[J]. International Journal of Remote Sensing, 1998, 19(11): 2025-2047. |
[34] | FU H, KERESZTURI G, CHENG Q, et al. Deciphering differential exhumation in the Gangdese orogen in southern Tibet using exposed porphyry alteration systems and geomorphic analysis[J]. Geological Society of America Bulletin, 2024, 136(9/10): 3795-3809. |
[35] | DEEPMIND. AlphaEarth Foundations helps map our planet in unprecedented detail[EB/OL]. 2025a. [2025-9-15]. https://deepmind.google/discover/blog/alphaearth-foundations-helps-map-our-planet-in-unprecedented-detail/. |
[36] | ASIF R. Meet AlphaEarth Foundations: Google DeepMind’s so called ‘virtual satellite’ in AI-driven planetary mapping[EB/OL]. 2025. [2025-09-15]. https://www.marktechpost.com/2025/07/31/meet-alphaearth-foundations. |
[37] | DEEPMIND. Dataset release:satellite embedding V1 annual (2017-2024)[EB/OL]. Google Earth Engine. 2025. [2025-09-15]. https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_SATELLITE_EMBEDDING_V1_ANNUAL. |
[38] | PASQUARELLA V, SCHECHTER E. AI-powered pixels: introducing Google’s satellite embedding dataset[EB/OL]. (2025-07-31)[2025-09-18]. https://medium.com/google-earth/aipowered-pixels-introducing-googles-atellite-embeddingdataset-31744c1f4650 |
[39] | LUCÍA G D. From imagery to insight: Google AlphaEarth Foundations in CARTO[EB/OL]. 2025. [2025-09-01]. https://carto.com/blog/google-alphaearth-foundations-in-carto. |
[40] | BOONE A. Google’s newest AI acts like a satellite to track climate change[EB/OL]. 2025. [2025-09-17]. https://www.wired.com/story/googles-newest-ai-model-acts-like-a-satellite-to-track-climate-change. |
[41] | MICHAEL N. Google DeepMind says its new AI can map the entire planet with unprecedented accuracy[EB/OL]. 2025. [2025-09-17]. https://venturebeat.com/ai/google-deepmind-says-its-new-ai-can-map-the-entire-planet-with-unprecedented-accuracy. |
[42] | HOURIEZ L, PILARSKI S, VAHEDI B, et al. Scalable geospatial data generation using AlphaEarth Foundations model[EB/OL]. 2025. [2025-09-10]. https://arxiv.org/abs/2508.11739. |
[43] | CHENG Q, OBERHÄNSLI R, ZHAO M. A new international initiative for facilitating data-driven Earth science transformation[J]. Geological Society, London, Special Publications, 2020, 499(1): 225-240. |
[44] | CHENG Q. IUGS’ initiative on data-driven geoscience discovery[J]. Journal of Earth Science, 2021, 32(2): 468-470. |
[45] | OBERHNSLI R. Deep-time Digital Earth (DDE) the First IUGS Big Science Program[J]. Journal of the Geological Society of India, 2020, 95(3): 223-226. |
[46] | STEPHENSON M H, CHENG Q, WANG C, et al. Progress towards the establishment of the IUGS Deep-time Digital Earth (DDE) programme[J]. Episodes, 2020, 43: 1057-1062. |
[1] | YUE Dali, LI Wei, WANG Wurong, WU Shenghe, LI Honghui, LIU Jingyang, LIU Lei, XU Zimo, LIN Jin, WU Guangzhen. Advances and prospects of meandering river sedimentary architecture research [J]. Earth Science Frontiers, 2025, 32(5): 113-130. |
[2] | ZHOU Shengquan, LI Yike, WANG Yongzhi, LIU Haiming, LI Nan, KE Changhui, LI Ruiping, ZHAO Yonggang, ZHANG Li. Current status and development trends of generative AI technology in Earth science research [J]. Earth Science Frontiers, 2025, 32(4): 303-316. |
[3] | CHEN Guoxiong, ZHANG Yuepeng, LUO Lei, XIA Qinglin, CHENG Qiuming. Data-driven spatio-temporal prediction model of porphyry deposits [J]. Earth Science Frontiers, 2025, 32(4): 46-59. |
[4] | DONG Yuhao, WANG Yongzhi, TIAN Jiangtao, WANG Cheng, WEN Shibo, LI Bowen. Research progress on porphyry copper deposit prediction based on knowledge graphs [J]. Earth Science Frontiers, 2025, 32(4): 280-290. |
[5] | CHENG Qiuming. A new paradigm for mineral resource prediction based on human intelligence-artificial intelligence Integration [J]. Earth Science Frontiers, 2025, 32(4): 1-19. |
[6] | ZHU Biaobiao, CAO Wei, YU Pengpeng, ZHANG Qianlong, GUO Lanxuan, YUAN Guiqiang, HAN Feng, WANG Hanyu, ZHOU Yongzhang. Research hotspots and cutting-edge analysis of geological big data and artificial intelligence based on CiteSpace [J]. Earth Science Frontiers, 2024, 31(4): 73-86. |
[7] | GU Hao, YANG Zeqiang, GAO Meng, TANG Xiangwei, WANG Dongxiao, LIU Kuisong, YANG Shuren, GUO Yueshan, WANG Yun, WANG Gongwen. Three-dimensional geological modeling and mineral prospectivity mapping in the Weishancheng gold-silver district, Henan, China [J]. Earth Science Frontiers, 2024, 31(3): 245-259. |
[8] | SHEN Guoqiang, WANG Yumei, ZHANG Fanchang, ZHANG Hong, WANG Xiping, CHEN Songli. Identification of Triassic polyhalite in Northeast Sichuan by AI-based seismic inversion [J]. Earth Science Frontiers, 2021, 28(6): 155-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||