Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 263-273.DOI: 10.13745/j.esf.sf.2025.3.20
Previous Articles Next Articles
SUN Yiyang(), ZHANG Bei, ZHAO Xi*(
), ZHU Jialei
Received:
2025-02-04
Revised:
2025-02-22
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
SUN Yiyang, ZHANG Bei, ZHAO Xi, ZHU Jialei. A study on the impact of clean fuel application on the radiative effects of shipping sulfate aerosols[J]. Earth Science Frontiers, 2025, 32(3): 263-273.
试验编号 | 试验描述 |
---|---|
Exp.1 | 不包含船舶SO2及一次PSO4排放(控制实验) |
Exp.2 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的28.7%(0.5% S) |
Exp.3 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的5.7%(0.1% S) |
Table 1 Experimental setup of this study
试验编号 | 试验描述 |
---|---|
Exp.1 | 不包含船舶SO2及一次PSO4排放(控制实验) |
Exp.2 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的28.7%(0.5% S) |
Exp.3 | 船舶源SO2及一次PSO4排放量设置为原排放清单排放量的5.7%(0.1% S) |
Fig.1 Surface concentration (a) and column concentration (b) of shipping PSO4 under the global 0.5% S regulation, with global mean and standard deviation marked in the upper left corner
Fig.2 Column concentrations of shipping PSO4 under the global 0.5% S regulation for winter (DJF, a), spring (MAM, b), summer (JJA, c), and autumn (SON, d)
Fig.4 Number concentrations of the nucleation mode (a), Aitken mode (b), and accumulation mode (c) of shipping PSO4 under the global 0.5% S regulation
[1] | U.S. Department of Transportation. United nations conference on trade and development, review of maritime transport 2020[R]. Washington, D.C.: Geneva: U.S. Department of Transportation; UNCTAD 2020. |
[2] | U.S. Environmental Protection Agency. Radiative forcing caused by human activities since 1750[R]. Washington, D.C.: U.S. Environmental Protection Agency, 2014. |
[3] | EYRING V, KöHLER H W, LAUER A, et al. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D17): 1-18. |
[4] | BALKANSKI Y, MYHRE G, GAUSS M, et al. Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation[J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4477-4489. |
[5] | FUGLESTVEDT J, BERNTSEN T, MYHRE G, et al. Climate forcing from the transport sectors[J]. Proceedings of the National Academy of Sciences, 2008, 105(2): 454-458. |
[6] | CORBETT J J, FISCHBECK P. Emissions from ships[J]. Science, 1997, 278(5339): 823-824. |
[7] | CORBETT J J, KOEHLER H W. Updated emissions from ocean shipping[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20): 1-13. |
[8] | EYRING V, ISAKSEN I S A, BERNTSEN T, et al. Transport impacts on atmosphere and climate: shipping[J]. Atmospheric Environment, 2010, 44(37): 4735-4771. |
[9] | ENDRESEN Ø, SøRGåRD E, SUNDET J K, et al. Emission from international sea transportation and environmental impact[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17): 1-22. |
[10] | CORBETT J J, FISCHBECK P S, PANDIS S N. Global nitrogen and sulfur inventories for oceangoing ships[J]. Journal of Geophysical Research, 1999, 104(D3): 3457-3470. |
[11] | MOLDANOVá J, FRIDELL E, POPOVICHEVA O, et al. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine[J]. Atmospheric Environment, 2009, 43(16): 2632-2641. |
[12] |
SOFIEV M, WINEBRAKE J J, JOHANSSON L, et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs[J]. Nature Communications, 2018, 9(1): 406.
DOI PMID |
[13] | AAKKO-SAKSA P T, LEHTORANTA K, KUITTINEN N, et al. Reduction in greenhouse gas and other emissions from ship engines: current trends and future options[J]. Progress in Energy and Combustion Science, 2023, 94: 101055. |
[14] | CHUNG C, LEE K, MüLLER D. Effect of internal mixture on black carbon radiative forcing[J]. Tellus B: Chemical and Physical Meteorology, 2012, 64(1): 10925. |
[15] | LAUER A, EYRING V, CORBETT J J, et al. Assessment of near-future policy instruments for oceangoing shipping: impact on atmospheric aerosol burdens and the Earth’s radiation budget[J]. Environmental Science and Technology, 2009, 43(15): 5592-5598. |
[16] | LAUER A, EYRING V, HENDRICKS J, et al. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget[J]. Atmospheric Chemistry and Physics, 2007, 7(19): 5061-5079. |
[17] | RIGHI M, HENDRICKS J, SAUSEN R. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 9939-9970. |
[18] | ÅNGSTRöM A. Atmospheric turbidity, global illumination and planetary albedo of the earth[J]. Tellus, 1962, 14(4): 435-450. |
[19] | TWOMEY S, HOWELL H B, WOJCIECHOWSKI T A. Comments on “Anomalous Cloud Lines”[J]. Journal of Atmospheric Sciences, 1968, 25(2): 333-334. |
[20] | LOHMANN U, FEICHTER J. Global indirect aerosol effects: a review[J]. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737. |
[21] | SAUSEN R, GIERENS K, EYRING V, et al. Climate impact of transport[M]//SCHUMANN U. Atmospheric physics: Background-Methods-Trends. Berlin, Heidelberg: Springer Berlin Heidelberg. 2012: 711-725. |
[22] | UNGER N, BOND T C, WANG J S, et al. Attribution of climate forcing to economic sectors[J]. Proceedings of the National Academy of Sciences, 2010, 107(8): 3382-3387. |
[23] | KERRY D. Sensitivity of aerosol radiative effects to shipping emissions[D]. Halifax, Nova Scotia: Dalhousie University, 2019. |
[24] | DALSøREN S B, SAMSET B H, MYHRE G, et al. Environmental impacts of shipping in 2030 with a particular focus on the Arctic region[J]. Atmospheric Chemistry and Physics, 2013, 13(4): 1941-1955. |
[25] | GETTELMAN A, CHRISTENSEN M W, DIAMOND M S, et al. Has reducing ship emissions brought forward global warming?[J]. Geophysical Research Letters, 2024, 51(15): e2024GL109077. |
[26] |
RIGHI M, KLINGER C, EYRING V, et al. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect[J]. Environmental Science and Technology, 2011, 45(8): 3519-3525.
DOI PMID |
[27] | PETERS K, STIER P, QUAAS J, et al. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM[J]. Atmospheric Chemistry and Physics, 2012, 12(13): 5985-6007. |
[28] | EYRING V, KöHLER H W, VAN AARDENNE J, et al. Emissions from international shipping: 1. The last 50 years[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D17): 1-12. |
[29] |
CORBETT J J, WINEBRAKE J J, GREEN E H, et al. Mortality from ship emissions: a global assessment[J]. Environmental Science and Technology, 2007, 41(24): 8512-8518.
PMID |
[30] |
WINEBRAKE J J, CORBETT J J, GREEN E H, et al. Mitigating the health impacts of pollution from oceangoing shipping: an assessment of low-sulfur fuel mandates[J]. Environmental Science and Technology, 2009, 43(13): 4776-4782.
PMID |
[31] | CAPALDO K, CORBETT J J, KASIBHATLA P, et al. Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean[J]. Nature, 1999, 400(6746): 743-746. |
[32] | CONOVER J H. Anomalous cloud lines[J]. Journal of Atmospheric Sciences, 1966, 23(6): 778-785. |
[33] | DURKEE P A, CHARTIER R E, BROWN A, et al. Composite ship track characteristics[J]. Journal of the Atmospheric Sciences, 2000, 57(16): 2542-2553. |
[34] | HOBBS P V, GARRETT T J, FEREK R J, et al. Emissions from ships with respect to their effects on clouds[J]. Journal of the Atmospheric Sciences, 2000, 57(16): 2570-2590. |
[35] | EPA. profiles of total organic compounds and particulate matter SPECIATE 3.2[R]. Washington District of Columbia: Environmental Protection Agency, USA, 2006. |
[36] | IMO. Third IMO GHG Study 2014[R]. London, United Kingdom: International Maritime Organization, 2014. |
[37] | IMO. IMO 2020: Consistent implementation of MARPOL Annex VI[R]. London, United Kingdom: International Maritime Organization, 2020. |
[38] |
GRYSPEERDT E, SMITH T W P, O’KEEFFE E, et al. The impact of ship emission controls recorded by cloud properties[J]. Geophysical Research Letters, 2019, 46(21): 12547-12555.
DOI |
[39] | WATSON-PARRIS D, CHRISTENSEN M W, LAURENSON A, et al. Shipping regulations lead to large reduction in cloud perturbations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(41): e2206885119. |
[40] | YUAN T, SONG H, WOOD R, et al. Global reduction in ship-tracks from sulfur regulations for shipping fuel[J]. Science Advances, 2022, 8(29): eabn7988. |
[41] | ZHU J, PENNER J E. Global modeling of secondary organic aerosol with organic nucleation[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 8260-8286. |
[42] | ZHU J, PENNER J E. Indirect effects of secondary organic aerosol on cirrus clouds[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD032233. |
[43] |
ZHU J, PENNER J E, YU F, et al. Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change[J]. Nature Communications, 2019, 10(1): 423.
DOI PMID |
[44] | LIN G, PENNER J E, FLANNER M G, et al. Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7453-7476. |
[45] | LIU X, PENNER J E, HERZOG M. Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols[J]. Journal of Geophysical Research, 2005, 110(D18): 1-37. |
[46] | WANG M, PENNER J E, LIU X. Coupled IMPACT aerosol and NCAR CAM3 model: evaluation of predicted aerosol number and size distribution[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D6): 1-30. |
[47] |
WANG C F, CORBETT J J, FIRESTONE J. Improving spatial representation of global ship emissions inventories[J]. Environmental Science and Technology, 2008, 42(1): 193-199.
PMID |
[48] | JALKANEN J P, JOHANSSON L, KUKKONEN J, et al. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide[J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2641-2659. |
[49] | JOHANSSON L, JALKANEN J P, KALLI J, et al. The evolution of shipping emissions and the costs of regulation changes in the northern EU area[J]. Atmospheric Chemistry and Physics, 2013, 13(22): 11375-11389. |
[50] | JALKANEN J P, JOHANSSON L, KUKKONEN J. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 71-84. |
[51] | JALKANEN J-P, JOHANSSON L, KUKKONEN J. A comprehensive inventory of the ship traffic exhaust emissions in the Baltic Sea from 2006 to 2009[J]. AMBIO, 2014, 43(3): 311-324. |
[52] | COLLINS W D, RASCH P J, BOVILLE B A, et al. The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3)[J]. Journal of Climate, 2006, 19(11): 2144-2161. |
[53] | WANG M, PENNER J E. Aerosol indirect forcing in a global model with particle nucleation[J]. Atmospheric Chemistry and Physics, 2009, 9(1): 239-260. |
[54] | PENNER J E, XU L, WANG M. Satellite methods underestimate indirect climate forcing by aerosols[J]. Proceedings of the National Academy of Sciences, 2011, 108(33): 13404-13408. |
[55] | LIU X, PENNER J E, GHAN S J, et al. Inclusion of ice microphysics in the NCAR community atmospheric model version 3 (CAM3)[J]. Journal of Climate, 2007, 20(18): 4526-4547. |
[56] | LAWRENCE M G, CRUTZEN P J. Influence of NOx emissions from ships on tropospheric photochemistry and climate[J]. Nature, 1999, 402(6758): 167-170. |
[57] | EYRING V, STEVENSON D S, LAUER A, et al. Multi-model simulations of the impact of international shipping on atmospheric chemistry and climate in 2000 and 2030[J]. Atmospheric Chemistry and Physics, 2007, 7(3): 757-780. |
[58] | HOU W, LIU Z, YU G, et al. On-board measurements of OC/EC ratio, mixing state, and light absorption of ship-emitted particles[J]. Science of The Total Environment, 2023, 904: 166692. |
[59] |
YANG F, ZHANG F, LIU Z, et al. Emission and optical characteristics of brown carbon in size-segregated particles from three types of Chinese ships[J]. Journal of Environmental Sciences, 2024, 142: 248-258.
DOI PMID |
[1] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
[2] | ZHU Jialei, DONG Jianzhi, ZHANG Yonggen, SUN Shaobo, JIANG Zhe, ZHOU Haoran, ZHAO Xi, LI Pan, CHEN Wei, WANG Lichun, LI Xin, Liu Cong-Qiang. Progress and scientific frontiers in numerical simulation of the Earth system [J]. Earth Science Frontiers, 2025, 32(3): 118-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||